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Lecture (  )                                 Transient 
First-Order Circuits 

1) Introduction   
The analysis of RC and RL circuits is carried out by applying Kirchhoff’s laws, as we did 

for resistive circuits. The only difference is that applying Kirchhoff’s laws to purely 

resistive circuits results in algebraic equations, while applying the laws to RC and RL 

circuits produces differential equations, which are more difficult to solve than algebraic 

equations. The differential equations resulting from analyzing RC and RL circuits are of 

the first order. Hence, the circuits are collectively known as first-order circuits. 
 

A first-order circuit is characterized by a first-order differential equation. 
 

In addition to there being two types of first-order circuits (RC and RL), there are two ways 

to excite the circuits.  

1) The first way is by initial conditions of the storage elements in the circuits. In these 

so-called source-free circuits, we assume that energy is initially stored in the capacitive 

or inductive element. The energy causes current to flow in the circuit and is 

gradually dissipated in the resistors. Although source free circuits are by definition 

free of independent sources, they may have dependent sources.  

2) The second way of exciting first-order circuits is by independent sources (dc and ac 

sources). 

 

2) The Source-Free RC Circuit 
A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy 

already stored in the capacitor is released to the resistors.  

Consider a series combination of a resistor and an initially 

charged capacitor, as shown in Fig.2.1. (The resistor and 

capacitor may be the equivalent resistance and equivalent 

capacitance of combinations of resistors and capacitors.) 

Now to determine the circuit response. Since the capacitor is 

initially charged, we can assume that at time 𝑡 = 0, the 

initial voltage is                                                                        Fig.2.1.source-free RC circuit 

 

𝑣(0) = 𝑉0                                                                                                                     …(2.1) 

with the corresponding value of the energy stored as 

𝑤(0) =
1

2
𝐶𝑉0

2                                                                                                              …(2.2) 

Applying KCL at the top node of the circuit in Fig. 2.1 yields 
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𝑖𝐶 + 𝑖𝑅 = 0                                                                                                                   …(2.3) 

By definition, 𝑖𝐶 = 𝐶𝑑𝑣/𝑑𝑡 and 𝑖𝑅 = 𝑣/𝑅. Thus, 

𝐶
𝑑𝑣

𝑑𝑡
+

𝑣

𝑅
= 0                                                                                                               …(2.4a) 

∴
𝑑𝑣

𝑑𝑡
+

𝑣

𝑅𝐶
= 0                                                                                                             …(2.4b) 

This is a first‐order differential equation, since only the first derivative of 𝑢 is involved. To 

solve it, we rearrange the terms as 

𝑑𝑣

𝑣
= −

1

𝑅𝐶
𝑑𝑡                                                                                                                 …(2.5) 

Integrating both sides, we get 

𝑙𝑛 𝑣 = −
𝑡

𝑅𝐶
+ 𝑙𝑛 𝐴 

where 𝑙𝑛 𝐴 is the integration constant. Thus, 

𝑙𝑛
𝑣

𝐴
= −

𝑡

𝑅𝐶
                                                                                                                   …(2.6) 

Taking powers of 𝑒 produces 

𝑣(𝑡) = 𝐴𝑒−𝑡/𝑅𝐶 

But from the initial conditions, 𝑣(𝑂) = 𝐴 = 𝑉0. Hence, 

𝑣(𝑡) = 𝑉0𝑒−𝑡/𝑅𝐶                                                                                                          …(2.7) 

This shows that the voltage response of the 𝑅𝐶 circuit is an exponential decay of the initial 

voltage. Since the response is due to the initial energy stored and the physical 

characteristics of the circuit and not due to some external voltage or current source, it is 

called the natural response of the circuit. 

The natural response of a circuit refers to the behavior (in terms of voltages and 
currents) of the circuit itself, with no external sources of excitation. 
 

The natural response is illustrated graphically in Fig.2.2. Note that at 𝑡 = 0, we have the 

correct initial condition as in Eq. (2.1). As 𝑡 increases, the voltage decreases toward zero. 

The rapidity with which the voltage decreases is expressed in terms of the time constant, 

denoted by 𝝉, the lowercase Greek letter tau. 
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The time constant of a circuit is the time required for the response to decay to a 
factor of 1/e or 36.8 percent of its initial value. 

 

 
Fig.2.2. The voltage response of the RC circuit. 

 

 

This implies that at 𝑡 = 𝜏, Eq. (2.7) becomes 

𝑉0𝑒−𝜏/𝑅𝐶 = 𝑉0𝑒−1 = 0.368𝑉0 

or 

𝜏 = 𝑅𝐶                                                                                                                         …(2.8) 

In terms of the time constant, Eq. (2.7) can be written as 

𝑣(𝑡) = 𝑉0𝑒−𝑡/𝜏                                                                                                             …(2.9) 

It is evident from Table 7.1 that the voltage 𝑣(𝑡)  is less than 1 percent of 𝑉0 after 𝟓𝝉 (five 

time constants). Thus, it is customary to assume that the capacitor 

is fully discharged (or charged) after five time constants. In other 

words, it takes 𝟓𝝉 for the circuit to reach its final state or 

steady state when no changes take place with time. Notice 

that for every time interval of 𝝉, the voltage is reduced by 36.8 

percent of its previous value, 𝒗(𝒕 + 𝝉) = 𝒗(𝒕)/𝒆 = 𝟎. 𝟑𝟔𝟖𝒗(𝒕) 

, regardless of the value of   𝒕. 

A circuit with a small time constant gives a fast response in that it reaches the steady state (or final 

state) quickly due to quick dissipation of energy stored, whereas a circuit with a large time constant 

gives a slow response because it takes longer to reach steady state (this is illustrated in Fig. 2.3). At 

any rate, whether the time constant is small or large, the circuit reaches steady state in five time 

constants. 
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Figure 2.3. Plot of 𝑣(𝑡)/𝑉0 = 𝑒−𝑡/𝜏 for various values of the time constant. 

