
 

  

2014-2015 

Assist Lecturer: Ali Najim Abdullah 

DIYALA UNIVERSITY 

COLLEGE OF ENGINEERING  

DEPARTMENT OF POWER AND      

ELECTRICAL MACHINES 

2014-2015 

ELECTROMAGNETIC FIELDS 
"CHAPTER THREE: ELECTRIC FLUX DENSITY, 

GAUSS'S LAW, AND DIVERGENCE " 



 

Electromagnetic Fields                                                        Chapter 3: Electric Flux Density, 
Gauss's   Law, and Divergence  

53 
 

ELECTRIC FLUX AND GAUSS’S LAW  

3.1 NET CHARGE IN A REGION 

With charge density defined as in chapter 2, it is possible to obtain the net charge 

contained in a specified volume by integration. From 

                    

It follows that 

  ∫     

 

                                                                                                                          

   will not be constant throughout the volume  . 

Example 2.1:  Find the charge in the volume         in the spherical coordinate 

system, if      
      

  
     

  ⁄   

Solution:   

  ∫     

 

 

  ∫ ∫∫(
      

  
)       

 

 

 

 

  

 

            

3.2 ELECTRIC FLUX AND FLUX DENSITY 

The electric flux due to the electric field E originates (emanates) from positive charge 

and terminates on negative charge. In the absence of negative charge, the flux   

terminates at infinity. Also by definition, one coulomb of electric charge gives rise to 

one coulomb of electric flux. Hence 

                                                                                                                                          

In Fig. 3.1 the flux lines leave    and terminate on – . This assumes that the two 

charges are of equal magnitude. The case of positive charge with no negative charge 

in the region is illustrated in Fig. 3.2. Here the flux lines are equally spaced 

throughout the solid angle, and reach out toward infinity. 
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                      Fig. (3.1)                                                              Fig. (3.2)    

The electric flux   is a scalar quantity, while the electric flux density,  , is a vector 

field which takes its direction from the lines of flux. If in the neighborhood of point P 

the lines of flux have the direction of the unit vector a Fig. 3.3 and if an amount of 

flux    crosses the differential area,   , which is normal to a. then the electric flux 

density at   is: 

  
  

  
        

  ⁄                                                                                                                   

          

                           Fig. 3.3                                                             Fig. 3.4 

A volume charge distribution of density        
   is shown enclosed by surface   in 

Fig. 3.4. Since each coulomb of charge Q has, by definition, one coulomb of flux,  . 

It follows that the net flux crossing the closed surface   is an exact measure of the net 

charge enclosed. However, the density   may vary in magnitude and direction from 

point to point of  ; in general,   will not be along the normal to  . If at the surface 

element,   ,   makes an angle   with the normal, then the differential flux crossing 

   is given by 
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Where,    is the vector surface element of magnitude    and direction   . The unit 

vector    always taken to point out of  , so that    is the amount of flux passing 

from the interior of   to the exterior of   through   .  

3.3 GAUSS'S LAW- MAXWELL'S EQUATION 

Gauss's law constitutes one of the fundamental laws of electromagnetism.  

Gauss's law states that the total electric flux   through any closed surface is equal to 

the total charge enclosed by that surface. Thus 

                                                                                                                                            

Integration of the above expression for    over the closed surface   gives, since 

  ∮   ∮      

 

                         ∫       

 

                                  

  ∮      

 

 ∫       

 

                                                                                                       

It will be seen that a great deal of valuable information can be obtained the 

application of Gauss's law without actually carrying out the integration. 

3.4. RELATION BETWEEN ELECTRIC FLUX DENSITY AND ELECTRIC 

FIELD INTENSITY 

Consider a point charge   (assumed positive, for simplicity) at the origin Fig. 3.5. If 

this is enclosed by a spherical surface of radius,  , then, by symmetry,   due to   is 

of constant magnitude over the surface and is everywhere normal to the surface. 

Gauss's law then gives 

  ∮      

 

   ∮   
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Fig. 3.5 

From which  

  
 

    
                                                                                                                                    

Therefore 

  
 

    
   

 

    
                                                                                                             

But, the electric field intensity due to   is 

  
 

     
                                                                                                                              

It follows that  

                                                                                                                                           

More generally, for any electric field in an isotropic medium of permittivity,   . 

