
Digita l Syste m Design
Fourth Class

E E 4 0 4

Diyala University College

of Engineering Department

of Electronics

Theoretical:2 Hrs/Wk

Tutorial: 1 Hrs/Wk

Practical: Hrs/Wk

Simplification of Boolea n Functio n using K-ma p and Tabulation 6 Hrs

Digital Circui t Design using Logi c Circuit s (LSI , SSI , MSI) 6 Hrs

Design using Programmable Logi c Circuit s (RO M , PLA , PAL) 6 Hrs

Synchronized Sequential Circuit s (Analysis and Design) 6 Hrs

AS M Diagrams. 6 Hrs

Analysis and Design of Sequential Circuit s using AS M Diagrams 6 Hrs

Asynchronous Circuit s (Analysis) 6 Hrs

Luminescent pulse phenomenon in logic circuits (Stati c and Dynamic) 6 Hrs

Microprocessors-Componen t and Architecture 6 Hrs

Microprocessors Hardware ~ 10 Hrs
4-, 8-, 16- and 32-bit Microprocessors, Single Chip Microcomputer 8085 , 8088 ,
MPU details.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.1

Rom and Programmable Logic Devices (PLDs)

Digital ICs are often categorized according to the complexity of their circuits, as

measured by the number of logic gates in a single package. The differentiation

between those chips which have a few internal gates and those having hundreds of

thousand of gates is made by customary reference to package as:

Small-scale integration (SSI) devices contain several independent gates in a single

package. The inputs and outputs of the gates are connected directly to the pins in

the package. The number of gates is usually fewer than 10 and is limited by the

number of pins available in the IC.

Medium-scale integration (MSI) devices have a complexity of approximately 10

to 1000 gates in a single package. They usually perform specific elementary digital

operations.

Large-scale integration (LSI) devices contain thousands of gates in a single

package. They include digital systems such as processor, memory chips, and

programmable logic devices.

Very Large-scale integration (VLSI) device contained hundred of thousand of

gates within a single package. Examples are large memory array and complex

microcomputer chips.

● Read Only Memory (ROM):

A ROM is essentially a memory device in which permanent binary information is

stored. The binary information must be specified by the designer and is then

embedded in the unit to form the required interconnection pattern. Once the pattern

is established, it stays within the unit even when power is turned off and on again.

A block diagram of a ROM consisting of k inputs and n outputs is shown in Figure

(1).

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.2

The inputs provide the address for memory, and the outputs give the data bits of

the stored word that is selected by the address. The number of words in a ROM is

determined from the fact that k address input lines are needed to specify 2k words.

Note that ROM does not have data inputs, because it does not have a write

operation. Integrated circuit ROM chips have one or more enable inputs and

sometimes come with three-state outputs to facilitate the construction of large

arrays of ROM. Consider, for example, a 32 X 8 ROM, the unit consists of 32

words of 8 bits each, there are five input lines that form the binary numbers from 0

through 31 for the address. Figure (2) shows the internal logic construction of this

ROM. The five inputs are decoded into 32 distinct outputs by means of a 5 X 32

decoder. Each output of the decoder represents a memory address.

► EX: Design a combinational circuit using a ROM. The circuit accepts a three-

bit number and outputs a binary number equal to the square of the input number?

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.3

Sol: Three inputs specify eight words, so the ROM must be of size 8 X 4. The

ROM implementation is shown as:

● Types of ROMs
The type of ROM is determined by the way the switches are set or reset (i.e.,

programmed).

The Mask ROM: The mask ROM is usually referred to simply as a ROM. It is
permanently programmed during the manufacturing process to provide widely
used standard functions, such as popular conversions, or to provide user-specified
functions, once the memory is programmed. It cannot be changed. Most IC ROMs
utilize the presence or absence of a transistor connection at a row /column junction
to represent a 1 or a 0.

Figure (3) shows MOS ROM cells. The presence of a connection from a row line
to the gate of a transistor represents a 1 at that location because when the row line
is taken HIGH; all transistors with a gate connection to that row line turn on and
connect the HIGH (1) to the associated column lines. At row/column junctions

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.4

where there are no gate connections, the column lines remain LOW (0) when the
row is addressed.

Figure (3)

PROMs: A PROM uses some type of fusing process to store bits, in which a
memory link is burned open or left intact to represent a 0 or a 1. The fusing
process is irreversible: once a PROM is programmed, it cannot be changed.
Figure (4) illustrates a MOS PROM array with fusible links. The fusible links are
manufactured into the PROM between the source of each cell's transistor and its
column line. In the programming process, a sufficient current is injected through
the fusible link to burn it open to create a stored 0. The link is left intact for a
stored 1.

Figure (4)

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.4

where there are no gate connections, the column lines remain LOW (0) when the
row is addressed.

Figure (3)

PROMs: A PROM uses some type of fusing process to store bits, in which a
memory link is burned open or left intact to represent a 0 or a 1. The fusing
process is irreversible: once a PROM is programmed, it cannot be changed.
Figure (4) illustrates a MOS PROM array with fusible links. The fusible links are
manufactured into the PROM between the source of each cell's transistor and its
column line. In the programming process, a sufficient current is injected through
the fusible link to burn it open to create a stored 0. The link is left intact for a
stored 1.

Figure (4)

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.4

where there are no gate connections, the column lines remain LOW (0) when the
row is addressed.

Figure (3)

PROMs: A PROM uses some type of fusing process to store bits, in which a
memory link is burned open or left intact to represent a 0 or a 1. The fusing
process is irreversible: once a PROM is programmed, it cannot be changed.
Figure (4) illustrates a MOS PROM array with fusible links. The fusible links are
manufactured into the PROM between the source of each cell's transistor and its
column line. In the programming process, a sufficient current is injected through
the fusible link to burn it open to create a stored 0. The link is left intact for a
stored 1.

Figure (4)

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.5

EPROMs: An EPROM is an erasable PROM. Unlike an ordinary PROM, an
EPROM can be reprogrammed if an existing program in the memory array is erased
first.

An EPROM uses an NMOSFET array with an isolated-gate structure. The isolated
transistor gate has no electrical connections and can store an electrical charge for
indefinite periods of time. The data bits in this type of array are represented by the
presence or absence of a stored gate charge. Erasure of a data bit is a process that
removes the gate charge. Two basic types of erasable PROMs are the ultraviolet
erasable PROM (UV EPROM) and the electrically erasable PROM (EEPROM).

