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Non-Linear Neural Network 
Architecture

 There are many types of non-linear NN.

 The simplest non-linear NNs are multilayer NN, 
one which has more than just the input and output 
layers of neurons.  They could be a feedforward
NN, which means information is passed in a 
forward manner.

 Other non-linear NNs are single-layer NNs with 
backward or recurrent connections.  Besides feed 
forward links, they also have feedback links for 
passing information backward.
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NonLinear Neural Network

 Multilayer Perceptron (MLP)
 Hopfield
 Bidirectional associative memory
 Radial Basis Function Neural Network
 Probabilistic Neural Network
 Generalized Regression Neural Network
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Multilayer Perceptron (MLP)

 A multilayer perceptron is a feedforward neural 
network with one or more hidden layers. 

 The network consists of an input layer of source 
neurons, at least one middle or hidden layer of 
computational neurons, and an output layer of 
computational neurons.

 The input signals are propagated in a forward 
direction on a layer-by-layer basis.
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An Example of MLP with two hidden layers
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What does the middle layer hide?
 A hidden layer “hides” its desired output.   Neurons in the 

hidden layer cannot be observed through the input/output 
behaviour of the network. There is no obvious way to 
know what the desired output of the hidden layer should 
be.  This is why ANN is considered a black box.

 Commercial ANNs incorporate three and sometimes four 
layers, including one or two hidden layers. Each layer can 
contain from 10 to 1000 neurons, depending on the 
learning algorithm employed. Experimental neural 
networks may have five or even six layers, including three 
or four hidden layers, and utilise millions of neurons.
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How to determine an optimum MLP 
inputs?

 The number of input, hidden and output neurons must be 
determined in order to produce an optimum ANN structure.

 The number of ANN inputs depend on the number of 
features that is available for a problem.  

 Insufficient features may degrade the performance of an 
ANN.  

 Too many features may cause correlation and hence degrade 
an ANN’s performance due to confusion. To avoid correlation, 
some statistical methods such as Principal Components 
Analysis (PCA) and Discriminant Analysis (DA) can be 
employed to eliminate correlated inputs before an ANN 
training process.
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How to determine an optimum MLP 
hiddens?

 Too few hidden neurons results in a MLP which is not capable 
of solving a problem.  Too many causes the problem of data 
overfitting causing the MLP to be incapable of generalizing.

 The optimum number of hidden neurons is determined using 
either: 

 network growing  - start with 1 hidden neuron and increase 
the number until there is no further improvement in 
performance.

 network pruning approach – start with a sufficiently large 
number of neurons and reduce the number until a superior  
ANN performance is achieved.

 If there are too many neurons in a hidden layer, extra hidden 
layer may be introduced into the MLP.
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How to determine an optimum MLP 
outputs?

 The optimum number of output neurons is problem dependent.

 For example: Classification of star fruit based on “Unripe”, 
Under ripe”, “Ripe” and “Over ripe”, either 2 or 4 output 
neurons can be used:  

 2 output neurons can be representing binary value output 
cases of:

0 0 – for “unripe” 0 1 – for “under ripe”
1 0 – for “ripe” 1 1 – for “over ripe”

 4 output neurons can be representing binary bit output cases 
of:

0 0 0 1 – for “unripe” 0 0 1 0 – for “under ripe”
0 1 0 0 – for “ripe” 1 0 0 0 – for “over ripe”
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How MLP Learns

 Learning in a MLP NN proceeds the same way as for a 
perceptron.

 MLP is a backpropagation NN because it feeds back its 
error for updating or tuning of weights.

 Firstly, a training set of input patterns is presented to the 
network. At the same time, the desired or target output is 
retained for error calculation.

 The MLP computes its output and compares it with the 
desired output. If there is an error, i.e. difference between 
actual and desired output patterns, the MLP weights are 
adjusted based on a function to reduce the error.
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 In short, a back-propagation neural network 
learning algorithm has two phases. 

 First, a training input pattern is presented to the 
network input layer. The network propagates the 
input pattern from layer to layer until the output 
pattern is generated by the output layer.