 

With the voltage 𝑣(𝑡) in Eq. (2.9), we can find the current 𝑖𝑅(𝑡) , 

𝑖𝑅(𝑡) =
𝑣(𝑡)

𝑅
=

𝑉0

𝑅
𝑒−𝑡/𝜏                                                                                               …(2.10) 

The power dissipated in the resistor is 

𝑝(𝑡) = 𝑣𝑖𝑅 =
𝑉0

2

𝑅
𝑒−2𝑡/𝜏                                                                                              …(2.11) 

The energy absorbed by the resistor up to time 𝑡 is 

𝑤𝑅(𝑡) = ∫ 𝑝
𝑡

0
𝑑𝑡 = ∫

𝑉0
2

𝑅

𝑡

0
𝑒−2𝑡/𝜏𝑑𝑡 = −

𝜏𝑉0
2

2𝑅
𝑒−2𝑡/𝜏│0

𝑡 =
1

2
𝐶𝑉0

2(1 − 𝑒−2𝑡/𝜏), 𝜏 = 𝑅𝐶 .(2.12) 

Notice that as 𝑡 → ∞, 𝑤𝑅(∞) →
1

2
𝐶𝑉0

2, which is the same as 𝑤𝐶(0) , the energy initially 

stored in the capacitor. The energy that was initially stored in the capacitor is eventually 

dissipated in the resistor. 

With these two items, we obtain the response as the capacitor voltage 𝑣𝐶(𝑡) = 𝑣(𝑡) =

𝑣(0)𝑒−𝑡/𝜏 other variables (capacitor current 𝑖𝐶, resistor voltage 𝑣𝑅, and resistor current 𝑖𝑅) 

can be determined. In finding the time constant 𝝉 = 𝑹𝑪, 𝑹 is often the Thevenin equivalent 

resistance at the terminals of the capacitor; that is, we take out the capacitor  𝑪 and find  𝑹 = 𝑹𝑻𝒉 at 

its terminals.  

Example 1: In Fig. Fig.1, let 𝑣𝐶(0) = 15 V. Find 𝑣𝐶 , 𝑣𝑥, and 𝑖𝑥 for 𝑡 > 0.  

Solution: 

We first need to make the circuit in Fig.1 conform with the 

standard 𝑅𝐶 circuit in Fig.2.1. We find the equivalent 

resistance or the Thevenin resistance at the capacitor 

terminals. Our objective is always to first obtain capacitor 

voltage 𝑣𝐶. From this, we can determine 𝑣𝑥 and 𝑖𝑥.                                       Fig.1                                     

𝑅𝑒𝑞 = (8 + 12) ∥ 5  ⇒  ∴ 𝑅𝑒𝑞 =
20×5

20+5
= 4𝛺 
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∴ the equivalent circuit is as shown in Fig.2.  

𝜏 = 𝑅𝑒𝑞𝐶 = 4(0.1) = 0.4𝑠 

𝑣 = 𝑣(0)𝑒−𝑡/𝜏 = 15𝑒−𝑡/04𝑉. 𝑣𝐶 = 𝑣 = 15𝑒−2.5𝑡𝑉 

use voltage division to get 𝑣𝑥 so,                                                                      Fig.2 

𝑣𝑥 =
12

12+8
𝑣 = 0.6(15𝑒−2.5𝑡) = 9𝑒−2.5𝑡𝑉  

𝑖𝑥 =
𝑣𝑥

12
= 0.75𝑒−2.5𝑡𝐴 

 

H.W.1:  Let 𝑣𝐶(0) = 45 V. Determine 𝑣𝐶, 𝑣𝑥. and 𝑖𝑜 for 𝑓 ≥ 0. 
Answer:  

𝟒𝟓𝒆−𝟎.𝟐𝟓𝒕𝑽. 𝟏𝟓𝒆−𝟎𝟐𝟓𝒕𝑽. −𝟑. 𝟕𝟓𝒆−𝟎.𝟐𝟓𝒕𝑨.  

 

Example 2: The switch in the circuit in Fig.1 has been closed fora long time, and it is 

opened at 𝑡 = 0. Find 𝑣(𝑡) for 𝑡 ≥ 0. Calculate the initial energy stored in the capacitor. 

Solution: 

For 𝑡 < 0, the switch is closed; the capacitor is an open 

circuit to 𝑑𝑐 , as represented in Fig.2(a). Using voltage 

division 

𝑣𝐶(𝑡) =
9

9+3
(20) = 15𝑉. 𝑡 < 0                                                                   Fig. 1 

Since the voltage across a capacitor cannot change instantaneously, the voltage across the 

capacitor at 𝑡 = 0− is the same at 𝑡 = 0, or 

𝑣𝐶(0) = 𝑉0 = 15𝑉 

For 𝑡 > 0, the switch is opened, and we have the 𝑅𝐶 circuit 

shown in Fig.2 (b). [Notice that the 𝑅𝐶 circuit in Fig.2 (b) is 

source free; the independent source in Fig.1 is needed to 

provide 𝑉0 or the initial energy in the capacitor.]  

𝑅𝑒𝑞 = 1 + 9 = 10𝛺 ,  𝜏 = 𝑅𝑒𝑞𝐶 = 10 × 20 × 10−3 = 0 ∙ 2𝑠 

Thus, the voltage across the capacitor for 𝑡 ≥ 0 is                                          Fig.2 

𝑣(𝑡) = 𝑣𝐶(0)𝑒−𝑡/𝜏 = 15𝑒−𝑡/0∙2𝑉 = 15𝑒−5𝑡𝑉 
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𝑤𝐶(0) =
1

2
𝐶𝑣𝐶

2(0) =
1

2
× 20 × 10−3 × 152 = 2.25𝐽 

H.W.2:  If the switch in Fig. shown opens at 𝑡 = 0, find 𝑣(𝑡) for 𝑡 ≥ 0 and 𝑤𝐶(0) .  

Answer: 𝟖𝒆−𝟐𝒕𝑽. 𝟓. 𝟑𝟑𝑱 

 

 

 

 

3) The Source‐Free 𝑹𝑳 Circuit 

Our goal is to determine the circuit response ( current 𝑖(𝑡) 

through the inductor). We select the inductor current as the 

response in order to take advantage of the idea 𝑖 that the 

inductor current cannot change instantaneously. At 𝑡 = 0, 

we assume that the inductor has an initial current 𝐼0, or with 

the corresponding energy stored in the inductor as              Fig.3.1 A source-free RL circuit 

𝑖(0) = I𝑜 (3.1) 

𝑤(0) =
1

2
𝐿𝐼0

2 (3.2) 

Applying KVL around the loop in Fig.3.1, 

𝑣𝐿 + 𝑣𝑅 = 0 (3.3) 

But 𝑣𝐿 = 𝐿𝑑𝑖/𝑑𝑡 and 𝑣𝑅 = 𝑖𝑅. Thus,  

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 = 0       ⇒         

𝑑𝑖

𝑑𝑡
+

𝑅

𝐿
𝑖 = 0    (3.4) 

Rearranging terms and integrating gives 

∫
𝑑𝑖

𝑖

𝑖(𝑡)

𝐼0
= − ∫

𝑅

𝐿

𝑡

0
𝑑𝑡        ⇒       ln 𝑖 |𝐼𝑜

𝜄(𝑡)
= −

𝑅𝑡

𝐿
|0

𝑡  ⇒   ln 𝑖(𝑡) − ln 𝐼0 = −
𝑅𝑡

𝐿
+ 0 

∴  ln
𝑖(𝑡)

𝐼0
= −

𝑅𝑡

𝐿
 (3.5) 

Taking the powers of 𝑒, we have 

𝑖(𝑡) = 𝐼0𝑒−𝑅𝑡/𝐿    (3.6) 
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This shows that the natural response of the 𝑅𝐿 circuit is an exponential decay of the initial 

current. The current response is shown in Fig.3.2.  

