
1

9-1

Chapter 9

Asynchronous
Sequential Logic

9-2

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example



2

9-3

Sequential Circuits 
Consist of a combinational circuit to which storage 
elements are connected to form a feedback path
Specified by a time sequence of inputs, outputs, 
and internal states
Two types of sequential circuits:

Synchronous
Asynchronous primary difference

9-4

Synchronous vs. Asynchronous 

Asynchronous sequential circuits
Internal states can change at any 
instant of time when there is a 
change in the input variables
No clock signal is required
Have better performance but hard to 
design due to timing problems

Synchronous sequential circuits
Synchronized by a periodic train 
of clock pulses
Much easier to design
(preferred design style)



3

9-5

Why Asynchronous Circuits ?

Used when speed of operation is important
Response quickly without waiting for a clock pulse

Used in small independent systems
Only a few components are required

Used when the input signals may change 
independently of internal clock

Asynchronous in nature

Used in the communication between two units 
that have their own independent clocks

Must be done in an asynchronous fashion

9-6

Definitions of Asyn. Circuits

Inputs / Outputs
Delay elements:

Only a short term memory
May not really exist due to 
original gate delay

Secondary variable:
Current state (small y)

Excitation variable:
Next state (big Y)
Have some delay in 
response to input changes



4

9-7

Operational Mode

Steady-state condition:
Current states and next states are the same
Difference between Y and y will cause a transition

Fundamental mode:
No simultaneous changes of two or more variables
The time between two input changes must be longer 
than the time it takes the circuit to a stable state
The input signals change one at a time and only 
when the circuit is in a stable condition

9-8

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example



5

9-9

Transition Table
Transition table is useful to analyze an 
asynchronous circuit from the circuit diagram
Procedure to obtain transition table:
1. Determine all feedback loops in the circuits
2. Mark the input (yi) and output (Yi) of each 

feedback loop
3. Derive the Boolean functions of all Y’s
4. Plot each Y function in a map and combine all 

maps into one table
5. Circle those values of Y in each square that are 

equal to the value of y in the same row

9-10

An Example of Transition Table

Y1 = xy1 + x’y2

Y2 = xy’1 + x’y2

feedback

feedback

inputs

current
states

Y = Y1Y2

stable !!



6

9-11

State Table
When input x changes from 0 to 1 while y=00:

Y changes to 01 unstable
y becomes 01 after a short delay stable at the second row
The next state is Y=01

Each row must have at least one stable state
Analyze each state in this way can obtain its state table

011111

010001
101110
100000

X=1X=0State
Next StatePresent y1y2x :

total state

4 stable 
total states:
000,011,
110,101

9-12

Flow Table
Similar to a transition table except the states are 
represented by letter symbols
Can also include the output values
Suitable to obtain the logic diagram from it
Primitive flow table:
only one stable
state in each row
(ex: 9-4(a))

Equivalent to 9-3(c) if
a=00, b=01, c=11, d=10



7

9-13

Flow Table to Circuits
Procedure to obtain circuits from flow table:

Assign to each state a distinct binary value
(convert to a transition table)
Obtain circuits from the map

Two difficulties:
The binary state assignment (to avoid race)
The output assigned to the unstable states

Ex: from the flow table 9-4(b)

9-14

Race Conditions
Race condition:

two or more binary state variables 
will change value when one input 
variable changes
Cannot predict state sequence if 
unequal delay is encountered

Non-critical race:
The final stable state does not
depend on the change order of 
state variables

Critical race:
The change order of state variables 
will result in different stable states
Should be avoided !!