 If this pattern is different from the desired output, 
an error is calculated and then propagated 
backwards through the network from the output 
layer to the input layer. The weights are modified 
as the error is propagated.
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Three-layer back-propagation neural network
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The back-propagation training algorithm
Step 1: Initialisation                                               

Set all the weights and threshold levels of the 
network to random numbers uniformly   
distributed inside a small range:

where Fi is the total number of inputs of neuron i 
in the network. The weight initialisation is done  
on a neuron-by-neuron basis.
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Step 2: Activation                                                                  
Activate the back-propagation neural network by 
applying inputs x1(p), x2(p),…, xn(p) and desired 
outputs yd,1(p), yd,2(p),…, yd,n(p).

(a) Calculate the actual outputs of the neurons in 
the hidden layer:

where n is the number of inputs of neuron j in the 
hidden layer, and sigmoid is the sigmoid activation 
function.
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(b) Calculate the actual outputs of the neurons in 
the output layer:

Step 2 : Activation (continued)

where m is the number of inputs of neuron k in the 
output layer.
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Step 3: Weight training                                                           
Update the weights in the back-propagation network 
propagating backward the errors associated with 
output neurons.                                                         
(a) Calculate the error gradient for the neurons in the 
output layer:

where
Calculate the weight corrections:

Update the weights at the output neurons:
)()()1( pwpwpw jkjkjk ∆+=+

)()(1)()( pepypyp kkkk ⋅−⋅=

)()()( , pypype kkdk −=

)()()( ppypw kjjk ⋅⋅=∆
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(b) Calculate the error gradient for the neurons in 
the hidden layer:

Step 3: Weight training (continued)

Calculate the weight corrections:

Update the weights at the hidden neurons:
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Step 4: Iteration                                                 
Increase iteration p by one, go back to Step 2 and 
repeat the process until the selected error criterion 
is satisfied.

As an example, we may consider the three-layer 
back-propagation network. Suppose that the 
network is required to perform logical operation 
Exclusive-OR. Recall that a single-layer perceptron 
could not do this operation. Now we will apply the 
three-layer net.
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Three-layer network for solving the 
Exclusive-OR (XOR) operation
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 The effect of the threshold applied to a neuron in the 
hidden or output layer is represented by its bias, θ, 
connected to a fixed input equal to −1.

 The initial weights and threshold levels are set 
randomly as follows:                                                 
w13 = 0.5, w14 = 0.9, w23 = 0.4, w24 = 1.0, w35 = −1.2, 
w45 = 1.1, θ3 = 0.8, θ4 = −0.1 and θ5 = 0.3.
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We consider a training set where inputs x1 and x2 are 
equal to 1 and desired output yd,5 is 0. The actual 
outputs of neurons 3 and 4 in the hidden layer are 
calculated as

 Now the actual output of neuron 5 in the output layer 
is determined as:

 Thus, the following error is obtained:

5250.01/1)( )8.014.015.01(
32321313 =+=θ−+= ⋅−⋅+⋅−ewxwxsigmoidy

8808.01/1)( )1.010.119.01(
42421414 =+=θ−+= ⋅+⋅+⋅−ewxwxsigmoidy

5097.01/1)( )3.011.18808.02.15250.0(
54543535 =+=θ−+= ⋅−⋅+⋅−−ewywysigmoidy

5097.05097.0055, −=−=−= yye d
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 The next step is weight training. To update the 
weights and threshold levels in our network, we 
propagate the error, e, from the output layer 
backward to the input layer.

 First, we calculate the error gradient for neuron 5 in 
the output layer:

 Then we determine the weight corrections assuming 
that the learning rate parameter, α, is equal to 0.1:

1274.05097).0(0.5097)(10.5097)1( 555 −=−⋅−⋅=−= eyy

0112.0)1274.0(8808.01.05445 −=−⋅⋅=⋅⋅=∆ yw
0067.0)1274.0(5250.01.05335 −=−⋅⋅=⋅⋅=∆ yw

0127.0)1274.0()1(1.0)1( 55 −=−⋅−⋅=⋅−⋅=θ∆
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 Next we calculate the error gradients for neurons 3 
and 4 in the hidden layer:

We then determine the weight corrections:

0381.0)2.1(0.1274)(0.5250)(10.5250)1( 355333 =−⋅−⋅−⋅=⋅⋅−= wyy

0.0147.114)0.127(0.8808)(10.8808)1( 455444 −=⋅−⋅−⋅=⋅⋅−= wyy
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 At last, we update all weights and threshold:

 The new weights are used in the next iteration or epoch.