UV EPROMs You can recognize the UV EPROM device by
the transparent quartz lid on the package, as shown in Figure
(5). The isolated gate in the FET of an ultraviolet EPROM is
"floating" within an oxide insulating material. The
programming process causes electrons to be removed from the
floating gate. Erasure is done by exposure of the memory array
chip to high-intensity ultraviolet radiation through the quartz
window on top of the package. The positive charge stored on
the gate is neutralized after several minutes to an hour of exposure time.

EEPROMs An electrically erasable PROM can be both erased and programmed
with electrical pulses. Since it can be both electrically written into and electrically
erased, the EEPROM can be rapidly programmed and erased in-circuit for
reprogramming.

Word-Length Expansion

To increase the word length of a memory, the number of bits in the data bus must
be increased. For example, an 8-bit word length can be achieved by using two
memories, each with 4-bit words as illustrated in Figure (6- a). As you can see in
part (b), the 16-bit address bus is commonly connected to both memories so that
the combination memory still has the same number of addresses (216 = 65,536) as
each individual memory. The 4-bit data buses from the two memories are
combined to form an 8-bit data bus. Now when an address is selected, eight bits
arc produced on the data bus—four from each memory. Example 12-2 shows the
details of 65,536 x 4 to 65,536 x 8 expansions.

Figure (5) Ultraviolet
erasable PROM package

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.6

Figure (6)

► EXAMPLE: Expand the 65,536 x 4 ROM (64k x 4), to form a 64k x 8 ROM?

Solution Two 64k x 4 ROMs are connected as shown in Figure (7). Notice that a
spa-ilk address is accessed in ROM 1 and ROM 2 at the same time. The four bits
from a selected address in ROM 1 and the four bits from the corresponding
address in ROM 2 go out in parallel to form an 8-bit word on the data bus. Also
notice that a LOW on the chip enable line, E. which farms a simple control bus,
enables both memories.

Figure (7)

► Programmable Logic Devices (PLDs)

The three major types of programmable logic are SPLD, CPLD, and FPGA. Each
major type generally has several manufacturer-specific subcategories.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.6

Figure (6)

► EXAMPLE: Expand the 65,536 x 4 ROM (64k x 4), to form a 64k x 8 ROM?

Solution Two 64k x 4 ROMs are connected as shown in Figure (7). Notice that a
spa-ilk address is accessed in ROM 1 and ROM 2 at the same time. The four bits
from a selected address in ROM 1 and the four bits from the corresponding
address in ROM 2 go out in parallel to form an 8-bit word on the data bus. Also
notice that a LOW on the chip enable line, E. which farms a simple control bus,
enables both memories.

Figure (7)

► Programmable Logic Devices (PLDs)

The three major types of programmable logic are SPLD, CPLD, and FPGA. Each
major type generally has several manufacturer-specific subcategories.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.6

Figure (6)

► EXAMPLE: Expand the 65,536 x 4 ROM (64k x 4), to form a 64k x 8 ROM?

Solution Two 64k x 4 ROMs are connected as shown in Figure (7). Notice that a
spa-ilk address is accessed in ROM 1 and ROM 2 at the same time. The four bits
from a selected address in ROM 1 and the four bits from the corresponding
address in ROM 2 go out in parallel to form an 8-bit word on the data bus. Also
notice that a LOW on the chip enable line, E. which farms a simple control bus,
enables both memories.

Figure (7)

► Programmable Logic Devices (PLDs)

The three major types of programmable logic are SPLD, CPLD, and FPGA. Each
major type generally has several manufacturer-specific subcategories.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.7

SPLDs (simple programmable logic devices) are the least complex form of PLDs.
An SPLD can typically replace several fixed-function SSI or MSI devices and
their interconnections. The SPLD was the first type of programmable logic
available A few categories of SPLD are listed below, some of which are unique to
a specific manufacturer. A typical package has 24 to 28 pins.

PAL (programmable array logic)

GAL (generic array logic)

PLA (programmable logic array)
PROM (programmable read-only memory)

CPLDs (complex programmable logic devices) have a much higher capacity than
SPLDs, permitting more complex logic circuits to be programmed into them. A
typical CPLD is the equivalent of from two to sixty-four SPLDs. The development
of these devices followed the SPLD as advances in technology permitted higher-
density chips to be implemented. There are several forms of CPLD, which vary in
complexity and programming capability. CPLDs typically come in 44-pin to 160-
pin packages depending on the complexity.

FPGAs (field-programmable gate arrays) are different from SPLDs and CPLDs
in their internal organization and have the greatest logic capacity. FPGAs consist
of an array of anywhere from sixty-four to thousands of logic-gate groups that are
sometimes called logic blocks. Two basic classes of FPGA are course-grained and
fine-grained. The course-grained FPGA has large logic blocks, and the fine-
grained FPGA has much smaller logic blocks. FPGAs come in packages ranging
up to 1000 pins or more.

● Programmable Arrays

All PLDs consist of programmable arrays. A programmable array is essentially a
grid of conductors that form rows and columns with a fusible link at each cross
point. Arrays can be either fixed or programmable. The earliest type of
programmable array, dating back to the 1960s, was a matrix with a diode at each
cross point of the matrix.

The OR Array The original diode array evolved into the integrated OR array,
which consists of an array of OR gates connected to a programmable matrix with
fusible links at each cross point of a row and column, as shown in Figure (8- a).
The array is programmed by blowing fuses to eliminate selected variables from the
output functions, as illustrated in part (b) for a specific case. For each input to an

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.8

OR gate, only one fuse is left intact in order to connect the desired variable to the
gate input. Once a fuse is blown, it cannot be reconnected.

Figure (8)

The AND Array This type of array consists of AND gates connected to a
programmable matrix with fusible-links at each cross point, as shown in Figure (9-
a). Like the OR array, the AND array is programmed by blowing fuses to
eliminate variables from the output function, as illustrated in part (b). For each
input to an AND gate, only one fuse is left intact in order to connect the desired
variable to the gate input. Also like the OR array, the AND array with fusible links
is one-time programmable.

Figure (9)

Classifications of PLDs
PLDs are classified according to their architecture, which is basically the
internal functional arrangement of the elements that give a device its particular
operating characteristic.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.9

● Programmable Read-Only Memory The PROM consists of a set of fixed
(nonprogrammable) AND gates connected as a decoder and a programmable OR
array, as shown in the generalized block diagram of Figure (10). The PROM is
used primarily as an addressable memory and not as a logic device because of
limitations imposed by the fixed AND gates.

Figure (10)

● Programmable Logic Array (PLA) The PLA is a PLD that consists of a
programmable AND array and a programmable OR array, as shown in Figure (11).
The PLA was developed to overcome some of the limitations of the PROM. The
PLA is also called an FPLA (field-programmable logic array) because the user in
the field, not the manufacturer, programs it.