 

 

 

 

 

 

Fig.3.2. The current response of the RL circuit 

 

It is evident from Eq. (3.6) that the time constant for the 𝑅𝐿 circuit is 

𝜏 =
𝐿

𝑅
   in (s)              (3.7) 

∴ 𝑖(𝑡) = 𝐼0𝑒−𝑡/𝜏 (3.8) 

𝑣𝑅(𝑡) = 𝑖𝑅 = 𝐼0𝑅𝑒−𝑡/𝜏 (3.9) 

The power dissipated in the resistor is   

𝑝 = 𝑣𝑅𝑖 = 𝐼0
2𝑅𝑒−2𝑡/𝜏 (3.10) 

𝑤𝑅(𝑡) = ∫ 𝑝
𝑡

0
𝑑𝑡 = ∫ 𝐼0

2𝑡

0
𝑅𝑒−2𝑡/𝜏𝑑𝑡 = −

1

2
𝜏𝐼0

2𝑅𝑒−2𝑡/𝜏|
0

𝑡
,           𝜏 =

𝐿

𝑅
 

𝑤𝑅(𝑡) =
1

2
𝐿𝐼0

2(1 − 𝑒−2𝑡/𝜏)    (3.11) 

Note that as 𝑡 → ∞   ,𝑤𝑅(∞) →
1

2
𝐿𝐼0

2, which is the same as 𝑤𝐿(0) , the initial energy 

stored in the inductor as in Eq. (3.2). Again, energy initially stored in the inductor is 

eventually dissipated in the resistor. 

With the two items, we obtain the response as the inductor current 𝑖𝐿(𝑡) = 𝑖(𝑡) =

𝑖(0)𝑒−𝑡/𝜏. Once we determine the inductor current 𝑖𝐿 , other variables (inductor voltage 𝑣𝐿, 

resistor voltage  𝑣𝑅, and resistor current 𝑖𝑅) can be obtained. Note that in general, 𝑹 in Eq. 

(3.7) is the Thevenin resistance at the terminals of the inductor.  
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Example 3: Assuming that 𝑖(𝑂) = 10𝐴, calculate 𝑖(𝑡) and 𝑖𝑥(𝑡) in the circuit of Fig.1. 

Solution: 

There are two ways we can solve this problem. One 

way is to obtain the equivalent resistance at the inductor 

terminals and then use Eq. (3.8). The other way is to 

start from scratch by using Kirchhoff’s voltage law. 

Whichever approach is taken, it is always better to first 

obtain the inductor current.                                                                           Fig.1 

METHOD 1 The equivalent resistance is the same as the Thevenin resistance at the 

inductor terminals. Because of the dependent source, we insert a voltage source with 𝑣𝑜 =

1𝑉 at the inductor terminals a‐b, as in Fig. 2(a). (We could also insert a 1‐𝐴 current source 

at the terminals.) Applying KVL to the two loops results in 

2(𝑖1 − 𝑖2) + 1 = 0 ⇒ 𝑖1 − 𝑖2 = −
1

2
    (1) 

6𝑖2 − 2𝑖1 − 3𝑖1 = 0 ⇒ 𝑖2 =
5

6
𝑖1 (2) 

Substituting Eq. (2) into Eq. (1) gives 

𝑖1 = −3𝐴    𝑖𝑜 = −𝑖1 = 3𝐴 

∴ 𝑅𝑒𝑞 = 𝑅𝑇ℎ =
𝑣𝑜

𝑖𝑜
=

1

3
𝛺 

𝜏 =
𝐿

𝑅𝑒𝑞
=

1
2
1
3

=
3

2
𝑠 

𝑖(𝑡) = 𝑖(0)𝑒−
𝑡
𝜏 = 10𝑒

−(
2
3

)𝑡
𝐴     𝑡 > 0 

 

Fig. 2 
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METHOD 2 We may directly apply KVL to the circuit as in Fig. 2(b).  

For loop 1, 

1

2

𝑑𝑖1

𝑑𝑡
+ 2(𝑖1 − 𝑖2) = 0 

∴  
𝑑𝑖1

𝑑𝑡
+ 4𝑖1 − 4𝑖2 = 0    (1) 

For loop 2, 

6 𝑖2 − 2𝑖1 − 3𝑖1 = 0 ⇒  𝑖2 =
5

6
𝑖1    (2) 

Substituting Eq. (2) into Eq. (1) gives 

𝑑𝑖1

𝑑𝑡
+

2

3
𝑖1 = 0           ⇒            

𝑑𝑖1

𝑖1
= −

2

3
𝑑𝑡 

Since 𝑖1 = 𝑖, we may replace 𝑖1 with 𝑖 and integrate: 

ln 𝑖|𝑖(0)
𝑖(𝑡)

= −
2

3
𝑡|0         

𝑡  ⇒           ln 
𝑖(𝑡)

𝑖(0)
= −

2

3
𝑡 

Taking the powers of 𝑒, we finally obtain 

𝑖(𝑡) = 𝑖(0)𝑒
−(

2
3

)𝑡
= 10𝑒

−(
2
3

)𝑡
𝐴             𝑡 > 0 

which is the same as by Method 1. 

𝑣𝐿 = 𝐿
𝑑𝑖

𝑑𝑡
= 0.5(10)(−

2

3
)𝑒−(2/3)𝑡 = −

10

3
𝑒

−(
2
3

)𝑡       
𝑉 

Since the inductor and the 2 − 𝛺 resistor are in parallel, (𝑣𝐿 = 𝑣𝑅) 

𝑖𝑥(𝑡) =
𝑣𝑅

2
= −1.6667𝑒

−(
2
3

)𝑡
𝐴        𝑡 > 0 

H.W.3: Find 𝑖 and 𝑣𝑥 in the circuit of Fig. 1. Let 𝑖(𝑂) = 5 A.  