8

9-15

Race-Free State Assignment
Race can be avoided by proper 
state assignment

Direct the circuit through 
intermediate unstable states with 
a unique state-variable change
It is said to have a cycle

Must ensure that a cycle will 
terminate with a stable state

Otherwise, the circuit will keep 
going in unstable states

More details will be discussed in 
Section 9-6

9-16

Stability Check

Asynchronous sequential circuits may oscillate 
between unstable states due to the feedback

Must check for stability to ensure proper operations

Can be easily checked from the transition table
Any column has no stable states unstable
Ex: when x1x2=11 in Fig. 9-9(b), Y and y are never the same

Y = x’1x2 + x2y’



9

9-17

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example

9-18

Latches in Asynchronous Circuits

The traditional configuration of asynchronous 
circuits is using one or more feedback loops

No real delay elements

It is more convenient to employ the SR latch as 
a memory element in asynchronous circuits

Produce an orderly pattern in the logic diagram with 
the memory elements clearly visible

SR latch is also an asynchronous circuit
Will be analyzed first using the method for 
asynchronous circuits



10

9-19

SR Latch with NOR Gates

feedback

S=1, R=1 (SR = 1)
should not be used
⇒ SR = 0 is

normal mode

* should be carefully
checked first

9-20

SR Latch with NAND Gates

feedback

S=0, R=0 (S’R’ = 1)
should not be used
⇒ S’R’ = 0 is

normal mode

* should be carefully
checked first



11

9-21

Analysis Procedure
Procedure to analyze an asynchronous 
sequential circuits with SR latches:
1. Label each latch output with Yi and its external 

feedback path (if any) with yi

2. Derive the Boolean functions for each Si and Ri

3. Check whether SR=0 (NOR latch) or S’R’=0 
(NAND latch) is satisfied

4. Evaluate Y=S+R’y (NOR latch) or Y=S’+Ry
(NAND latch)

5. Construct the transition table for Y=Y1Y2…Yk

6. Circle all stable states where Y=y

9-22

Analysis Example
S1=x1y2 R1=x’1x’2 ⇒ S1R1 = x1y2x’1x’2 = 0  (OK)
S2=x1x2 R2=x’2y1 ⇒ S2R2 = x1x2x’2y1 = 0  (OK)

feedback

Y1=S1 + R’1y1
=x1y2 + (x1+x2)y1
=x1y2+x1y1+x2y1

Y2=S2 + R’2y2
=x1x2 + (x2+y’1)y2
=x1x2+x2y2+y’1y2

critical race !!



12

9-23

Implementation Procedure
Procedure to implement an asynchronous 
sequential circuits with SR latches:
1. Given a transition table that specifies the excitation 

function Y = Y1Y2…Yk, derive a pair of maps for 
each Si and Ri using the latch excitation table

2. Derive the Boolean functions for each Si and Ri
(do not to make Si and Ri equal to 1 in the same minterm square)

3. Draw the logic diagram using k latches together 
with the gates required to generate the S and R
(for NAND latch, use the complemented values in step 2)

9-24

Implementation Example

y = 1 (outside) 0 (inside)
∴ S=0, R=1 from excitation table

Excitation table: list the required S and R
for each possible transition from y to Y



13

9-25

Debounce Circuit
Mechanical switches are often used to generate binary 
signals to a digital circuit

It may vibrate or bounce several times before going to a final rest
Cause the signal to oscillate between 1 and 0

A debounce circuit can remove the series of pulses from a 
contact bounce and produce a single smooth transition

Position A (SR=01) bouncing (SR=11) Position B (SR=10)
Q = 1 (set)   Q = 1 (no change) Q = 0 (reset)

9-26

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example



14

9-27

Design Procedure

1. Obtain a primitive flow table from the given 
design specifications

2. Reduce the flow table by merging rows in the 
primitive flow table

3. Assign binary state variables to each row of the 
reduced flow to obtain the transition table

4. Assign output values to the dashes associated 
with the unstable states to obtain the output map

5. Simplify the Boolean functions of the excitation 
and output variables and draw the logic diagram

9-28

Primitive Flow Table
Design example: gated latch

Accept the value of D when G=1
Retain this value after G goes to 0 (D has no effects now)

Obtain the flow table by listing all possible states
Dash marks are given when both inputs
change simultaneously
Outputs of unstable states are don’t care

After state e100f
After states b or f101e
After state c001d
After states a or d000c
D=Q because G=1111b
D=Q because G=1010a

CommentsQGDState
OutputInput



15

9-29

Reduce the Flow Table
Two or more rows can be merged into one row if there are 
non-conflicting states and outputs in every columns
After merged into one row:

Don’t care entries are
overwritten
Stable states and output
values are included
A common symbol is given
to the merged row