Figure (11)

● Programmable Array Logic (PAL) The PAL is a PLD that was developed to
overcome certain disadvantages of the PLA, such as longer delays due to the
additional fusible links that result from using two programmable arrays and more
circuit complexity. The basic PAL consists of a programmable AND array and a
fixed OR array with output logic, as shown in Figure (12). The PAL is the most
common one-time programmable logic device (OTP) and is implemented with
bipolar technology (TTL or ECL).

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.10

Figure (12)

● Generic Array Logic (GAL) The GAL has a reprogrammable AND array and a
fixed OR array with programmable output logic. The two main differences
between GAL and PAL devices are (a) the GAL is reprogrammable and (b) the
GAL has programmable output configurations. The GAL can be reprogrammed
again and again because it uses E2CMOS (electrically erasable CMOS) technology
instead of bipolar technology and fusible links. The block diagram of a GAL is
shown in Figure (13).

Figure (13)

Programmable Logic Array (PLA)

The PLA is similar in concept to the PROM, except that the PLA does not provide full

decoding of the variables and does not generate all the minters, The decoder is

replaced by an array of AND gates that can be programmed to generate any product

term of the input variables. The product terms are then connected to OR gates to

provide the sum of products for the required Boolean functions. The internal logic of a

PLA with three inputs and two outputs is shown in Figure bellow. Such a circuit is too

small to be useful commercially, but is presented here to demonstrate the typical logic

configuration of a PLA. The diagram uses the array logic graphic symbols for

complex circuits. Each input goes through a buffer-inverter combination, shown in the

diagram with a composite graphic symbol, that has both the true and complement

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.10

Figure (12)

● Generic Array Logic (GAL) The GAL has a reprogrammable AND array and a
fixed OR array with programmable output logic. The two main differences
between GAL and PAL devices are (a) the GAL is reprogrammable and (b) the
GAL has programmable output configurations. The GAL can be reprogrammed
again and again because it uses E2CMOS (electrically erasable CMOS) technology
instead of bipolar technology and fusible links. The block diagram of a GAL is
shown in Figure (13).

Figure (13)

Programmable Logic Array (PLA)

The PLA is similar in concept to the PROM, except that the PLA does not provide full

decoding of the variables and does not generate all the minters, The decoder is

replaced by an array of AND gates that can be programmed to generate any product

term of the input variables. The product terms are then connected to OR gates to

provide the sum of products for the required Boolean functions. The internal logic of a

PLA with three inputs and two outputs is shown in Figure bellow. Such a circuit is too

small to be useful commercially, but is presented here to demonstrate the typical logic

configuration of a PLA. The diagram uses the array logic graphic symbols for

complex circuits. Each input goes through a buffer-inverter combination, shown in the

diagram with a composite graphic symbol, that has both the true and complement

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.10

Figure (12)

● Generic Array Logic (GAL) The GAL has a reprogrammable AND array and a
fixed OR array with programmable output logic. The two main differences
between GAL and PAL devices are (a) the GAL is reprogrammable and (b) the
GAL has programmable output configurations. The GAL can be reprogrammed
again and again because it uses E2CMOS (electrically erasable CMOS) technology
instead of bipolar technology and fusible links. The block diagram of a GAL is
shown in Figure (13).

Figure (13)

Programmable Logic Array (PLA)

The PLA is similar in concept to the PROM, except that the PLA does not provide full

decoding of the variables and does not generate all the minters, The decoder is

replaced by an array of AND gates that can be programmed to generate any product

term of the input variables. The product terms are then connected to OR gates to

provide the sum of products for the required Boolean functions. The internal logic of a

PLA with three inputs and two outputs is shown in Figure bellow. Such a circuit is too

small to be useful commercially, but is presented here to demonstrate the typical logic

configuration of a PLA. The diagram uses the array logic graphic symbols for

complex circuits. Each input goes through a buffer-inverter combination, shown in the

diagram with a composite graphic symbol, that has both the true and complement

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.11

outputs. Each input and its complement is connected to the inputs of each AND gate,

as indicated by the intersections between the vertical and horizontal lines. The outputs

of the AND gates are connected to the inputs of each OR gate. The particular Boolean

functions implemented in the PLA of Fig. bellow are:

Fl = AB' + AC + A'BC' , F2 = AC + BC

► Ex: Implement the following functions using 3-input, 3 product terms and
2output PLA.

F1 = Σ (4, 5, 7)
F2 = Σ (3, 5, 7)

Solution: Step 1. Derive the truth table for the combinational circuit.

Step 2. Simplify functions using K-map.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.11

outputs. Each input and its complement is connected to the inputs of each AND gate,

as indicated by the intersections between the vertical and horizontal lines. The outputs

of the AND gates are connected to the inputs of each OR gate. The particular Boolean

functions implemented in the PLA of Fig. bellow are:

Fl = AB' + AC + A'BC' , F2 = AC + BC

► Ex: Implement the following functions using 3-input, 3 product terms and
2output PLA.

F1 = Σ (4, 5, 7)
F2 = Σ (3, 5, 7)

Solution: Step 1. Derive the truth table for the combinational circuit.

Step 2. Simplify functions using K-map.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.11

outputs. Each input and its complement is connected to the inputs of each AND gate,

as indicated by the intersections between the vertical and horizontal lines. The outputs

of the AND gates are connected to the inputs of each OR gate. The particular Boolean

functions implemented in the PLA of Fig. bellow are:

Fl = AB' + AC + A'BC' , F2 = AC + BC

► Ex: Implement the following functions using 3-input, 3 product terms and
2output PLA.

F1 = Σ (4, 5, 7)
F2 = Σ (3, 5, 7)

Solution: Step 1. Derive the truth table for the combinational circuit.