Answer: 𝟓𝒆−𝟒𝒕𝑽     −𝟐𝟎𝒆−𝟒𝒕𝑽.   

 

 

                           

                                                                                       Fig. 1. 
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Example 4: The switch in the circuit of Fig. 1. has been closed for a long time. At 𝑡 = 0, 

the switch is opened. Calculate 𝑖(𝑡) for 𝑡 > 0. 

Solution: 

When 𝑡 < 0, the switch is closed, and the inductor 

acts as a short circuit to 𝑑𝑐. The 16 − 𝛺 resistor is 

short‐circuited; the resulting circuit is shown in Fig. 

2(a). To get 𝑖1 in Fig. 2(a), we combine the 4 − 𝛺 and 

12 − 𝛺 resistors in parallel to get 

4×12

4+12
= 3𝛺                                                                                              Fig. 1. 

𝑖1 =
40

2 + 3
= 8𝐴 

We obtain 𝑖(𝑡) from 𝑖1 in Fig. 2(a) using current division, by writing 

𝑖(𝑡) =
12

12+4
𝑖1 = 6𝐴,     𝑡 < 0   

Since the current through an inductor cannot change instantaneously, 

𝑖(𝑂) = 𝑖(0−) = 6𝐴 

When 𝑡 > 0, the switch is open and the voltage source is disconnected. We now have the 

source‐free 𝑅𝐿 circuit in Fig. 2(b). 

𝑅𝑒𝑞 = (12 + 4)‖16 = 8𝛺   

𝜏 =
𝐿

𝑅𝑒𝑞
=

2

8
=

1

4
𝑠 

∴ 𝑖(𝑡) = 𝑖(0)𝑒−𝑡/𝜏 = 6𝑒−4𝑡𝐴 

 
Fig. 2 Solving the circuit of Fig.1: (a) for t < 0, (b) for t > 0. 

 

H.W.4: For the circuit in Fig.1, find 𝑖(𝑡) for 𝑡 > 0. 
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Answer: 2e-2t A, t > 0 

 

 

 

                                                                                     Fig.1 

Example 5: In the circuit shown in Fig.1, find 𝑖𝑜, 𝑣𝑜, and 𝑖 for all time, assuming that the 

switch was open for a long time. 

Solution: It is better to first find the inductor 

current 𝑖 and then obtain other quantities from it. 

For 𝑡 < 0, the switch is open. Since the inductor 

acts like a short circuit to 𝑑𝑐, the 6 − 𝛺 resistor is 

short‐circuited, so that we have the circuit shown 

in Fig.2 (a). Hence,  

𝑖𝑜 = 0,  and   𝑖(𝑡) =
10

2+3
= 2𝐴.       𝑡 < 0 

𝑣𝑜(𝑡) = 3𝑖(𝑡) = 6𝑉.     𝑡 < 0 

Thus, 𝑖(𝑂) = 2. 

For 𝑡 > 0, the switch is closed, so that the voltage source is short‐ circuited. We now have 

a source‐free 𝑅𝐿 circuit as shown in Fig.2 (b). At the inductor terminals, 

𝑅𝑇ℎ = 3‖6 = 2𝛺 

𝜏 =
𝐿

𝑅𝑇ℎ
= 1𝑠 

𝑖(𝑡) = 𝑖(0)𝑒−
𝑡
𝜏 = 2𝑒−𝑡𝐴.       𝑡 > 0 

Since the inductor is in parallel with the 6 − 𝛺 and 3 − 𝛺 resistors, 

𝑣𝑜(𝑡) = −𝑣𝐿 = −𝐿
𝑑𝑖

𝑑𝑡
= −2(−2𝑒−𝑡) = 4𝑒−𝑡𝑉.       𝑡 > 0 

𝑖𝑜(𝑡) =
𝑣𝐿

6
= −

2

3
𝑒−𝑡𝐴.       𝑡 > 0 

Thus, for all time, 

Fig.1 
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𝑖𝑜(𝑡) = {
𝑂𝐴 𝑡 < 0

−
2

3
𝑒−𝑡 𝐴  𝑡 > 0                 ,         𝑣𝑜(𝑡) = {

6 𝑉 𝑡 < 0
4𝑒−𝑡 𝑉  𝑡 > 0 

 

𝑖(𝑡) = {
2𝐴 𝑡 < 0
2𝑒−𝑡𝐴   𝑡 ≥ 0

 

 
Fig.2. The circuit in Fig.1 for: (a) 𝑡 < 0 (b) 𝑡 > 0 

We notice that the inductor current is continuous at 𝑡 = 0, 

while the current through the 6 − 𝛺 resistor drops from 0 to 

−2/3 at 𝑡 = 0, and the voltage across the 3 − 𝛺 resistor 

drops from 6 to 4 at 𝑡 = 0. We also notice that the time 

constant is the same regardless of what the output is defined 

to be. Fig.3. plots 𝑖 and 𝑖𝑜. 

 

                                                                                      Fig.3. A plot of 𝑖 and 𝑖𝑜 

 

H.W.5:  Determine 𝑖, 𝑖𝑜, and 𝑣𝑜 for all 𝑡 in the circuit shown in Fig.1. Assume that the 

switch was closed for a long time. It should be noted that opening a switch in series with 

an ideal current source creates an infinite voltage at the current source terminals. Clearly 

this is impossible. For the purposes of problem solving, we can place a shunt resistor in 

parallel with the source (which now makes it a voltage source in series with a resistor). In 

more practical circuits, devices that act like current sources are, for the most part, 

electronic circuits. These circuits will allow the source to act like an ideal current source 

over its operating range but voltage‐limit it when the load resistor becomes too large (as in 

an open circuit).  

Answer: 𝒊 = {
𝟏𝟐𝑨 𝒕 < 𝟎
𝟏𝟐𝒆−𝟐𝒕𝑨 𝒕 ≥ 𝟎 ’

      𝒊𝒐 = {
𝟔𝑨 𝒕 < 𝟎
−𝟒𝒆−𝟐𝒕𝑨 𝒕 > 𝟎  ’

     𝒗𝒐 = {
𝟐𝟒𝑽 𝒕 < 𝟎
𝟖𝒆−𝟐𝒕𝑽 𝒕 > 𝟎
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Fig.1 

 

 

4) Singularity Functions 

A basic understanding of singularity functions will help us make sense of the response of 

first‐order circuits to a sudden application of an independent dc voltage or current source. 