Formal reduction procedure
is given in next section

9-30

Transition Table and Logic Diagram
Assign a binary value to each state 
to generate the transition table

a=0, b=1 in this example

Directly use the simplified Boolean 
function for the excitation variable Y

An asynchronous circuit without latch is 
produced



16

9-31

Implementation with SR Latch

Listed according to
the transition table
and the excitation
table of SR latch

9-32

Outputs for Unstable States
Objective: no momentary false outputs occur when the 
circuit switches between stable states
If the output value is not changed, the intermediate 
unstable state must have the same output value

0 1 (unstable) 0  (X)
0 0 (unstable) 0  (O)

If the output value changed,
the intermediate outputs
are don’t care

It makes no difference when
the output change occurs

0

1



17

9-33

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example

9-34

State Reduction
Two states are equivalent if they have the same output
and go to the same (equivalent) next states for each 
possible input

Ex: (a,b) are equivalent
(c,d) are equivalent

State reduction procedure
is similar in both sync. &
async. sequential circuits

For completely specified state tables:
use implication table

For incompletely specified state tables:
use compatible pairs

01dbd
01dac
10adb
10bca

x=1x=0x=1x=0State
OutputNext StatePresent



18

9-35

Implication Table Method (1/2)

01dae
00bcf
01eag

01dad
10fgc
00aeb
00bda

x=1x=0x=1x=0State
OutputNext StatePresent

Step 1: build the implication chart

a≡b iff d≡e

b≠c since outputs
are not equivalent

d and e are
the same

9-36

Implication Table Method (2/2)

00acf
01dad
10fdc
00ada

x=1x=0x=1x=0State
OutputNext StatePresent

Step 2: delete the node with unsatisfied conditions
Step 3: repeat Step 2 until equivalent states found

a≠f because c≠d

b≠f because c≠e

equivalent states :
(a,b) (d,e) (d,g) (e,g)

*Reduced State Table*

d == e == g



19

9-37

Merge the Flow Table
The state table may be incompletely specified

Some next states and outputs are don’t care

Primitive flow tables are always incompletely specified
Several synchronous circuits also have this property

Incompletely specified states are not “equivalent”
Instead, we are going to find “compatible” states
Two states are compatible if they have the same output
and compatible next states whenever specified

Three procedural steps:
Determine all compatible pairs
Find the maximal compatibles
Find a minimal closed collection of compatibles

9-38

Compatible Pairs
Implication tables are used to find compatible states

We can adjust the dashes to fit any desired condition
Must have no conflict in the output values to be merged

output
conflict !

output
conflict !

compatible pairs :
(a,b) (a,c) (a,d)

(b,e) (b,f)
(c,d) (e,f)



20

9-39

Maximal Compatibles
A group of compatibles that contains all the possible 
combinations of compatible states

Obtained from a merger diagram
A line in the diagram represents that two states are compatible

n-state compatible n-sided fully connected polygon
All its diagonals
connected

Not all
maximal
compatibles
are necessary

9-40

Closed Covering Condition
The set of chosen compatibles must cover all the states 
and must be closed

Closed covering

The closure condition is satisfied if
There are no implied states
The implied states are included
within the set

Ex: if remove (a,b) in the right
(a,c,d) (b,e,f) are left in the set
All six states are still included
No implied states according to
its implication table 9-23(b)



21

9-41

Closed Covering Example

*(a,b) (c,d,e) (X)
implied (b,c) is not
included in the set

* better choice:
(a,d) (b,c) (c,d,e)
all implied states
are included

9-42

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example



22

9-43

Race-Free State Assignment
Objective: choose a proper binary state assignment to 
prevent critical races
Only one variable can change at any given time when 
a state transition occurs
States between which transitions occur will be given 
adjacent assignments

Two binary values are said to be adjacent if they differ in only
one variable

To ensure that a transition table has no critical races, 
every possible state transition should be checked

A tedious work when the flow table is large
Only 3-row and 4-row examples are demonstrated

9-44

3-Row Flow Table Example (1/2)
Three states require two binary variables
Outputs are omitted for simplicity
Adjacent info. are represented by a transition diagram
a and c are still not adjacent in such an assignment !!