Step 2. Simplify functions using K-map.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.12

Step 3. Draw the logic diagram

Programmable Array Logic (PAL)

The PAL consists of a programmable array of AND gates that connects to a fixed
array of OR gates. This structure allows any sum-of-products (SOP) logic
expression with a defined number of variables to be implemented. The basic
structure of a PAL is illustrated in Figure (14) for two input variables and one
output although most PALs have many inputs and many outputs. As you know, a
programmable array is essentially a grid of conductors forming rows and columns
with a fusible link at each cross point. Each fused cross point of a row and column
is called a cell and is the programmable element of a PAL. Each row is connected
to the input of an AND gate and each column is connected to an input variable or
its complement. By using the presence or absence of fused connections created by
programming, any combination of input variables or complements can be applied
to an AND gate to form any desired product term.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.13

Figure (14)

Implementing a Sum-of-Products Expression In its simplest form, each cell in a
basic AND array consists of a fusible link connecting a row and a column as
represented in Figure (14). When the connection between a row and column is
required, the fuse is left intact. When no connection between a row and column is
required, the fuse is blown open during the programming process.
As an example, a simple array is programmed as shown in Figure (15) so that the
product term AB is produced by the top AND gate, AB by the middle AND gate,
and A B by the bottom AND gate. As you can see, the fusible links are left intact
to connect the desired variables or their complements to the appropriate AND gate
inputs. The fusible links are opened where a variable or its complement is not used
in a given product term. The final output from the OR gate is the SOP expression,= + +

Figure (15)

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.14

Simplified Symbols

What you have seen so far represents a small segment of a typical PAL. Actual
PALs have many AND gates and many OR gates in addition to other circuitry and
are capable of handling many input variables and their complements. Since PALs
are very complex integrated circuit devices, manufacturers have adopted a
simplified notation for the logic diagrams to keep them from being
overwhelmingly complicated.

Input Buffers The input variables to a PAL are buffered to prevent loading by the
large number of AND gate inputs to which a variable or its complement may be
connected. An inverting buffer produces the complement of an input variable. The
symbol representing the buffer circuit that produces both the variable and its
complement on its outputs is shown in Figure (16) where the bubble output is the
complement.

AND Gates A typical PAL AND array has an extremely large number of
interconnecting lines, and each AND gate has multiple inputs. PAL logic diagrams
show an AND gate that actually has several inputs by using an AND gate symbol
with a single input line representing all of its input lines, as indicated Figure (16).
Also, multiple input lines are sometimes indicated by a slash and the number of
lines as shown in the top AND gate for the case of four lines.

PAL Connections To keep a logic diagram as simple as possible, the fusible links
in a programmed AND array are indicated by an X at the cross point if the fuse is
left intact and by the absence of an X if the fuse is blown, as indicated in Figure
(16). Fixed connections use the standard dot notation, as also indicated.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.15

Figure (16)

► EX: Show how a PAL is programmed for the following 3-variable logic
function: = + + +
Solution The programmed array is shown in Figure (17). The intact fusible
links are indicated by small Xs. The absence of an X means that the fuse
has been blown.

Figure (17)

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.16

The PAL Block Diagram
A block diagram of a PAL is shown in Figure (18). The AND array outputs go to
the OR array, and the output of each OR gate goes to its associated output logic. A
typical PAL has eight or more inputs to its AND array and up to eight outputs
from its output logic as indicated, where n ≥ 8 and m ≤ 8. Some PALs provide a
combined input and output (I/O) pin that can be programmed as either an output or
an input. The symbol means that a pin can be either an input or an output.

Figure (18)

PAL Output Combinational Logic
There are several basic types of PAL output logic that allows you to configure the
device for a specific application. In this chapter, only the aspects of the output
logic related to combinational logic functions are discussed. Figure (19) shows
three basic types of combinational output logic with tri-state outputs and the
associated OR gate. The following are types of PAL output logic:

●Combinational output: This output is used for an SOP function and is usually
available as either an active-LOW or an active-HIGH output.
●Combinational input/output (I/O): This output is used when the output function
must feed back to be an input to the array or be used to make the I/O pin an input
only)
●Programmable polarity output This output is used for selecting either the output
function or its complement by programming the exclusive-OR gate for inversion
or no inversion. The fusible link on the exclusive-OR input is blown open for
inversion and left intact for no inversion.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.17

Figure (19)

Standard PAL Numbering
Standard PALs come in a variety of configurations, each of which is
identified by a unique part number. This part number always begins with the
prefix PAL. The first two digits following PAL indicate the number of inputs,
which includes outputs that can be configured as inputs. The letter following
the number of inputs designates the type of output: L—active- LOW, H—
active-HIGH, or P—programmable polarity. The one or two digits that follow
the output type is the number of outputs. The following number is an
example.

In addition, a PAL part number may carry suffixes that specify speed,
package type, and temperature range. As an example of a PAL configuration,
a block diagram of the PAL16L8 and PAL16R4 are shown in Figure (20).

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.17

Figure (19)

Standard PAL Numbering
Standard PALs come in a variety of configurations, each of which is
identified by a unique part number. This part number always begins with the
prefix PAL. The first two digits following PAL indicate the number of inputs,
which includes outputs that can be configured as inputs. The letter following
the number of inputs designates the type of output: L—active- LOW, H—
active-HIGH, or P—programmable polarity. The one or two digits that follow
the output type is the number of outputs. The following number is an
example.

In addition, a PAL part number may carry suffixes that specify speed,
package type, and temperature range. As an example of a PAL configuration,
a block diagram of the PAL16L8 and PAL16R4 are shown in Figure (20).

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.17

Figure (19)

Standard PAL Numbering
Standard PALs come in a variety of configurations, each of which is
identified by a unique part number. This part number always begins with the
prefix PAL. The first two digits following PAL indicate the number of inputs,
which includes outputs that can be configured as inputs. The letter following
the number of inputs designates the type of output: L—active- LOW, H—
active-HIGH, or P—programmable polarity. The one or two digits that follow
the output type is the number of outputs. The following number is an
example.

In addition, a PAL part number may carry suffixes that specify speed,
package type, and temperature range. As an example of a PAL configuration,
a block diagram of the PAL16L8 and PAL16R4 are shown in Figure (20).

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.18

Figure (20)

Generic Array Logic (GAL)

The GAL basically consists of a reprogrammable array of AND gates that
connects to a fixed array of OR gates. Just as in a PAL, this structure allows any
sum-of-products (SOP) logic expression with a defined number of variables to be
implemented.

The basic structure of a GAL is illustrated in Figure (21) for two input
variables and one output although most GALs have many inputs and many
outputs. The reprogrammable array is essentially a grid of conductors forming
rows and columns with an electrically erasable CMOS (E2CMOS) cell at each
cross point, rather than a fuse as in a PAL. These cells are shown as blocks in the
figure.

Each row is connected to the input of an AND gate, and each column is
connected to an input variable or its complement. By programming each E2CMOS

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.19

cell to be either on or off, any combination of input variables or complements can
be applied to an AND gate to form any desired product term. A cell that is on
effectively connects its corresponding row and column, and a cell that is off
disconnects the row and column. The cells can be electrically erased and
reprogrammed. A typical E2CMOS cell can retain its programmed state for 20
years or more.