Singularity functions (also called switching functions) are very useful in circuit analysis. 

They serve as good approximations to the switching signals that arise in circuits with 

switching operations. They are helpful in the neat, compact description of some circuit 

phenomena, especially the step response of 𝑅𝐶 or 𝑅𝐿 circuits . 

Singularity functions are functions that either are discontinuous or have 
discontinuous derivatives. 

The three most widely used singularity functions in circuit analysis are: 

1. the unit step function. 

2. the unit impulse function.  

3. the unit ramp function. 

 

4.1) Unit step function 

The unit step function u(t) is 0 for negative values of t and 1 for positive values of 
t. 

The unit step function is undefined at 𝑡 = 0, where it changes abruptly from 0 to 1 (shown 

in Fig.4.1). It is dimensionless, like other mathematical functions such as sine and cosine. 

In mathematical terms, 

𝑢(𝑡) = {
0, 𝑡 < 0
1, 𝑡 > 0

    (4.1) 
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If the abrupt change occurs at 𝑡 = 𝑡0 (where 𝑡0 > 0) instead of 𝑡 = 0, which is the same as 

saying that 𝑢(𝑡) is delayed by 𝑡0 seconds, as shown in Fig.4.2(a), the unit step function 

becomes 

𝑢(𝑡 − 𝑡𝑜) = {
0, 𝑡 < 𝑡𝑜

1, 𝑡 > 𝑡𝑜
    (4.2) 

If the change is at 𝑡 = −𝑡0, meaning that 𝑢(𝑡) is advanced by 𝑡0 seconds, Fig.4.2(b), the 

unit step function  becomes 

𝑢(𝑡 + 𝑡𝑜) = {
0, 𝑡 < −𝑡𝑜

1, 𝑡 > −𝑡𝑜
    (4.3) 

 

        
Fig.4.1The unit step function.                              Fig.4.2 The unit step function  

                                                                             (a) delayed by t0 (b) advanced by t0. 

 

We use the step function to represent an abrupt change in voltage or current, like the 

changes that occur in the circuits of control systems and digital computers. For example, 

the voltage 

𝑣(𝑡) = {
0, 𝑡 < 𝑡0

𝑉0, 𝑡 > 𝑡0
 (4.4) 

may be expressed in terms of the unit step function as 

𝑣(𝑡) = 𝑉0𝑢(𝑡 − 𝑡0) (4.5) 

 

If we let 𝑡0 = 0 then 𝑣(𝑡)is simply the step voltage 𝑉0𝑢(𝑡). A voltage source of 𝑉0𝑢(𝑡) is 

shown in Fig.4.3 (a); its equivalent circuit is shown in Fig.4.3 (b). It is evident in Fig.4.3 

(b) that terminals a-b are short circuited (v = 0) for t < 0 and that v = V0 appears at the 

terminals 
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Fig.4.3 (a) A voltage source of 𝑉0𝑢(𝑡) (b) its equivalent circuit. 

for 𝑡 > 0. Similarly, a current source of 𝐼0𝑢(𝑡) is shown in Fig.4.4 (a), while its equivalent 

circuit is in Fig.4.4 (b). Notice that for 𝑡 < 0, there is an open circuit (𝑖 = 0) , and that 𝑖 =

𝐼0 flows for 𝑡 > 0. 

 
Fig.4.4 (a) A current source of 𝐼0𝑢(𝑡) (b) its equivalent circuit. 

 

4.2) Unit impulse function 

The derivative of the unit step function 𝑢(𝑡) is the unit impulse function (or delta function) 

𝜹(𝒕) , which we write as 

𝛿(𝑡) =  
𝑑

𝑑𝑡
 𝑢(𝑡) =  {

0                                𝑡 < 0
𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑            𝑡 = 0
0                               𝑡 > 0

    (4.6) 

The unit impulse function 𝛿(𝑡) is zero everywhere except at t = 0, where it is 
undefined. 

Impulsive currents and voltages occur in electric circuits as a result of switching 

operations or impulsive sources. Although the unit impulse function is not physically 

realizable (just like ideal sources, ideal resistors, etc.), it is a very useful mathematical 

tool. 
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The unit impulse may be regarded as an applied or resulting shock. It may be visualized as 

a very short duration pulse of unit area. This may be expressed mathematically as 

∫ 𝛿
0+

0−

(𝑡)𝑑𝑡 = 1 (4.7) 

where 𝑡 = 0− denotes the time just before 𝑡 = 0 and 𝑡 = 0+ is the time just after 𝑡 = 0. 

For this reason, it is customary to write 1 (denoting unit area) beside the arrow that is used 

to symbolize the unit impulse function, as in Fig.4.5. The unit area is known as the 

strength of the impulse function. When an impulse function has a strength other than 

unity, the area of the impulse is equal to its strength. For example, an impulse function 

10𝛿(𝑡) has an area of 10. Fig.4.6 shows the impulse functions 5𝛿(𝑡 + 2), 10𝛿(𝑡) , and 

−4𝛿(𝑡 − 3) .  

     

Fig.4.5 The unit impulse function.           Fig.4.6 Three impulse functions. 

 

To illustrate how the impulse function affects other functions, let us evaluate the integral 

∫ 𝑓
𝑏

𝑎
(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡  (4.8) 

 

where 𝑎 < 𝑡0 < 𝑏. Since 𝛿(𝑡 − 𝑡0) = 0 except at 𝑡 = 𝑡0, the integrand is zero except at 𝑡0. 

Thus, 

∫ 𝑓
𝑏

𝑎
(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡 = ∫ 𝑓

𝑏

𝑎
(𝑡0)𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝑓(𝑡0) ∫ 𝛿

𝑏

𝑎
(𝑡 − 𝑡0)𝑑𝑡 = 𝑓(𝑡0) 

∫ 𝑓
𝑏

𝑎
(𝑡)𝛿(𝑡 − 𝑡0)𝑑𝑡 = 𝑓(𝑡0)    

 
(4.9) 

This shows that when a function is integrated with the impulse function, we obtain the 

value of the function at the point where the impulse occurs. This is a highly useful 
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property of the impulse function known as the sampling or sifting property. The special case 

of Eq. (4.8) is for 𝑡0 = 0. Then Eq. (4.9) becomes 

∫ 𝑓
0+

0− (𝑡)𝛿(𝑡)𝑑𝑡 = 𝑓(0)    (4.10) 

 

4.3) Unit ramp function 

Integrating the unit step function 𝑢(𝑡) results in the unit ramp function 𝒓(𝒕) ;  

𝑟(𝑡) = ∫ 𝑢
𝑡

−∞
(𝑡)𝑑𝑡 = 𝑡𝑢(𝑡)  (4.11) 

or 

𝑟(𝑡) = {
0, 𝑡 ≤ 0
𝑡, 𝑡 ≥ 0

 (4.12) 

The unit ramp function is zero for negative values of t and has a unit slope for 
positive values of t. 

