
Chapter 11. Arithmetic 
Building Blocks

A Generic Digital Processor
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Building Blocks for Digital Architectures
Arithmetic unit
Bit-sliced datapath (adder, multiplier, shifter, 

comparator, etc.)
Memory
RAM, ROM, Buffers, Shift registers
Control
Finite state machine (PLA, random logic.)
Counters
Interconnect
Switches
Arbiters
Bus

Bit-Sliced Design
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Full-Adder
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Sum

Cin Full
adder

Addition: most commonly used arithmetic operation, also 
speed-limiting element.

The Binary Adder
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Express Sum and Carry as a function of P, G, D
Define 3 new variable which only depend on A, B:

G=1 (D=1) ensures that a carry bit will be generated 
(deleted) at Co independent of Ci. 

P=1 ensures that an incoming carry will propagate to Co.

Sometimes P is also taken as P=A+B
S and Co can be rewritten as functions of P and G (or D):

The Ripple-Carry Adder
N-bit ripple-carry adder: cascading N full-adder circuits in 

series, connecting Co,k-1 to Ci,k (k=1~N-1), and set Ci,0=0.
Carry-bit “ripples” from one stage to the other
Delay depends on input patterns: some input patterns has 

no rippling effect at all, while for others the carry has to ripple 
all the way from LSB to MSB (worst-case delay).

Worst-case delay: tadder≈(N-1)tcarry+tsum
where tcarry and tsum: propagation delays from Ci to Co and S.

Goal: make the fastest possible carry path circuit 



The Ripple-Carry Adder
Propagation delay of ripple-carry adder is linearly 

proportional to N.
For a fast ripple-carry adder, it’s far more important to 

optimize tcarry than tsum, since the latter has only a minor 
influence on the total value of tadder.

Inversion Property
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Inversion property of full adder: inverting all inputs to a full
adder results in inverted values for all outputs.

Inversion property is useful for optimizing speed of ripple-
carry adder

The following two circuits are identical

Complimentary Static CMOS Full Adder
Static CMOS full adder is implemented as below :
Co=AB+BCi+ACi,                     S=ABCi+Co(A+B+Ci) 
Design tricks: Ci are placed as close as possible to 

output→transistors on critical path should be placed as close 
as possible to gate output to reduce delay.

Complimentary Static CMOS Full Adder
Static CMOS full adder has large area with slow speed
Long chains of series PMOS in carry and sum circuits
load capacitance of Co is large (consists of 2 diffusion and 6 

gate capacitances plus wiring capacitance) (Co connects to Ci
of next stage which takes 6 Ci inputs)

carry circuit requires 2 inverting stages per bit (!Co plus 
inverter to get Co)



Minimize Critical Path by Reducing 
Inverting Stages

By cascading CMOS full adder and its inversion equivalent 
alternately, the extra inverters in carry path to get Co from !Co
can be eliminated →worst case delay of adder is reduced. 

The Better Structure: Mirror Adder
Mirror adder: utilize propagate/generate/delete functions
G=AB,    D=A B,     P=A+B
When D=1 or G=1, Co=1 or 0.
When P=1, Ci is propagated (in inverted format) to Co.  

The Mirror Adder
The NMOS and PMOS chains are completely 

symmetrical. This guarantees identical rising and falling 
transitions if the NMOS and PMOS devices are properly 
sized. A maximum of two series transistors can be observed 
in the carry-generation circuitry.

When laying out the cell, the most critical issue is the 
minimization of the capacitance at node Co. The reduction of 
the diffusion capacitances is particularly important. 

The capacitance at node Co is composed of four diffusion 
capacitances, two internal gate capacitances, and six gate 
capacitances in the connecting adder cell .

Transistors connected to Ci are placed closest to output.
Only the transistors in the carry stage have to be 

optimized for optimal speed. All transistors in the sum stage 
can be minimal size. 

Quasi-Clocked Adder
Transmission-gate (TG) based quasi-clocked adder circuit



NMOS-Only Pass Transistor Logic
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Transistor count (CPL) : 28

CPL Full AdderCPL Full Adder
20+4×2=28 transistors
Problems with (more than one) threshold drops due to 

chaining CPL blocks

NP-CMOS Adder
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Carry Path

Dynamic np-CMOS adder: only 17 transistors ignoring 
extra inverters required for input/output signals

The alternating even and odd carry stages are realized 
using NMOS and PMOS networks respectively

NP-CMOS Adder
Reduced capacitance of dynamic circuits results in 

substantial speed-up over static implementation
Load capacitance on carry bit includes 3 diffusion and 4 

gate capacitances.

