
ANN Architecture

Linear ANN e.g. Perceptron,
ADALINE

Non-Linear ANN

Non-Linear Neural Network
Architecture

 There are many types of non-linear NN.

 The simplest non-linear NNs are multilayer NN,
one which has more than just the input and output
layers of neurons. They could be a feedforward
NN, which means information is passed in a
forward manner.

 Other non-linear NNs are single-layer NNs with
backward or recurrent connections. Besides feed
forward links, they also have feedback links for
passing information backward.

© Negnevitsky, Pearson Education, 2005 3

NonLinear Neural Network

 Multilayer Perceptron (MLP)
 Hopfield
 Bidirectional associative memory
 Radial Basis Function Neural Network
 Probabilistic Neural Network
 Generalized Regression Neural Network

© Negnevitsky, Pearson Education, 2005 4

Multilayer Perceptron (MLP)

 A multilayer perceptron is a feedforward neural
network with one or more hidden layers.

 The network consists of an input layer of source
neurons, at least one middle or hidden layer of
computational neurons, and an output layer of
computational neurons.

 The input signals are propagated in a forward
direction on a layer-by-layer basis.

© Negnevitsky, Pearson Education, 2005 5

An Example of MLP with two hidden layers

Input
layer

First
hidden
layer

Second
hidden
layer

Output
layer

I
n
 p

 u
 t

 S

 i
 g

 n

a
 l
 s

O
 u

 t
p
 u

 t

 S

 i
 g

n
 a

 l
 s

© Negnevitsky, Pearson Education, 2005 6

What does the middle layer hide?
 A hidden layer “hides” its desired output. Neurons in the

hidden layer cannot be observed through the input/output
behaviour of the network. There is no obvious way to
know what the desired output of the hidden layer should
be. This is why ANN is considered a black box.

 Commercial ANNs incorporate three and sometimes four
layers, including one or two hidden layers. Each layer can
contain from 10 to 1000 neurons, depending on the
learning algorithm employed. Experimental neural
networks may have five or even six layers, including three
or four hidden layers, and utilise millions of neurons.

© Negnevitsky, Pearson Education, 2005 7

How to determine an optimum MLP
inputs?

 The number of input, hidden and output neurons must be
determined in order to produce an optimum ANN structure.

 The number of ANN inputs depend on the number of
features that is available for a problem.

 Insufficient features may degrade the performance of an
ANN.

 Too many features may cause correlation and hence degrade
an ANN’s performance due to confusion. To avoid correlation,
some statistical methods such as Principal Components
Analysis (PCA) and Discriminant Analysis (DA) can be
employed to eliminate correlated inputs before an ANN
training process.

© Negnevitsky, Pearson Education, 2005 8

How to determine an optimum MLP
hiddens?

 Too few hidden neurons results in a MLP which is not capable
of solving a problem. Too many causes the problem of data
overfitting causing the MLP to be incapable of generalizing.

 The optimum number of hidden neurons is determined using
either:

 network growing - start with 1 hidden neuron and increase
the number until there is no further improvement in
performance.

 network pruning approach – start with a sufficiently large
number of neurons and reduce the number until a superior
ANN performance is achieved.

 If there are too many neurons in a hidden layer, extra hidden
layer may be introduced into the MLP.

© Negnevitsky, Pearson Education, 2005 9

How to determine an optimum MLP
outputs?

 The optimum number of output neurons is problem dependent.

 For example: Classification of star fruit based on “Unripe”,
Under ripe”, “Ripe” and “Over ripe”, either 2 or 4 output
neurons can be used:

 2 output neurons can be representing binary value output
cases of:

0 0 – for “unripe” 0 1 – for “under ripe”
1 0 – for “ripe” 1 1 – for “over ripe”

 4 output neurons can be representing binary bit output cases
of:

0 0 0 1 – for “unripe” 0 0 1 0 – for “under ripe”
0 1 0 0 – for “ripe” 1 0 0 0 – for “over ripe”

© Negnevitsky, Pearson Education, 2005 10

How MLP Learns

 Learning in a MLP NN proceeds the same way as for a
perceptron.

 MLP is a backpropagation NN because it feeds back its
error for updating or tuning of weights.

 Firstly, a training set of input patterns is presented to the
network. At the same time, the desired or target output is
retained for error calculation.