Fig.4.7 shows the unit ramp function. In general, a ramp is a function that changes at a 

constant rate. 

The unit ramp function may be delayed or advanced as shown in Fig.4.8. For the delayed 

unit ramp function, 

𝑟(𝑡 − 𝑡0) = {
0, 𝑡 ≤ 𝑡0

𝑡 − 𝑡0, 𝑟 ≥ 𝑡0
 (4.13) 

and for the advanced unit ramp function, 

𝑟(𝑡 + 𝑡0) = {
0, 𝑡 ≤ −𝑡0

𝑡 + 𝑡0, 𝑡 ≥ −𝑡0
 (4.14) 

We should keep in mind that the three singularity functions (impulse, step, and ramp) are 

related by differentiation as 

𝛿(𝑡) =  
𝑑𝑢(𝑡)

𝑑𝑡
 , 𝑢(𝑡) =  

𝑑𝑟(𝑡)

𝑑𝑡
 (4.15) 

or by integration as 

𝑢(𝑡) = ∫ 𝛿
𝑡

−∞
(𝑡)𝑑𝑡,        𝑟(𝑡) = ∫ 𝑢

𝑡

−∞
(𝑡)𝑑𝑡 

 

(4.16) 



University of Diyala                                                                                                  Electrical Circuits               
Engineering College                                                                                     

 

18 
 

   

 Fig.4.7 The unit ramp function.                          Fig.4.8 The unit ramp function  

                                                                             (a) delayed by t0 (b) advanced by t0. 

 

  

 

Example 6: Express the voltage pulse in Fig.1 in terms of the unit step. Calculate its 

derivative and sketch it. 

Solution: The type of pulse in Fig.1 is called the gate 

function. It may be regarded as a step function that switches 

on at one value of 𝑡 and switches off at another value of 𝑡.  

This gate function switches on at 𝑡 = 2𝑠 and switches off at 

𝑡 = 5𝑠. It consists of the sum of two unit step functions as 

shown in Fig.2 (a). From the figure, it is evident that                                      Fig.1   

𝑣(𝑡) = 10𝑢(𝑡 − 2) − 10𝑢(𝑡 − 5) = 10[𝑢(𝑡 − 2) − 𝑢(𝑡 − 5)] 

Taking the derivative of this gives 

𝑑𝑣

𝑑𝑡
= 10[𝛿(𝑡 − 2) − 𝛿(𝑡 − 5)]  

which is shown in Fig.2 (b). We can obtain Fig.2 (b). directly from Fig.1. by simply 

observing that there is a sudden increase by 10 𝑉 at 𝑡 = 2𝑠 leading to 10𝛿(𝑡 − 2) . At 𝑡 =

5𝑠, there is a sudden decrease by 10 𝑉 leading to −10𝑉 𝛿(𝑡 − 5) . 
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Fig.2 (a) Decomposition of the pulse in Fig.1, (b) derivative of the pulse in Fig.1. 

H.W. 6: Express the current pulse in Fig.1in terms of the unit step. Find its integral and 

sketch it. 

Answer:10[𝑢(𝑡) − 2𝑢(𝑡 − 2) + 𝑢(𝑡 − 4)], 10[𝑟(𝑡) − 2𝑟(𝑡 − 2) + 𝑟(𝑡 − 4)]. See Fig.2.

 

Fig.1                                                                        Fig.2 

Example 7: Express the sawtooth function shown in Fig.1in terms of singularity functions. 

Solution:  

There are three ways of solving this problem. The first method 

is by mere observation of the given function, while the other 

methods involve some graphical manipulations of the function. 

 

                                                                                                                                           

                                                                                                                         Fig.1 
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METHOD 1 By looking at the sketch of 𝑣(𝑡) in Fig.1, it is not hard to notice that the 

given function 𝑣(𝑡) is a combination of singularity functions. So we let 

𝑣(𝑡) = 𝑣1(𝑡) + 𝑣2(𝑡) + ⋯       (1) 

The function 𝑣1(𝑡) is the ramp function of slope 5, shown in Fig.2 (a); that is, 

𝑣1(𝑡) = 5𝑟(𝑡)    (2) 

 

Fig.2 Partial decomposition of 𝑣(𝑡) in Fig.1. 

 

Since 𝑣(𝑡) goes to infinity, we need another function at 𝑡 = 2𝑠 in order to get 𝑣(𝑡) . We 

let this function be 𝑣2, which is a ramp function of slope −5, as shown in Fig.2 (b); that is, 

𝑣2(𝑡) = −5𝑟(𝑡 − 2)      (3) 

Adding 𝑣1 and 𝑣2 gives us the signal in Fig.2 (c). Obviously, this is not the same as 𝑣(𝑡) 

in Fig.1. But the difference is simply a constant 10 units for 𝑡 > 2𝑠. By adding a third 

signal 𝑣3, where 

𝑣3 = −10𝑢(𝑡 − 2)      (4) 

we get 𝑣(𝑡) , as shown in Fig.3. Substituting Eqs. (2) through (4) into Eq. (1) gives 

𝑣(𝑡) = 5𝑟(𝑡) − 5𝑟(𝑡 − 2) − 10𝑢(𝑡 − 2) 



University of Diyala                                                                                                  Electrical Circuits               
Engineering College                                                                                     

 

21 
 

 

Fig.3 Complete decomposition of 𝑣(𝑡) in Fig.1. 

METHOD 2 A close observation of Fig.1 reveals that 𝑣(𝑡) is a multiplication of two 

functions: a ramp function and a gate function. Thus, 

𝑣(𝑡) = 5𝑡[𝑢(𝑡) − 𝑢(𝑡 − 2)] = 5𝑡𝑢(𝑡) − 5𝑡𝑢(𝑡 − 2) 

         = 5𝑟(𝑡) − 5(𝑡 − 2 + 2)𝑢(𝑡 − 2) = 5𝑟(𝑡) − 5(𝑡 − 2)𝑢(𝑡 − 2) − 10𝑢(𝑡 − 2) 

         = 5𝑟(𝑡) − 5𝑟(𝑡 − 2) − 10𝑢(𝑡 − 2) 

the same as before. 