Implementing a Sum-of-Products Expression As an example, a simple GAL
array is programmed as shown in Figure (22) so that the product term AB is
produced by the top AND gate, AB by the middle AND gate, and A B by the
bottom AND gate. As shown, the E2CMOS cells are on to connect the desired
variables or their complements to the appropriate AND gate inputs. The E2CMOS
cells are off where a variable or its complement is not used in a given product
term. The final output from the OR gate is an SOP expression.

.

► Ex: Show how a GAL is programmed for the following 3-variable logic
function: = + + +
Solution The programmed array using simplified notation is shown bellow. Cells
that are on are indicated by small Xs. The absence of an X means that the cell is off

CMOS array2Basic E(21)Figure
structure of a GAL

GAL implementation of a(22)Figure
sum-of-products expression

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.20

The GAL Block Diagram A block diagram of a GAL is shown in Figure (23). The
AND array outputs go to the output logic macrocells (OLMC), which contain the
OR gates and programmable logic. A typical GAL has eight or more inputs to its
AND array and eight or more input/outputs (I/Os) from its OLMCs as indicated,
where n ≥ 8 and m ≥ 8. The OLMC is made up of logic circuits that can be
programmed as either combinational logic or as registered logic. The OLMC
provides much more flexibility than the fixed output logic in a PAL.

Figure (23)

Standard GAL Numbering GALs come in a variety of configurations, each of
which is identified by a unique part number. This part number always begins with
the prefix GAL. The first two digits following the prefix indicate the number of
inputs, which includes outputs that can be configured as inputs. The letter V
following the number of inputs designates a variable-output configuration. The

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.20

The GAL Block Diagram A block diagram of a GAL is shown in Figure (23). The
AND array outputs go to the output logic macrocells (OLMC), which contain the
OR gates and programmable logic. A typical GAL has eight or more inputs to its
AND array and eight or more input/outputs (I/Os) from its OLMCs as indicated,
where n ≥ 8 and m ≥ 8. The OLMC is made up of logic circuits that can be
programmed as either combinational logic or as registered logic. The OLMC
provides much more flexibility than the fixed output logic in a PAL.

Figure (23)

Standard GAL Numbering GALs come in a variety of configurations, each of
which is identified by a unique part number. This part number always begins with
the prefix GAL. The first two digits following the prefix indicate the number of
inputs, which includes outputs that can be configured as inputs. The letter V
following the number of inputs designates a variable-output configuration. The

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.20

The GAL Block Diagram A block diagram of a GAL is shown in Figure (23). The
AND array outputs go to the output logic macrocells (OLMC), which contain the
OR gates and programmable logic. A typical GAL has eight or more inputs to its
AND array and eight or more input/outputs (I/Os) from its OLMCs as indicated,
where n ≥ 8 and m ≥ 8. The OLMC is made up of logic circuits that can be
programmed as either combinational logic or as registered logic. The OLMC
provides much more flexibility than the fixed output logic in a PAL.

Figure (23)

Standard GAL Numbering GALs come in a variety of configurations, each of
which is identified by a unique part number. This part number always begins with
the prefix GAL. The first two digits following the prefix indicate the number of
inputs, which includes outputs that can be configured as inputs. The letter V
following the number of inputs designates a variable-output configuration. The

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.21

one or two digits that follow the output type is the number of outputs. The fol-
lowing

THE GAL22V10

The GAL22V10 contains twelve dedicated inputs and ten input/outputs (I/Os) as
shown in the block diagram of Figure 7-18. This device is available in either a 24-
pin DIP (dual in-line package) or a 28-pin PLCC (plastic chip carrier), as shown in
Figure (24). This device is also available in a low-voltage version, the
GAL22LV10.

Figure (24)

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.22

The Output Logic Macrocells (OLMCs)

As stated in the discussion of GALs, an OLMC contains programmable logic
circuits that can be configured either for a combinational output or input or for a
registered output. In the registered mode, the output comes from a flip-flop.

As indicated by the notation in the block diagram of Figure (24), of the ten
available GAL22V10 OLMCs, two have eight product terms (lines from the AND
array to the OR gate), two have ten product terms, two have twelve product terms,
two have fourteen product terms, and two have sixteen product terms. Each
OLMC can be programmed for either an active-HIGH or an active-LOW output.
Also, each OLMC can be programmed as an input.

Logic Diagram A basic logic diagram for the GAL22V10 OLMC is shown in
Figure (25). The inputs from the AND gates to the OR gate vary from ten to
sixteen, as mentioned. The logic inside the gray box consists of a flip-flop and two
multiplexers.

Figure (25)

The l-of-4 multiplexer connects one of its four input lines to the tri-state output
buffer, based on the states of two select inputs, S0 and S1. The inputs to the l-of-4
multiplexer are the OR gate output, the complement of the OR gate output, the
flip-flop output Q, and the complement of the flip-flop output . This allows the
output of the OLMC to be either active-HIGH or active-LOW in each mode. The l-
of-2 multiplexer connects either the output of the tri-state buffer or the output of
the flip-flop back through a buffer to the AND array based on the state of S1. The
select bits, S0 and S1, for each OLMC are programmed into a dedicated group of
cells in the array by the compiler software, so the user does not have to directly
manipulate these bits.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.22

The Output Logic Macrocells (OLMCs)

As stated in the discussion of GALs, an OLMC contains programmable logic
circuits that can be configured either for a combinational output or input or for a
registered output. In the registered mode, the output comes from a flip-flop.

As indicated by the notation in the block diagram of Figure (24), of the ten
available GAL22V10 OLMCs, two have eight product terms (lines from the AND
array to the OR gate), two have ten product terms, two have twelve product terms,
two have fourteen product terms, and two have sixteen product terms. Each
OLMC can be programmed for either an active-HIGH or an active-LOW output.
Also, each OLMC can be programmed as an input.

Logic Diagram A basic logic diagram for the GAL22V10 OLMC is shown in
Figure (25). The inputs from the AND gates to the OR gate vary from ten to
sixteen, as mentioned. The logic inside the gray box consists of a flip-flop and two
multiplexers.

Figure (25)

The l-of-4 multiplexer connects one of its four input lines to the tri-state output
buffer, based on the states of two select inputs, S0 and S1. The inputs to the l-of-4
multiplexer are the OR gate output, the complement of the OR gate output, the
flip-flop output Q, and the complement of the flip-flop output . This allows the
output of the OLMC to be either active-HIGH or active-LOW in each mode. The l-
of-2 multiplexer connects either the output of the tri-state buffer or the output of
the flip-flop back through a buffer to the AND array based on the state of S1. The
select bits, S0 and S1, for each OLMC are programmed into a dedicated group of
cells in the array by the compiler software, so the user does not have to directly
manipulate these bits.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.22

The Output Logic Macrocells (OLMCs)

As stated in the discussion of GALs, an OLMC contains programmable logic
circuits that can be configured either for a combinational output or input or for a
registered output. In the registered mode, the output comes from a flip-flop.