                                                                                                                                            

Thus,   and   fields will have exactly the same form, since they differ only by a 

factor which is a constant of the medium. While the electric field   due to a charge 

configuration is a function of permittivity,  , the electric flux density   is not.[3]  
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3.5 SPECIAL GAUSSIAN SURFACES 

The spherical surface used in the derivation of Section 3.4 was a special Gaussian 

surface in that satisfied the following defining conditions:  

1. the surface is closed  

2. at each point of the surface   is either normal or tangential to the surface  

3.   has the some value at all points of the surface where   is normal 

Example 3.2: Use special Gaussian surface to find   due to a uniform line change,   , 

(   ).  

Solution: Take the line charge as the z-axis of cylindrical coordinates Fig. 3.6. By 

cylindrical symmetry,   can only have an   component, and this component can only 

depend on  . Thus, the special Gaussian surface for this problem is a closed right 

circular cylinder whose axis is the z-axis Fig. 3.7. Applying Gauss's law. 

  ∮      

 

 ∮      

 

 ∮      

 

 

 

                     Fig. 3.6                                                           Fig. 3.7 

Over surfaces 1and 3, D and    are orthogonal and so the integrals vanish. Over 

surface 2, D and    are parallel or antiparallel if    is negative and D is constant 

because   is constant Thus, 
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   ∮   

 

          

Where,   is the length of the cylinder. But the enclosed charge is,      . Hence,[3]  

  
  
   

 

and     

  
  
   

   

3.6 APPLICATIONS OF GAUSS'S LAW 

The procedure for applying Gauss's law to calculate the electric field involves first 

knowing whether symmetry exists. Once symmetric charge distribution exists, we 

construct a mathematical closed surface (known as a Gaussian surface).  

The surface is chosen such that D is normal or tangential to the Gaussian surface.  

 When, D is normal to the surface,           because D is constant on the 

surface.  

 When D is tangential to the surface,       .  

Thus we must choose a surface that has some of the symmetry exhibited by the 

charge distribution. We shall now apply these basic ideas to the following cases. 

A. Point Charge 

Suppose a point charge   is located at the origin. To determine   at a point  , it is 

easy to see that choosing a spherical surface containing   will satisfy symmetry 

conditions. Thus, a spherical surface centered at the origin is the Gaussian surface in 

this case and is shown in Fig. 3.8. 

Since   is everywhere normal to the Gaussian surface, that is,         

By applying Gauss's law gives,              

            

  ∮      

 

    ∮   
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Fig. 3.8 Gaussian surface about a point charge. 

∮   

 

 ∫ ∫       

 

   

  

   

          

(    ) is the surface area of the Gaussian  surface. Thus 

  
 

    
                                                                                                                                

B. Infinite Line Charge 

Suppose the infinite line of uniform charge          lies along the z-axis. To 

determine D at a point P, we choose a cylindrical surface containing P to satisfy 

symmetry condition as shown in Fig. 3.9. D is constant on and normal to the 

cylindrical Gaussian surface; that is,       .  

Apply Gauss's law to an arbitrary length   of the line. 

 

Fig. 3.9. Gaussian surface about an infinite line charge. 
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       ∮      

 

    ∮   

 

                                                                           

Where,  

  ∮   

 

 ∫ ∫  

 

   

  

   

          

(    ) is the surface area of the Gaussian surface. Note that ∫      evaluated on the 

top and bottom surfaces of the cylinder is zero since   has no  -component; that 

means that   is tangential to those surfaces. Thus 

  
  
   

                                                                                                                                  

C. Infinite Sheet of Charge 

Consider the infinite sheet of uniform charge        
   lying on the     plane (in 

the   -plane). To determine D at point P, we choose a rectangular box that is cut 

symmetrically by the sheet of charge and has two of its faces parallel to the sheet as 

shown in Fig. 3.10. As D is normal to the sheet,       .  

Applying Gauss's law gives 

 

Fig. 3.10. Gaussian surface about an infinite line sheet of charge. 
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  ∫     ∮      

 

    ∮   

 

   [ ∫   

   

 ∫   

      

]                                

Note that       evaluated on the sides of the box is zero because   has no 

components along    and   . If the top and bottom area of the box each has area  , 

equation above becomes 

                                                                                                                                 

And thus  

  
  
 
   

or         

  
 

  
 
  
   

                                                                                                                          

D. Uniformly Charged Sphere 

Consider a sphere of radius a with a uniform charge        
  . To determine D 

everywhere, we construct Gaussian surfaces for eases     and     separately. 