METHOD 3 This method is similar to Method 2. We observe from Fig.1 that 𝑣(𝑡) is a 

multiplication of a ramp function and a unit step function, as shown in Fig.4. Thus, 

𝑣(𝑡) = 5𝑟(𝑡)𝑢(−𝑡 + 2) 

If we replace 𝑢(−𝑡) by 1 − 𝑢(𝑡) , then we can replace 𝑢(−𝑡 + 2) by 1 − 𝑢(𝑡 − 2) . 

Hence, 

𝑣(𝑡) = 5𝑟(𝑡)[1 − 𝑢(𝑡 − 2)] 

which can be simplified as in Method 2 to get the same result. 

 
Fig.4. Decomposition of v(t) in Fig.1. 
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H.W. 7: Refer to Fig.1. Express 𝑖(𝑡) in terms of singularity functions. 

Answer: 𝟐𝒖(𝒕) − 𝟐𝒓(𝒕) + 𝟒𝒓(𝒕 − 𝟐) − 𝟐𝒓(𝒕 − 𝟑) .  

 

 

   Fig.1 

Example 8: Given the signal 

𝑔(𝑡) = {
3, 𝑡 < 0
−2,    0 < 𝑡 < 1
2𝑡 − 4, 𝑡 > 1

 

express 𝑔(𝑡) in terms of step and ramp functions. 

Solution:  

The signal 𝑔(𝑡) may be regarded as the sum of three functions specified within the three 

intervals 𝑡 < 0, 0 < 𝑡 < 1, and 𝑡 > 1. 

For 𝑡 < 0, 𝑔(𝑡) may be regarded as 3 multiplied by 𝑢(−𝑡) , where 𝑢(−𝑡) = 1 for 𝑡 < 0 

and 0 for 𝑡 > 0. Within the time interval 0 < 𝑡 < 1, the function may be considered as −2 

multiplied by a gated function [𝑢(𝑡) − 𝑢(𝑡 − 1)]. For 𝑡 > 1, the function may be regarded 

as 2𝑡 − 4 multiplied by the unit step function 𝑢(𝑡 − 1) . Thus, 

𝑔(𝑡) = 3𝑢(−𝑡) − 2[𝑢(𝑡) − 𝑢(𝑡 − 1)] + (2𝑡 − 4)𝑢(𝑡 − 1) 

          = 3𝑢(−𝑡) − 2𝑢(𝑡) + (2𝑡 − 4 + 2)𝑢(𝑡 − 1) 

          = 3𝑢(−𝑡) − 2𝑢(𝑡) + 2(𝑡 − 1)𝑢(𝑡 − 1) = 3𝑢(−𝑡) − 2𝑢(𝑡) + 2𝑟(𝑡 − 1) 

One may avoid the trouble of using 𝑢(−𝑡) by replacing it with 1 − 𝑢(𝑡) . Then 

𝑔(𝑡) = 3[1 − 𝑢(𝑡)] − 2𝑢(𝑡) + 2𝑟(𝑡 − 1) = 3 − 5𝑢(𝑡) + 2𝑟(𝑡 − 1) 

Alternatively, we may plot 𝑔(𝑡) and apply Method 1 from Example 7. 

H.W. 8: If 

ℎ(𝑡) = {

0, 𝑡 < 0
8, 0 < 𝑡 < 2
2𝑡 + 6, 2 < 𝑡 < 6
0, 𝑡 > 6

 

express ℎ(𝑡) in terms of the singularity functions. 

Answer: 𝟖𝒖(𝒕) + 𝟐𝒖(𝒕 − 𝟐) + 𝟐𝒓(𝒕 − 𝟐) − 𝟏𝟖𝒖(𝒕 − 𝟔) − 𝟐𝒓(𝒕 − 𝟔) . 
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Example 9: Evaluate the following integrals involving the impulse function:  

∫ (
10

0

𝑡2 + 4𝑡 − 2)𝛿(𝑡 − 2)𝑑𝑡 

∫ [
∞

−∞

𝛿(𝑡 − 1)𝑒−𝑡 cos 𝑡 + 𝛿(𝑡 + 1)𝑒−𝑡 sin 𝑡]𝑑𝑡 

Solution:  

For the first integral, we apply the sifting property in Eq. (4.9). 

∫ (
10

0
𝑡2 + 4𝑡 − 2)𝛿(𝑡 − 2)𝑑𝑡 = (𝑡2 + 4𝑡 − 2)|𝑡=2 = 4 + 8 − 2 = 10  

Similarly, for the second integral, 

∫ [
∞

−∞

𝛿(𝑡 − 1)𝑒−𝑡 cos 𝑡 + 𝛿(𝑡 + 1)𝑒−𝑡 sin 𝑡]𝑑𝑡 

= 𝑒−𝑡 cos 𝑡|𝑡=1 + 𝑒−𝑡 sin 𝑡|𝑡=−1 = 𝑒−1 cos 1 + 𝑒1 sin (−1) = 0.1988 − 2.2873 = −2.0885 

H.W. 9: Evaluate the following integrals:  

∫ (
∞

−∞

𝑡3 + 5𝑡2 + 10)𝛿(𝑡 + 3)𝑑𝑡,            ∫ 𝛿
10

0

(𝑡 − 𝜋) cos 3𝑡𝑑𝑡 

Answer: 28, −𝟏. 
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5) Step Response of an 𝑹𝑪 Circuit 

When the dc source of an 𝑅𝐶 circuit is suddenly applied, the voltage or current source can 

be modeled as a step function, and the response is known as a step response. 

The step response of a circuit is its behavior when the excitation is the step 
function, which may be a voltage or a current source. 

The step response is the response of the circuit due to a sudden application of a dc voltage 

or current source. 

Consider the 𝑅𝐶 circuit in Fig.5.1 (a) which can be replaced by the circuit in Fig.5.1 (b), 

where 𝑉𝑠 is a constant dc voltage source. We assume an initial voltage 𝑉0 on the capacitor, 

although this is not necessary for the step response.  

 
Fig.5.1 An RC circuit with voltage step input. 