As indicated by the notation in the block diagram of Figure (24), of the ten
available GAL22V10 OLMCs, two have eight product terms (lines from the AND
array to the OR gate), two have ten product terms, two have twelve product terms,
two have fourteen product terms, and two have sixteen product terms. Each
OLMC can be programmed for either an active-HIGH or an active-LOW output.
Also, each OLMC can be programmed as an input.

Logic Diagram A basic logic diagram for the GAL22V10 OLMC is shown in
Figure (25). The inputs from the AND gates to the OR gate vary from ten to
sixteen, as mentioned. The logic inside the gray box consists of a flip-flop and two
multiplexers.

Figure (25)

The l-of-4 multiplexer connects one of its four input lines to the tri-state output
buffer, based on the states of two select inputs, S0 and S1. The inputs to the l-of-4
multiplexer are the OR gate output, the complement of the OR gate output, the
flip-flop output Q, and the complement of the flip-flop output . This allows the
output of the OLMC to be either active-HIGH or active-LOW in each mode. The l-
of-2 multiplexer connects either the output of the tri-state buffer or the output of
the flip-flop back through a buffer to the AND array based on the state of S1. The
select bits, S0 and S1, for each OLMC are programmed into a dedicated group of
cells in the array by the compiler software, so the user does not have to directly
manipulate these bits.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.23

The OLMC of the type shown in Fig.(25) can be configured to produce four
different outputs depending upon the selection inputs. These include the following:

1. S1S0= 00: registered mode with active LOW output, Fig. (26- a).
2. S1S0= 01: registered mode with active HIGH output, Fig. (26- b).
3. S1S0= 10: combinational mode with active LOW output, Fig. (26- c).
4. S1S0= 11: combinational mode with active HIGH output, Fig. (26- d).

(a) OLMC in the active-LOW registered mode and the effective logic diagram

(b) OLMC in the active-HIGH registered mode and the effective logic diagram

(c) OLMC in the active-LOW combinational mode and the effective logic diagram

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.23

The OLMC of the type shown in Fig.(25) can be configured to produce four
different outputs depending upon the selection inputs. These include the following:

1. S1S0= 00: registered mode with active LOW output, Fig. (26- a).
2. S1S0= 01: registered mode with active HIGH output, Fig. (26- b).
3. S1S0= 10: combinational mode with active LOW output, Fig. (26- c).
4. S1S0= 11: combinational mode with active HIGH output, Fig. (26- d).

(a) OLMC in the active-LOW registered mode and the effective logic diagram

(b) OLMC in the active-HIGH registered mode and the effective logic diagram

(c) OLMC in the active-LOW combinational mode and the effective logic diagram

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.23

The OLMC of the type shown in Fig.(25) can be configured to produce four
different outputs depending upon the selection inputs. These include the following:

1. S1S0= 00: registered mode with active LOW output, Fig. (26- a).
2. S1S0= 01: registered mode with active HIGH output, Fig. (26- b).
3. S1S0= 10: combinational mode with active LOW output, Fig. (26- c).
4. S1S0= 11: combinational mode with active HIGH output, Fig. (26- d).

(a) OLMC in the active-LOW registered mode and the effective logic diagram

(b) OLMC in the active-HIGH registered mode and the effective logic diagram

(c) OLMC in the active-LOW combinational mode and the effective logic diagram

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.24

(d) OLMC in the active-HIGH combinational mode and the effective logic diagram

Figure (26)

► EX: Show how the following 6-variable SOP function is implemented with the
GAL22V10.= + + ̅ ̅ + ̅ + ̅ + ̅ ̅ + ̅ ̅
Solution The programmed portion of the array with the associated OLMC is
shown in Figure bellow. The rest of the array remains unused in this case. The
Xs represent E2CMOS cells that are programmed to the on state.

► EX: Implement the 4-bit parallel in/serial out shift register in Figure
bellow by using (a) - PLA and Flip-flops, (b) - GAL22V10. The /
input is the ℎ / . When this input is LOW, the parallel data are
loaded into the register, and when it is HIGH, data are shifted from left
to right. D 0 t h r o u g h D 3 a r e the parallel data inputs and Q3 is the
serial data output.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.25

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.25

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.25

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.26

Figure (1) Figure (2)

FIELD-PROGRAMMABLE GATE ARRAYS (FPGA)
Field Programmable Gate Array (FPGA) devices were introduced by Xilinx
in the mid 1980s. They differ from CPLDs in architecture, storage
technology, number of built-in features, and cost, and are aimed at the
implementation of high performance, large-size circuits.
FPGAs are flexible, programmable devices with a broad range of capabilities.
Their basic structure consists of an array of universal, programmable logic
cells embedded in a configurable connection matrix. There are three key parts
of FPGA structure: logic blocks, interconnect, and I/O blocks. The I/O blocks
form a ring around the outer edge of the part. Each of these provides
individually selectable input, output, or bidirectional access to one of the
general-purpose I/O pins on the exterior of the FPGA package.
Inside the ring of I/O blocks lies a rectangular array of logic blocks. And
connecting logic blocks to logic blocks and I/O blocks to logic blocks is the
programmable interconnect wiring.
In FPGAs, CPLD’s PLDs are replaced with a much smaller logic block. The
logic blocks in an FPGA are generally nothing more than a couple of logic
gates or a look-up table (LUT) and a flip-flop. The FPGAs use a more flexible
and faster interconnection structure than the CPLDs. In the FPGAs, the logic
blocks are embedded in a mesh or wires that have programmable interconnect
points that can be used to connect two wires together or a wire to a logic
block as shown in Fig. (1).

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.27

Figure (3)

Figure (4)

There are several architectures for
FPGAs available but the two popular
architectures are that, used by Xilinx
and Altera. The Xilinx chips utilize an
“island-type” architecture, where logic
functions are broken up into small
islands of 4–6 term arbitrary functions,
and connections between these islands
are computed. Fig.(2) illustrates the
basic structure of the Xilinx FPGA.
Altera’s architecture ties the chip

inputs and outputs more closely to the
logic blocks, as shown in Fig.(3). This
architecture places the logic blocks around one central, highly connected
routing array. The circuits used to implement combinational logic in logic
blocks are lookup tables (LUT). The structure of LUT’s in Altera FPGAs is as
shown in Fig. (4).