Layout of np-CMOS full adder



Manchester Carry Chain
Manchester carry-chain adder: uses a cascade of pass-

transistors to implement carry chain.
In precharge phase (Φ=0), all intermediate nodes A0~A4 

of pass-transistor chain are precharged to “1”.
In evaluation phase (Φ=1), Mk node is discharged to 0 

when incoming carry=1 and propagate signal Pk=1, or when 
generate signal for stage k (Gk) is 1. 

Sizing Manchester Carry Chain
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Carry-chain is a distributed RC-network→td=O(N2)
Reducing delay of carry-chain:
insert signal-buffering inverters with optimum stages/sizing
Sizing transistors progressively (IM0>IM1>…>IM4, thus size 

of M4 to M0 should be increased progressively.)

Carry-Bypass Adder
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BP=PoP1P2P3

Idea: If (P0 and P1 and P2 and P3 = 1)
then Co3 = C0, else “kill” or “generate”.

For ripple-carry adder, if (P0P1P2P3=1) then Co,3=Ci,0
else either DELETE or GENERATE occurred.
Thus if (P0P1P2P3=1), we can directly bypass carry-in Ci0 to 

Co,3 to reduce the delay caused by carry propagation. →
carry-bypass adder.

Manchester-Carry Implementation
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Manchester-carry implementation: either carry propagates 
through bypass path, or carry is generated somewhere in the chain

In both cases, delay is smaller than normal ripple configuration.
Area overhead due to adding bypass path: 10~20%.



Delay of Carry-Bypass Adder
Assume total adder is divided in (N/M) equal by-pass stages, 

each contains M bits. Total propagation time
tp≈tsetup+Mtcarry+(N/M-1)tbypass+Mtcarry+tsum

where: tsetup: fixed overhead time to create G and P signals,
tcarry: propagation delay through a single bit. The worst-case carry-

propagation delay through a single stage is Mtcarry
tbypass: propagation delay through bypass MUX of a single stage
tsum: time to generate sum of final stage.

Carry-bypass adder delay tp=O(N)

Carry Ripple versus Carry Bypass
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ripple adder
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4..8

Propagation delay of carry ripple adder vs carry-bypass adder
Difference is substantial for larger adders (large N)
Ripple carry adder is actually faster for smaller N
Overhead of extra bypass MUX makes bypass structure not 

interesting for small N
Crossover point depends on technology considerations and is 

normally situated between 4 and 8 bits

Linear Carry-Select Adder

Setup

"0" Carry Propagation

"1" Carry Propagation

Multiplexer

Sum Generation

Co,k-1 Co,k+3

"0"

"1"

P,G
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Ripple carry adder: every full adder cell waits for incoming 
carry before outgoing carry can be generated

To avoid the waiting, anticipate both possible values (0 and 1)
of carry input and evaluate result for both cases in advance

Once the real value of incoming carry is known, the correct 
output is selected with a simple MUX → carry-select adder

Hardware overhead: 30% (due to additional carry path and a 
MUX

Carry Select Adder: Critical Path 
Assume total adder is divided in (N/M) equal by-pass stages, 

each contains M bits. Total propagation time
tadd=tsetup+Mtcarry+(N/M)tmux+tsum

where tcarry: carry delay through a single bit,
Mtcarry: carry delay through a single block



Linear Carry Select 
Assume full-adder and MUX cells have 1 unit delay each
A major mismatch between the signal arrival times is 

observed in the MUX gate of last adder stage
Total delay can be reduced if we equalize the delay through 

both inputs of the MUX gate → square-root carry select adder

Square Root Carry Select 
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To equalize the inputs to MUX gates of all stages: 
progressively adding more bits to subsequent stages in the 
adder, requiring more time for the generation of carrysignals

E.g. 1st stage add 2 bits, 2nd stage add 3 bits, 3rd stage add 4 
bits, etc.

Adder Delays - Comparison 
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Carry-Lookahead Adder - Basic Idea 
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...