Since the charge has spherical symmetry, it is obvious that a spherical surface is an 

appropriate Gaussian surface. 

For    , the total charge enclosed by the spherical surface of radius  , as shown in 

Figure 3.11(a), is 

 
Fig. 3.11 Gaussian surface for a uniformly charged sphere: (a)     and (b)    . 
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          ∫       ∫     ∫ ∫ ∫       

 

   

 

   

        

  

   

 

            
 

 
                                                                                                                   

and 

  ∮   ∮      

 

   ∮   

 

 

    ∫ ∫       

 

   

  

   

          
                                                                           

Hence, 

                   gives, 

     
  

    

 
   

   
 

 
                                                                                                                                      

or 

  
 

 
                                                                                                                       

For    , the Gaussian surface is shown in Figure 3.11(b). The charge enclosed by 

the surface is the entire charge in this case, that is, 

          ∫       ∫     ∫ ∫ ∫       

 

   

 

   

        

  

   

 

            
 

 
                                                                                                                  

While, 

  ∮   ∮      

 

      
                                                                                          

Hence,   
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                  gives, 

     
  

 

 
      

 or 

  
  

   
                                                                                                                         

Thus from equations (3.23) and (3.26),   everywhere is given by 

  

{
 
 

 
 
 

 
                             

  

   
                               

                                                                                      

and |D| is as sketched in Figure 3.12. 

 

Figure 3.12 Sketch of |D| against   for a uniformly charged sphere. 

Notice from equations (3.23), (3.15), (3.17) and (3.21) that the ability to take   out of 

the integral sign is the key to finding   using Gauss's law. In other words,   must be 

constant on the Gaussian surface. 
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3.7 DIVERGENCE OF A VECTOR AND DIVERGENCE THEOREM 

We have noticed that the net outflow of the flux of a vector field   from a closed 

surface S is obtained from the integral 

∮      

 

 

We now define the divergence of   as the net outward flow of flux per unit volume 

over a closed incremental surface.  

The divergence of a vector   at a given point   is the net outward flux per unit 

volume as the volume shrinks about  . Hence, 

             
    

∮      
 

  
                                                                                            

Where,    is the volume enclosed by the closed surface   in which   is located. 

 

Fig. 3.13 illustration of the divergence of a vector field at  ; (a) positive divergence, 

(b) negative divergence, (c) zero divergence. 

The divergence of a vector field the limit of the field's source strength per unit 

volume (or source density); it is positive at a source point in the field, and negative at 

a sink point, or zero where there is neither sink nor source. 

3.7.1 Divergence In Cartesian Coordinates  

We can obtain an expression for Divergence (   ) in Cartesian coordinates from the 

definition in equation (3.28). Suppose we wish to evaluate the divergence of a vector 

field   at point,            ; we let the point be enclosed by a differential volume as 

in Fig. 3.14. The surface integral in equation (3.28) is obtained from 
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∮      

 

 ( ∫  

     

∫  

    

∫  ∫  

         

∫  

   

∫

 

      

)                                     

A three-dimensional Taylor series expansion of    about   is: 

                             
   
  
|
 
       

   
  
|
 

       
   
  
|
 

                                                                                                     

For the front side,               and             . Then, 

∫      

     

     [             
  

 

   
  
|
 
]                     

For the back side,               and               . Then, 

∫      

    

      [             
  

 

   
  
|
 
]                     

 

Figure 3.14 Evaluation of      at point P(        ). 

 

∫      

     

 ∫      

    

       
   
  
|
 
                                            

By taking similar steps, we obtain 

∫      

    

 ∫      

     

       
   

  
|
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and 

∫      

   

 ∫      

      

       
   
  
|
 
                                            

Substituting equations (3.31) to (3.33) into eq. (3.29) and noting that              

we get 

   
    

∮      
 

  
  

   
  

 
   

  
 
   
  
                                                                               

Because the higher-order terms will vanish as     . Thus, the divergence of A at 

point P           in a Cartesian system is given by 

    
   
  

 
   

  
 
   
  

                                                                      

3.7.2 Divergence In Other Coordinates System 

Similar expressions for     in other coordinate systems can be obtained directly 

from eq. (3.28) or by transforming eq. (3.35) into the appropriate coordinate system.  