Figure (5) shows a typical logic block of an FPGA. It consists of a four-input
look-up table (LUT) whose output feeds a clocked flip-flop. The output can
either be a registered output or an unregistered LUT output. Selection of the
output takes place in the multiplexer. An LUT is nothing but a small one-bit
wide memory array with its address lines representing the inputs to the logic
block and a one-bit output acting as the LUT output. An LUT with n inputs
can realize any logic function of n inputs by programming the truth table of
the desired logic function directly into the memory.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.28

Figure (5)

￭ As example of programmed FPGA, when := , = , =

A few examples of FPGA packages are illustrated in Fig.(6), which shows
one of the smallest FPGA packages on the left (64 pins), a medium-size
package in the middle (324 pins), and a large package (1,152 pins) on the
right.

References:
Thomas L. Floyd “DIGITAL FUNDEMENTALS” & M. MORRIS MANO “DIGITAL DESIGN”

Written by: A.S.H Electronic dept.29

Figure (6)

Written by: A.S.Hameed1

State Machine Design with SM Charts

Algorithmic State Machine (ASM)

Finite state machines are a powerful tool for designing sequential circuits, but

they are lacking in that they do not explicitly represent the algorithms that

compute the transition or output functions, nor is timing information

explicitly represented. Flowcharts are useful in the hardware design of digital

systems. A special type of flowchart is called a state machine flowchart, or

SM chart for short. SM charts are also called ASM (algorithmic state

machine) charts. The SM chart offers several advantages:

 It is often easier to understand the operation of a digital system by

inspection of the SM chart instead of the equivalent state graph.

 A given SM chart can be converted into several equivalent forms, and

each form leads directly to a hardware realization.

An SM chart differs from an ordinary flowchart in that certain specific rules

must be followed in constructing the SM chart. When these rules are

followed, the SM chart is equivalent to a state graph, and it leads directly to a

hardware realization. Figure (1) shows the three principal components of an

SM chart.

The state of the system is represented by a state box. The state box may

contain an output list, and a state code may be placed outside the box at the

top. The state name is placed in a circle to the left of the state box. A decision

box is represented by a diamond-shaped symbol with true and false branches.

The condition placed in the box is a Boolean expression that is evaluated to

determine which branch to take. The conditional output box, which has

curved ends, contains a conditional output list. The conditional outputs

depend on both the state of the system and the inputs.

Written by: A.S.Hameed2

► Figure (2), when state S1 is entered, outputs Z1 and Z2 become 1. If inputs

X1 and X2 are both equal to 0, Z3 and Z4 are also 1, and at the end of the

state time the machine goes to the next state via exit path 1. On the other

hand, if X1 = 1 and X3 = 0, the output Z5 is 1 and exit to the next state will

occur via exit path 3.

Written by: A.S.Hameed3

► Figure (3) shows two equivalent SM blocks. In both (a) and (b), the output

Z2= 1 if X1 = 0; the next state is S2 if X2 = 0 and S3 if X2 = 1.

► Figure (4) shows two equivalent ASM blocks. (a) Using a single decision
box. (b) Using several decision boxes.

Figure (4)

Written by: A.S.Hameed3

► Figure (3) shows two equivalent SM blocks. In both (a) and (b), the output

Z2= 1 if X1 = 0; the next state is S2 if X2 = 0 and S3 if X2 = 1.

► Figure (4) shows two equivalent ASM blocks. (a) Using a single decision
box. (b) Using several decision boxes.

Figure (4)

Written by: A.S.Hameed3

► Figure (3) shows two equivalent SM blocks. In both (a) and (b), the output

Z2= 1 if X1 = 0; the next state is S2 if X2 = 0 and S3 if X2 = 1.

► Figure (4) shows two equivalent ASM blocks. (a) Using a single decision
box. (b) Using several decision boxes.

Figure (4)

Written by: A.S.Hameed4

► Figure (5) shows an incorrect and correct way of drawing an SM block
with feedback.

► Figure (6-a) shows a parallel SM block, which is equivalent to Fig. (6-b).
The link path for X1 = X2 = 1 and X3 = 0 is shown with a dashed line, and
the outputs encountered on this path are Z1, Z2 , and Z3.

Written by: A.S.Hameed5

► Figure (7) shows ASM sharing:

► A state graph for a sequential machine is easy to convert to an equivalent
SM chart. The state graph of Fig.(7-a) has both "Moore" and "Mealy" outputs.
The equivalent SM chart has three blocks- one for each state. The "Moore"
outputs (Za, Zb, Zc) are placed in the state boxes since they do not depend on
the input. The "Mealy" outputs (Zl , Z2) appear in conditional output boxes
since they depend on both the state and input. In this example, each SM block
has only one decision box since only one input variable must be tested. For
both the state graph and SM chart, Zc is always 1 in state S2. If X = 0 in state
S2, Z1 = 1 and the next state is S0. If X = 1, Z2 = 1 and the next state is S2.

Written by: A.S.Hameed6

● State Assignment: we write the transition without slink as:

Written by: A.S.Hameed7

Now we draw K-maps :

Map (b) Map (a)

Now, fond a minimum state locus assignment for the ASM chart:

bit distance
map(a)

bit distance
map(b)

S0 S1 1 2
S1 S0 1 2
S1 S2 1 1
S2 S0 2 1

State locus 5 6

We choose the less map distance, therefore map (a), from map (a)

y1y2

S0 00
S1 01
S2 11

► EX: A circuit is required to produce an output (1) when the sequence
(1010) is detected and zero output at all other inputs?

(a) State diagram

y1

y2 0 1

0 S0

1 S1 S2

y1

y2 0 1

0 S0 S2

1 S1

Written by: A.S.Hameed8

(b)ASM chart

● State Assignment: we write the transition without slink as:

Written by: A.S.Hameed9

Now we draw K-maps:

Map (a) Map (b) Map (c)

We choose the less map distance, therefore map (a)
because it should be minimums, from map (a):

► Ex: Develop a block diagram and an ASM chart for a digital circuit it

multiply two binary numbers by the repeated-addition method. For example,

to multiply 5 X 4, the digital system evaluates the product by adding the

multiplication four times: 5 + 5 + 5 + 5 = 20. Design the circuit. Let the

multiplicand be in register BR. the multiplier in register AR. add the product

in register PR. An adder circuit adds the contents of BR to PR. A zero

detection signal indicates whether AR is 0.

y1

y2 0 1

0 A C

1 B D

y1

y2 0 1

0 A D

1 B C

y1

y2 0 1

0 A D

1 C B

bit distance
map(a)

bit distance
map(b)

bit distance
map(c)

A B 1 1 2
B C 2 1 1
D B 1 2 1
C A 1 2 1
C D 1 1 2
D C 1 1 2

State locus 7 8 9

y1y2

A 00
B 01

C 10
D 11

Written by: A.S.Hameed10

Sol: The internal architecture of the data path consists of a double-width

register to hold the product (PR), a register to hold the multiplier (AR), a

register to hold the multiplicand (BR), a double-width parallel adder, and

single-width parallel adder. The single-width adder is used to implement the

operation of decrementing the multiplier unit. Adding a word consisting

entirely of 1s to the multiplier accomplishes the 2's complement subtraction of

1 from the multiplier. Figure below shows the ASM chart.