5038.00038.05.0131313 =+=∆+= www
8985.00015.09.0141414 =−=∆+= www

4038.00038.04.0232323 =+=∆+= www

9985.00015.00.1242424 =−=∆+= www

2067.10067.02.1353535 −=−−=∆+= www

0888.10112.01.1454545 =−=∆+= www

7962.00038.08.0333 =−=θ∆+θ=θ

0985.00015.01.0444 −=+−=θ∆+θ=θ

3127.00127.03.0555 =+=θ∆+θ=θ
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Learning curve for operation Exclusive-OR
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Final results of three-layer network learning
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Network represented by McCulloch-Pitts model 
for solving the Exclusive-OR operation
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Decision boundaries

(a) Decision boundary constructed by hidden neuron 3; 
(b) Decision boundary constructed by hidden neuron 4; 
(c) Decision boundaries constructed by the complete   

three-layer  network
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Accelerated learning in multilayer 
neural networks

 A multilayer network learns much faster when the 
sigmoidal activation function is represented by a 
hyperbolic tangent:

where a and b are constants.

Suitable values for a and b are:                 
a = 1.716 and b = 0.667

a
e
aY bX

htan −
+

= −1
2
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We also can accelerate training by including a 
momentum term in the delta rule:

where β is a positive number (0 ≤ β < 1) called the 
momentum constant. Typically, the momentum 
constant is set to 0.95. 

This equation is called the generalised delta rule.

However, it does not guarantee convergence or 
achievement of global minimum.

)()()1()( ppypwpw kjjkjk ⋅⋅+−∆⋅=∆
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Learning with momentum for operation Exclusive-OR
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Learning with adaptive learning rate
To accelerate the convergence and yet avoid the  
danger of instability, we can apply two heuristics:

Heuristic 1
If the change of the sum of squared errors has the same 
algebraic sign for several consequent epochs, then the 
learning rate parameter, α, should be increased.

Heuristic 2
If the algebraic sign of the change of the sum of 
squared errors alternates for several consequent 
epochs, then the learning rate parameter, α, should be 
decreased.
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 Adapting the learning rate requires some changes 
in the back-propagation algorithm. 

 If the sum of squared errors at the current epoch 
exceeds the previous value by more than a 
predefined ratio (typically 1.04), the learning rate 
parameter is decreased (typically by multiplying 
by 0.7) and new weights and thresholds are 
calculated.

 If the error is less than the previous one, the 
learning rate is increased (typically by multiplying 
by 1.05).
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Learning with adaptive learning rate
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Learning with momentum and adaptive learning rate
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 Gradient Descent (GD) / steepest descent – slow due to small 
learning rate

 GD + momentum – fast but convergence not guaranteed

 GD + adaptive learning rate – ”

 GD + Newton-Raphson – good convergence

 Levenberg Marquardt (LM) – consistently good performance 
for classification tasks

 Scaled Conjugate Gradient (SCG) – fast but convergence not 
guaranteed

 Resillient BP – problem dependent, performance not consistent.

 Bayesian Regularization (BR) – slow but increased 
performance.  Usually better than LM.

Types of MLP Learning Algorithm
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 MLPs are universal approximators.  They can solve 
most complex problems.   However, they are limited in 
certain aspects.

 MLPs are static NN.  They do not have memory to 
relate the previous information with the current.

 To emulate the  human memory’s associative 
characteristics we need a different type of network: a 
recurrent neural network.

 A recurrent neural network has feedback loops from 
its outputs to its inputs. The presence of such loops 
has a profound impact on the learning capability of 
the network.

Limitations of MLP
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