1. In Cylindrical Coordinate System: 

    
 

 

 

  
      

 

 

   
  

 
   
  
                                                      

2. In Spherical Coordinate System: 

    
 

  
 

  
       

 

     

 

  
       

 

     

   
  

                                  

Note the following properties of the divergence of a vector field: 

1. It produces a scalar field (because scalar product is involved). 

2. The divergence of a scalar  ,      , makes no sense. 

3.                 

4.                      
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Example 3.3:  If           
  

 
    find       at      

Solution: 

          
 

  
(      

  

 
)     (   

  

 
)
 

 
    (   

  

 
) 

 
  

 
  (   

  

 
)     (   

  

 
) 

     |       

Example 3.4: If the vector field by cylindrical coordinates 

           
           

     ,  find       at    ⁄     ⁄     

Solution: 

          
 

 

 

  
         

 

 

 

  
         

 

  
         

      
 

 
         

 

 
                                     

         ⁄   
 
 ⁄    

     
 

 
 
 

 
   

 

 
   

 

 
    

 

 
 

H.w 3.1: If the field vector in spherical coordinate  

  
 

  
                          ,  find       

3.8 DIVERGENCE OF D (first Maxwell equation for electrostatic field) 

From Gauss's law 

∮      
 

  
 
         
  

                                                                                                             

In the limit, 

   
    

∮      
 

  
          

    

         
  

                                                                  

This important result is one of Maxwell’s equations for static fields: 
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Example 3.5:  

In spherical coordinates the region     contains a uniform charge density ρ, while 

for      the charge density is zero. Since        where     
  

   
) for     and 

   
   

    
 
 for    .  

Solution: Then, for    . 

      
 

  
 

  
(  

  

   
)  

 

  
(   

 

   
)  

 

  
 

and, for     . 

      
 

  
 

  
(  

   

    
 )    

3.9 THE DEL OPERATOR 

We define the del operator   as a vector operator  

  
 

  
   

 

  
   

 

  
                                                                                                      

    (
 

  
   

 

  
   

 

  
  )  (              )  

   
  

 
   

  
 
   
  

 

          
   
  

 
   

  
 
   
  
                                                                                      

The del operator is defined only in Cartesian coordinate system. When     is 

writting as the divergence of   in other coordinate systems, it does not mean that a 

del operator defined for these systems. For example, the divergence in cylindrical 

coordinate written as 

    
 

 

 

  
(   )  

 

 

   
  

 
   
  

 

3.10 THE DIVERGANCE THEOREM  

From the definition of the divergence of D in eq. (3.28), the divergence of D 

∮      

 

 ∮      

 

      

But,          
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∮      

 

 ∮        

 

                                                                     

For any vector field 

∮      

 

 ∮        

 

                                                    

This is called the divergence theorem, otherwise known as the Gauss-Ostrogradsky 

theorem. 

The divergence theorem: states that the total outward flux of a vector field   through 

the closed surface   is the same as the volume integral of the divergence of  . 

Example 3.6: The region     in spherical coordinate system has an electric field 

intensity      
  

   
     

Examine both sides of the divergence theorem, for this vector field. For    choose the 

spherical surface       

∮      

 

 ∮        

 

                                  

Solution: For the left side 

∮      

 

 ∫ ∫ (
  

   
  )

 

   

  

   

             ∫ ∫
   

   

 

   

  

   

         

∮      

 

 
     

   
 

For the right side  

    
 

  
 

  
(  

  

   
)  

 

  
 

∮        

 

 ∫ ∫ ∫
 

  

 

   

 

   

  

   

             
     

   
 

The right side   the left side  
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Example 3.7: The finite sheet      ,       on the     plane has a charge 

density        
                 . Find 

(a) The total charge on the sheet (b) The electric field at         

(c) The force experienced by a       charge located at         

Solution:                   ∫     ∫ ∫                
 

 

 

 
      

Since,              , we now integrate with respect to    (or change variables: 

     so that            ). 

  
 

 
∫∫           
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|     | 
                                                                

where                               . Hence 

  ∫∫
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