► As another example of SM chart construction, we will design an electronic
dice game. Figure (8) shows the block diagram for the dice game. Two
counters are used to simulate the roll of the dice. The rules of the game are as
follows:

1. After the first roll of the dice, the player wins if the sum is 7 or 11. He loses
if the sum is 2, 3, or 12. Otherwise, the sum which he obtained on the first roll
is referred to as his "point" and he must roll the dice again.

Written by: A.S.Hameed10

Sol: The internal architecture of the data path consists of a double-width

register to hold the product (PR), a register to hold the multiplier (AR), a

register to hold the multiplicand (BR), a double-width parallel adder, and

single-width parallel adder. The single-width adder is used to implement the

operation of decrementing the multiplier unit. Adding a word consisting

entirely of 1s to the multiplier accomplishes the 2's complement subtraction of

1 from the multiplier. Figure below shows the ASM chart.

► As another example of SM chart construction, we will design an electronic
dice game. Figure (8) shows the block diagram for the dice game. Two
counters are used to simulate the roll of the dice. The rules of the game are as
follows:

1. After the first roll of the dice, the player wins if the sum is 7 or 11. He loses
if the sum is 2, 3, or 12. Otherwise, the sum which he obtained on the first roll
is referred to as his "point" and he must roll the dice again.

Written by: A.S.Hameed10

Sol: The internal architecture of the data path consists of a double-width

register to hold the product (PR), a register to hold the multiplier (AR), a

register to hold the multiplicand (BR), a double-width parallel adder, and

single-width parallel adder. The single-width adder is used to implement the

operation of decrementing the multiplier unit. Adding a word consisting

entirely of 1s to the multiplier accomplishes the 2's complement subtraction of

1 from the multiplier. Figure below shows the ASM chart.

► As another example of SM chart construction, we will design an electronic
dice game. Figure (8) shows the block diagram for the dice game. Two
counters are used to simulate the roll of the dice. The rules of the game are as
follows:

1. After the first roll of the dice, the player wins if the sum is 7 or 11. He loses
if the sum is 2, 3, or 12. Otherwise, the sum which he obtained on the first roll
is referred to as his "point" and he must roll the dice again.

Written by: A.S.Hameed11

2. On the second or subsequent roll of the dice, he wins if the sum equals his
point, and he loses if the sum is 7. Otherwise, he must roll again until he
finally wins or loses.

The inputs to the dice game come from two push buttons, RB (roll button) and
Reset. Reset is used to initiate a new game. When the roll button is pushed,
the dice counters count at a high speed, so the values cannot be read on the
display. When the roll button is released, the values in the two counters are
displayed and the game can proceed. If the Win light or Lose light is not on,
the player must push the roll button again.

Figure (9) shows a flowchart for the dice game. After rolling the dice, the sum
is tested. If it is 7 or 11, the player wins; if it is 2, 3, or 12, he loses. Otherwise
the sum is saved in the point register and the player rolls again. If the new
sum equals the point, he wins; if it is 7, he loses. Otherwise, he rolls again.
After winning or losing, he must push Reset to begin a new game.

Written by: A.S.Hameed12

● Input signals to the control network are defined as follows:

D7 = 1 if the sum of the dice is 7

D11 = 1 if the sum of the dice is 11

D2,3,12 = 1 if the sum of the dice is 2, 3, or 12

Eq = 1 if the sum of the dice equals the number stored in the point register

RB = 1 when the roll button is pressed

Reset = 1 when the reset button is pressed

● Outputs from the control network are defined as follows:

Roll = 1 enables the dice counters

Sp = 1 causes the sum to be stored in the point register

Written by: A.S.Hameed13

Win = 1 turns on the win light

Lose = 1 turns on the lose light

● now convert the flowchart for the dice game to an SM chart for the control
network using the control signals defined above.

Written by: A.S.Hameed14

● State Assignment: we write the transition without slink as:

Now we draw K-maps:

Map (a) Map (b) Map (c)

AB
C 00 01 11 10

0 S0 S2 S4

1 S1 S3 S5

AB
C 00 01 11 10

0 S0 S2

1 S1 S3 S5 S4

AB
C 00 01 11 10

0 S0 S2 S5 S3

1 S1 S4

bit distance
map(a)

bit distance
map(b)

bit distance
map(c)

S0 S1 1 1 1
S1 S2 2 2 2
S1 S3 1 1 2
S1 S4 2 1 1
S4 S5 1 1 2
S5 S2 3 2 1
S5 S3 2 1 1
S5 S4 1 1 2
S2 S0 1 1 1
S3 S0 2 2 1

State locus 16 13 14

Written by: A.S.Hameed15

Therefore map (b) should be used for state
assignment.

= + + + += + + += + + ++ + + + += + + + ++

ABC
S0 000
S1 001
S2 010
S3 011
S4 101
S5 111

Written by: A.S.Hameed16

= + + + ++ + + + += + + ++ += , = , = + ,=

Written by: A.S.Hameed17

A sequential logic network will be used to control the motor of a tape player.

The logic network, shown as follows, will have five inputs and three outputs.

Four of the inputs are the control buttons on the tape player. The input PL is

M, which is 1 iff the special "music sensor" detects music at the current tape

position. The three outputs of the control network are P, R, and F, which

than one output should ever be on at a time; all outputs, off cause the motor

to stop.

The buttons control the tape player as follows: If the play button is pressed,

held down and the rewind button is pressed and released, the tape player

and then start playing. If the play button is held down and the fast forward

button is pressed and released, the tape player will fast forward to the end

of the current song (ou

or fast forward is pressed while play is released, the tape player will rewind

or fast forward the tape. Pressing the stop button at any time should stop

the tape player motor.

Written by: A.S.Hameed18

	tmp392F.pdf
	FPGA.pdf
	asm.pdf