 The MLP computes its output and compares it with the
desired output. If there is an error, i.e. difference between
actual and desired output patterns, the MLP weights are
adjusted based on a function to reduce the error.

© Negnevitsky, Pearson Education, 2005 11

 In short, a back-propagation neural network
learning algorithm has two phases.

 First, a training input pattern is presented to the
network input layer. The network propagates the
input pattern from layer to layer until the output
pattern is generated by the output layer.

 If this pattern is different from the desired output,
an error is calculated and then propagated
backwards through the network from the output
layer to the input layer. The weights are modified
as the error is propagated.

© Negnevitsky, Pearson Education, 2005 12

Three-layer back-propagation neural network

Input
layer

xi

x1

x2

xn

1

2

i

n

Output
layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden
layer

wij

1

2

j

m

© Negnevitsky, Pearson Education, 2005 13

The back-propagation training algorithm
Step 1: Initialisation

Set all the weights and threshold levels of the
network to random numbers uniformly
distributed inside a small range:

where Fi is the total number of inputs of neuron i
in the network. The weight initialisation is done
on a neuron-by-neuron basis.

+−

ii FF
4.2,4.2

© Negnevitsky, Pearson Education, 2005 14

Step 2: Activation
Activate the back-propagation neural network by
applying inputs x1(p), x2(p),…, xn(p) and desired
outputs yd,1(p), yd,2(p),…, yd,n(p).

(a) Calculate the actual outputs of the neurons in
the hidden layer:

where n is the number of inputs of neuron j in the
hidden layer, and sigmoid is the sigmoid activation
function.

θ−⋅= ∑

=
j

n

i
ijij pwpxsigmoidpy

1
)()()(

© Negnevitsky, Pearson Education, 2005 15

(b) Calculate the actual outputs of the neurons in
the output layer:

Step 2 : Activation (continued)

where m is the number of inputs of neuron k in the
output layer.

θ−⋅= ∑

=
k

m

j
jkjkk pwpxsigmoidpy

1
)()()(

© Negnevitsky, Pearson Education, 2005 16

Step 3: Weight training
Update the weights in the back-propagation network
propagating backward the errors associated with
output neurons.
(a) Calculate the error gradient for the neurons in the
output layer:

where
Calculate the weight corrections:

Update the weights at the output neurons:
)()()1(pwpwpw jkjkjk ∆+=+

)()(1)()(pepypyp kkkk ⋅−⋅=

)()()(, pypype kkdk −=

)()()(ppypw kjjk ⋅⋅=∆

© Negnevitsky, Pearson Education, 2005 17

(b) Calculate the error gradient for the neurons in
the hidden layer:

Step 3: Weight training (continued)

Calculate the weight corrections:

Update the weights at the hidden neurons:

)()()(1)()(
1

][pwppypyp jk
l

k
kjjj ∑

=
⋅−⋅=

)()()(ppxpw jiij ⋅⋅=∆

)()()1(pwpwpw ijijij ∆+=+

© Negnevitsky, Pearson Education, 2005 18

Step 4: Iteration
Increase iteration p by one, go back to Step 2 and
repeat the process until the selected error criterion
is satisfied.

As an example, we may consider the three-layer
back-propagation network. Suppose that the
network is required to perform logical operation
Exclusive-OR. Recall that a single-layer perceptron
could not do this operation. Now we will apply the
three-layer net.

© Negnevitsky, Pearson Education, 2005 19

Three-layer network for solving the
Exclusive-OR (XOR) operation

y55

x1 31

x2

Input
layer

Output
layer

Hiddenlayer

42

θ3
w13

w24

w23

w24

w35

w45

θ4

θ5

−1

−1

−1

© Negnevitsky, Pearson Education, 2005 20

 The effect of the threshold applied to a neuron in the
hidden or output layer is represented by its bias, θ,
connected to a fixed input equal to −1.

 The initial weights and threshold levels are set
randomly as follows:
w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = −1.2,
w45 = 1.1, θ3 = 0.8, θ4 = −0.1 and θ5 = 0.3.