Carry-lookahead adder: avoid rippling effect of carry in both 
carry-bypass and carry-select adders

For each bit position in an N-bit adder:
Co,k=f(Ak, Bk, Co,k-1)=Gk+PkCo,k-1

Dependency between Co,k, Co,k-1 can be avoided by expanding 
Co,k-1:   Co,k=Gk+Pk(Gk-1+Pk-1Co,k-2)
Finally: Co,k=Gk+Pk(Gk-1+Pk-1(…+P1(G0+P0Ci,0)))   (Ci,0=0)

For every bit, carry and sum outputs are independent of 
previous bit. The ripple effect has been eliminated. → addition 
time should be independent of N.



Carry Lookahead Adder: Topology
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Example carry lookahead adder for N=4
It contains some hidden dependencies
Large fan-in makes it prohibitively slow for large N

Logarithmic Look-Ahead Adder
Consider a generic associative operator – dot operation (•)
associatiivity property: (a•b)•c=a•(b•c)
Dot operation of N arguments can be executed with critical 

path of (log2N)t• (t•: propagation delay of dot operation)
Ex: For N=8, both designs have same number of operators.
Linear (ripple) topology: critical path delay=7t•
Logarithmic (tree-like fashion): critical path delay=3t•

Logarithmic Lookahead Adder: Brent-Kung Adder
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tadd ∼ log2(N)

Addition operation is associative
The Binary Multiplication

Multiplication: expensive and slow operation
Multipliers are in effect complex adder arrays
Consider 2 unsigned binary numbers X(M bits) and Y(N bits)



The Binary Multiplication
Common implementation of binary multiplier: similar to 

manually computing a multiplication
Multiplicand is consecutively multiplied (AND operation) with 

every bit of multiplier → partial products
Intermediate results are added after proper shifting

The Array Multiplier
Array multiplier:
Generating N partial products needs N M-bit AND gates
Requires (N-1) M-bit adders to add N partial results
Shifting of partial results: simple routing (not active logic)
Can be compacted into a rectangle →efficient layout

The M×N Array Multiplier — Critical Path
Propagation delay of M×N array multiplier
Partial sum adders: ripple-carry structures
There are many almost identical-length paths
Propagation delay tmult≈[(M-1)+(N-2)]tcarry+(N-1)tsum+tand
tcarry: delay between Cin and Cout
tsum: delay between Cin and Sum of full adder
tand: delay of AND gate

Adder Cells in Array Multiplier
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Identical Delays for Carry and Sum

Minimizing delay of array multiplier requires minimization of 
both tcarry and tsum → It helps if tcarry=tsum

A full adder with comparable tsum and tcarry delays using TG 
EXOR (24 transistors)



Carry-Save Multiplier
Carry-save multiplier: more efficient
Fact: multiplication result does not change when output carry 

bits are passed diagonally downwards instead of to the right
An extra M-bit full-adder is added (vector-merging adder) to 

generate final result 
carry bits are not immediately added, but are rather “saved” for 

next adder stage

Multiplier Floorplan
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Rectangle floorplan of carry-save multiplier

Wallace-Tree Multiplier

FA

FA

FA

FA

y0 y1 y2

y3

y4

y5

S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

FA

y0 y1 y2

FA

y3 y4 y5

FA

FA

C
C S

Ci-1

Ci-1

Ci-1

Ci

Ci

Ci

Multipliers —Summary
Optimization goals different from binary adder
Once again: identify critical path
Other possible techniques
Logarithmic versus linear (Wallace tree multiplier)
Data encoding (Booth)
Pipelining 
First Glimpse at System Level Optimization



The Binary Shifter
Shifter: used in floating-point units, scalers, multiplications by 

constant numbers.
It can be implemented by appropriate signal wiring
A 1-bit left-right shifter: depending on control signals, input 

word is either shifted left or right or remain unchanged.
N-bit shifters can be built by cascading 1-bit shifters, but very 

slow for large N

The Barrel Shifter
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0-7 bit Logarithmic Shifter Design as a Trade-Off
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Layout Strategies for Bit-Sliced Datapaths
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Approach I —

Signal and power lines parallel

Approach II —

Signal and power lines perpendicular
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Layout of Bit-sliced Datapaths



Layout of Bit-sliced Datapaths

(a) Datapath without feedthroughs

and without pitch matching

(area = 4.2 mm2).

(b) Adding feedthroughs
(area = 3.2 mm2)

(c) Equalizing the cell height reduces
the area to 2.2 mm2.