Impossible to make all states adjacent if only 3 states are used

b has a 
transition 

to c



23

9-45

3-Row Flow Table Example (2/2)
A race-free assignment can be obtained if we add an 
extra row to the flow table

Only provide a race-free transition between the stable states

The transition from a to c must now go through d
00 10 11  (no race condition)

don’t care but cannot be 10
(cannot stable)

9-46

4-Row Flow Table Example (1/2)
Sometimes, just one extra row may not be sufficient to 
prevent critical races

More binary state variables may also required

With one or two diagonal transitions, there is no way of 
using two binary variables that satisfy all adjacency



24

9-47

4-Row Flow Table Example (2/2)

still has 
only 4 
stable 
states

9-48

Multiple-Row Method
Multiple-row method is easier

May not as efficient as in above 
shared-row method

Each stable state is duplicated 
with exactly the same output

Behaviors are still the same
While choosing the next states, 
choose the adjacent one

can be used 
to any 4-row 
flow table



25

9-49

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example

9-50

Hazards
Unwanted switching appears at the output of a circuit

Due to different propagation delay in different paths

May cause the circuit to mal-function
Cause temporary false-output values in combinational circuits
Cause a transition to a wrong state in asynchronous circuits
Not a concern to synchronous sequential circuits

Three types of hazards:



26

9-51

Circuits with Hazards
Static hazard: a momentary output change when no 
output change should occur
If implemented in sum of products:

no static 1-hazard no static 0-hazard or dynamic hazard

Two examples for static 1-hazard:

9-52

Hazard-Free Circuit

Hazard can be detected 
by inspecting the map
The change of input 
results in a change of 
covered product term

Hazard exists
Ex: 111 101 in (a)

To eliminate the hazard, 
enclose the two minterms
in another product term

Results in redundant gates Redundant !!



27

9-53

Remove Hazard with Latches
Implement the asynchronous circuit with SR latches can 
also remove static hazards

A momentary 0 has no effects to the S and R
inputs of a NOR latch
A momentary 1 has no effects to the S and R
inputs of a NAND latch

Hazards
exist !!

Replaced
by a latch

9-54

Implementation with SR Latches

Merged !!

Given:
S = AB + CD
R = A’C

For NAND latch, use 
complemented inputs

S’ = (AB + CD)’
= (AB)’(CD)’

R’ = (A’C)’

Q = (Q’S)’
= [Q’(AB)’(CD)’]’
Two-level circuits

(this is the output we want)



28

9-55

Essential Hazards

Besides static and dynamic hazards, another 
type of hazard in asynchronous circuits is called 
essential hazard
Caused by unequal delays along two or more 
paths that originate from the same input
Cannot be corrected by adding redundant gates
Can only be corrected by adjusting the amount 
of delay in the affected path

Each feedback path should be examined carefully !!

9-56

Outline 

Asynchronous Sequential Circuits
Analysis Procedure
Circuits with Latches
Design Procedure
Reduction of State and Flow Tables
Race-Free State Assignment
Hazards
Design Example



29

9-57

Recommended Design Procedure

1. State the design specifications

2. Derive a primitive flow table

3. Reduce the flow table by merging the rows

4. Make a race-free binary state assignment

5. Obtain the transition table and output map

6. Obtain the logic diagram using SR latches

9-58

Primitive Flow Table
Design a negative-edge-triggered 
T flip-flop
Two inputs: T(toggle) and C(clock)

T=1: toggle, T=0: no change

One output: Q

After states b or h100g
After states e or a010f

After states g or c110h

After states d or f000e
After state c001d
Initial output is 1111c
After state a101b
Initial output is 0011a

CommentsQCTState
OutputInput



30

9-59

Merging the Flow Table
Compatible pairs:
(a,f) (b,g) (b,h) (c,h)
(d,e) (d,f) (e,f) (g,h)

Maximal compatible set:
(a,f) (b,g,h) (c,h) (d,e,f)
a     b     c     d

9-60

State Assignment & Transition Table

No diagonal lines in the transition diagram
No need to add extra states



31

9-61

Logic Diagram