© Negnevitsky, Pearson Education, 2005 21

We consider a training set where inputs x1 and x2 are
equal to 1 and desired output yd,5 is 0. The actual
outputs of neurons 3 and 4 in the hidden layer are
calculated as

 Now the actual output of neuron 5 in the output layer
is determined as:

 Thus, the following error is obtained:

5250.01/1)()8.014.015.01(
32321313 =+=θ−+= ⋅−⋅+⋅−ewxwxsigmoidy

8808.01/1)()1.010.119.01(
42421414 =+=θ−+= ⋅+⋅+⋅−ewxwxsigmoidy

5097.01/1)()3.011.18808.02.15250.0(
54543535 =+=θ−+= ⋅−⋅+⋅−−ewywysigmoidy

5097.05097.0055, −=−=−= yye d

© Negnevitsky, Pearson Education, 2005 22

 The next step is weight training. To update the
weights and threshold levels in our network, we
propagate the error, e, from the output layer
backward to the input layer.

 First, we calculate the error gradient for neuron 5 in
the output layer:

 Then we determine the weight corrections assuming
that the learning rate parameter, α, is equal to 0.1:

1274.05097).0(0.5097)(10.5097)1(555 −=−⋅−⋅=−= eyy

0112.0)1274.0(8808.01.05445 −=−⋅⋅=⋅⋅=∆ yw
0067.0)1274.0(5250.01.05335 −=−⋅⋅=⋅⋅=∆ yw

0127.0)1274.0()1(1.0)1(55 −=−⋅−⋅=⋅−⋅=θ∆

© Negnevitsky, Pearson Education, 2005 23

 Next we calculate the error gradients for neurons 3
and 4 in the hidden layer:

We then determine the weight corrections:

0381.0)2.1(0.1274)(0.5250)(10.5250)1(355333 =−⋅−⋅−⋅=⋅⋅−= wyy

0.0147.114)0.127(0.8808)(10.8808)1(455444 −=⋅−⋅−⋅=⋅⋅−= wyy

0038.00381.011.03113 =⋅⋅=⋅⋅=∆ xw
0038.00381.011.03223 =⋅⋅=⋅⋅=∆ xw

0038.00381.0)1(1.0)1(33 −=⋅−⋅=⋅−⋅=θ∆
0015.0)0147.0(11.04114 −=−⋅⋅=⋅⋅=∆ xw
0015.0)0147.0(11.04224 −=−⋅⋅=⋅⋅=∆ xw

0015.0)0147.0()1(1.0)1(44 =−⋅−⋅=⋅−⋅=θ∆

© Negnevitsky, Pearson Education, 2005 24

 At last, we update all weights and threshold:

 The new weights are used in the next iteration or epoch.

5038.00038.05.0131313 =+=∆+= www
8985.00015.09.0141414 =−=∆+= www

4038.00038.04.0232323 =+=∆+= www

9985.00015.00.1242424 =−=∆+= www

2067.10067.02.1353535 −=−−=∆+= www

0888.10112.01.1454545 =−=∆+= www

7962.00038.08.0333 =−=θ∆+θ=θ

0985.00015.01.0444 −=+−=θ∆+θ=θ

3127.00127.03.0555 =+=θ∆+θ=θ

© Negnevitsky, Pearson Education, 2005 25

Learning curve for operation Exclusive-OR

0 50 100 150 200

10 1

Epoch

Sum-Squared Network Error for 224 Epochs

100

10-1

10-2

10 -3

10 -4

Su
m

-S
qu

ar
ed

 E
rr

or

© Negnevitsky, Pearson Education, 2005 26

Final results of three-layer network learning

Inputs

x1 x2

1
0
1
0

1
1
0
0

0
1
1

Desired
output

yd

0

0.0155

Actual
output

y5 e

Sum of
squared
errors

0.9849
0.9849
0.0175

0.0010

© Negnevitsky, Pearson Education, 2005 27

Network represented by McCulloch-Pitts model
for solving the Exclusive-OR operation

y55

x1 31

x2 42

+1.0

−1

−1

−1
+1.0

+1.0

+1.0

+1.5

+1.0

+0.5

+0.5−2.0

© Negnevitsky, Pearson Education, 2005 28

Decision boundaries

(a) Decision boundary constructed by hidden neuron 3;
(b) Decision boundary constructed by hidden neuron 4;
(c) Decision boundaries constructed by the complete

three-layer network

x1

x2

1

(a)

1

x2

1

1

(b)

00

x1 + x2 – 1.5 = 0 x1 + x2 – 0.5 = 0

x1 x1

x2

1

1

(c)

0

© Negnevitsky, Pearson Education, 2005 29

Accelerated learning in multilayer
neural networks

 A multilayer network learns much faster when the
sigmoidal activation function is represented by a
hyperbolic tangent:

where a and b are constants.

Suitable values for a and b are:
a = 1.716 and b = 0.667

a
e
aY bX

htan −
+

= −1
2

© Negnevitsky, Pearson Education, 2005 30

We also can accelerate training by including a
momentum term in the delta rule:

where β is a positive number (0 ≤ β < 1) called the
momentum constant. Typically, the momentum
constant is set to 0.95.

This equation is called the generalised delta rule.

However, it does not guarantee convergence or
achievement of global minimum.

)()()1()(ppypwpw kjjkjk ⋅⋅+−∆⋅=∆

© Negnevitsky, Pearson Education, 2005 31

Learning with momentum for operation Exclusive-OR

0 20 40 60 80 100 120
10 -4

10 -2

10 0

10 2

Epoch

Training for 126 Epochs

0 100 140
-1

-0.5

0

0.5

1

1.5

Epoch

10 -3

10 1

10 -1

20 40 60 80 120

L
ea

rn
in

g
R

at
e

© Negnevitsky, Pearson Education, 2005 32

Learning with adaptive learning rate
To accelerate the convergence and yet avoid the
danger of instability, we can apply two heuristics:

Heuristic 1
If the change of the sum of squared errors has the same
algebraic sign for several consequent epochs, then the
learning rate parameter, α, should be increased.

Heuristic 2
If the algebraic sign of the change of the sum of
squared errors alternates for several consequent
epochs, then the learning rate parameter, α, should be
decreased.

© Negnevitsky, Pearson Education, 2005 33

 Adapting the learning rate requires some changes
in the back-propagation algorithm.

 If the sum of squared errors at the current epoch
exceeds the previous value by more than a
predefined ratio (typically 1.04), the learning rate
parameter is decreased (typically by multiplying
by 0.7) and new weights and thresholds are
calculated.

 If the error is less than the previous one, the
learning rate is increased (typically by multiplying
by 1.05).

© Negnevitsky, Pearson Education, 2005 34

Learning with adaptive learning rate

0 10 20 30 40 50 60 70 80 90 100
Epoch

Tr aining for 103Epochs

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

10 -4

10 -2

10 0

10 2

10 -3

10 1

10 -1

S
u
m

-
S
q
u
a
re

d

E
rr

o
L
e
a
rn

in
g

R
a
te

© Negnevitsky, Pearson Education, 2005 35

Learning with momentum and adaptive learning rate

0 10 20 30 40 50 60 70 80
Epoch

Tr aining for 85 Epochs

0 10 20 30 40 50 60 70 80 90
0

0.5

1

2.5

Epoch

10 -4

10 -2

10 0

10 2

10 -3

10 1

10 -1

1.5

2

S
u
m

-
S
q
u
a
re

d

E
rr

o
L
e
a
rn

in
g

R
a
te

© Negnevitsky, Pearson Education, 2005 36

 Gradient Descent (GD) / steepest descent – slow due to small
learning rate

 GD + momentum – fast but convergence not guaranteed

 GD + adaptive learning rate – ”

 GD + Newton-Raphson – good convergence

 Levenberg Marquardt (LM) – consistently good performance
for classification tasks

 Scaled Conjugate Gradient (SCG) – fast but convergence not
guaranteed

 Resillient BP – problem dependent, performance not consistent.

 Bayesian Regularization (BR) – slow but increased
performance. Usually better than LM.

Types of MLP Learning Algorithm

© Negnevitsky, Pearson Education, 2005 37

 MLPs are universal approximators. They can solve
most complex problems. However, they are limited in
certain aspects.

 MLPs are static NN. They do not have memory to
relate the previous information with the current.

 To emulate the human memory’s associative
characteristics we need a different type of network: a
recurrent neural network.

 A recurrent neural network has feedback loops from
its outputs to its inputs. The presence of such loops
has a profound impact on the learning capability of
the network.

Limitations of MLP

	ANN Architecture
	Non-Linear Neural Network Architecture
	NonLinear Neural Network
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37