 

Since the voltage of a capacitor cannot change instantaneously, 

𝑣(0−) = 𝑣(0+) = 𝑉0       (5.1) 

where 𝑣(0−) is the voltage across the capacitor just before switching and 𝑣(0+) is its 

voltage immediately after switching. Applying KCL, we have 

𝐶
𝑑𝑣

𝑑𝑡
+

𝑣 − 𝑉𝑠𝑢(𝑡)

𝑅
= 0 

∴
𝑑𝑣

𝑑𝑡
+

𝑣

𝑅𝐶
=

𝑉𝑠

𝑅𝐶
𝑢(𝑡) (5.2) 

where 𝑣 is the voltage across the capacitor. For 𝑡 > 0, Eq. (5.2) becomes 

𝑑𝑣

𝑑𝑡
+

𝑣

𝑅𝐶
=

𝑉𝑠

𝑅𝐶
    (5.3) 

Rearranging terms gives 
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𝑑𝑣

𝑑𝑡
= −

𝑣 − 𝑉𝑠

𝑅𝐶
 

∴  
𝑑𝑣

𝑣 − 𝑉𝑠
= −

𝑑𝑡

𝑅𝐶
 (5.4) 

Integrating both sides and introducing the initial conditions, 

𝑙𝑛 (𝑣 − 𝑉𝑠)|𝑉0

𝑣(𝑡)
= −

𝑡

𝑅𝐶
|0

𝑡  

ln (𝑣(𝑡) − 𝑉𝑠) − 𝑙𝑛(𝑉0 − 𝑉𝑠) = −
𝑡

𝑅𝐶
+ 0 

 𝑙𝑛 
𝑣−𝑉𝑠

𝑉0−𝑉𝑠
= −

𝑡

𝑅𝐶
     (5.5) 

Taking the exponential of both sides 

𝑣 − 𝑉𝑠

𝑉0 − 𝑉𝑠
= 𝑒−𝑡/𝜏,      𝜏 = 𝑅𝐶 

𝑣 − 𝑉𝑠 = (𝑉0 − 𝑉𝑠)𝑒−𝑡/𝜏 

∴ 𝑣(𝑡) = 𝑉𝑠 + (𝑉0 − 𝑉𝑠)𝑒−
𝑡

𝜏,    𝑡 > 0     (5.6) 

Thus, 

𝑣(𝑡) = {
𝑉0, 𝑡 < 0

𝑉𝑠 + (𝑉0 − 𝑉𝑠)𝑒−𝑡/𝜏, 𝑡 > 0
 (5.7) 

This is known as the complete response (or total response) of the 𝑅𝐶 circuit to a sudden 

application of a dc voltage source, assuming the capacitor is initially charged. The reason 

for the term “complete” will become evident a little later. Assuming that 𝑉𝑠 > 𝑉0, a plot of 

𝑣(𝑡) is shown in Fig.5.2. 

If we assume that the capacitor is uncharged initially, we set 𝑉0 = 0 in Eq. (5.7) so that 

𝑣(𝑡) = {
0, 𝑡 < 0

𝑉𝑠(1 − 𝑒−𝑡/𝜏) , 𝑡 > 0
 (5.8) 

which can be written alternatively as 

𝑣(𝑡) = 𝑉𝑠(1 − 𝑒−𝑡/𝜏)𝑢(𝑡)  (5.9) 

This is the complete step response of the 𝑅𝐶 circuit when the capacitor is initially 

uncharged. The current through the capacitor is obtained from Eq. (5.8) using 𝑖(𝑡) =
𝐶𝑑𝑣

𝑑𝑡
. 

We get 
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𝑖(𝑡) = 𝐶
𝑑𝑣

𝑑𝑡
=

𝐶

𝜏
𝑉𝑠𝑒−

𝑡

𝜏,            𝜏 = 𝑅𝐶, 𝑡 > 0  

 ∴  𝑖(𝑡) =
𝑉𝑠

𝑅
𝑒−𝑡/𝜏𝑢(𝑡)   (5.10) 

Fig.5.3 shows the plots of capacitor voltage 𝑣(𝑡) and capacitor current 𝑖(𝑡) . 

               

 

 

 

  

 

 

 

Rather than going through the derivations above, there is a systematic approach—or 

rather, a short‐cut method—for finding the step response of an 𝑅𝐶 or 𝑅𝐿 circuit. Let us 

reexamine Eq. (5.6), which is more general than Eq. (5.9). It is evident that 𝑣(𝑡) has two 

components. 

Classically there are two ways of decomposing this into two components. The first is to 

break it into a “natural response and a forced response” and the second is to break it into a 

“transient response and a steady‐state response.” Starting with the natural response and forced 

(a) response, we write the total or complete response as 

 

or 

𝑣 = 𝑣𝑛 − 𝑣𝑓 (5.11) 

where  𝑣𝑛 = 𝑉𝑜𝑒−𝑡/𝜏  and 𝑣𝑓 = 𝑉𝑠(1 − 𝑒−𝑡/𝜏)  

Fig.5.2 Response of an RC 

circuit with initially charged 

capacitor.   

Fig.5.3 Step response of an RC circuit with 

initially uncharged capacitor: (a) voltage 

response, (b) current response. 
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We are familiar with the natural response 𝑣𝑛 of the circuit, as discussed response, (b) 

current response. in Section 2. 𝑣𝑓 is known as the forced response because it is produced by 

the circuit when an external “force” (a voltage source in this case) is applied. It represents 

what the circuit is forced to do by the input excitation. The natural response eventually 

dies out along with the transient component of the forced response, leaving only the 

steady‐ state component of the forced response. 

Another way of looking at the complete response is to break into two components—one 

temporary and the other permanent, i.e., 

 

or 

𝑣 = 𝑣𝑡 − 𝑣𝑠𝑠 (5.12) 

where  𝑣𝑡 = (𝑉𝑜 − 𝑉𝑠)𝑒−𝑡/𝜏  and 𝑣𝑠𝑠 = 𝑉𝑠  

The transient response 𝑣𝑡 is temporary; it is the portion of the complete response that decays 

to zero as time approaches infinity. Thus, 

The transient response is the circuit’s temporary response that will die out with 
time. 

The steady‐state response 𝑣𝑠𝑠 is the portion of the complete response that remains after the 

transient reponse has died out. Thus, 

The steady-state response is the behavior of the circuit a long time after an 
external excitation is applied. 

The first decomposition of the complete response is in terms of the source of the 

responses, while the second decomposition is in terms of the permanency of the responses. 

Under certain conditions, the natural response and transient response are the same. The 

same can be said about the forced response and steady‐state response. 

Whichever way we look at it, the complete response in Eq. (5.6) may be written as 

𝑣(𝑡) = 𝑣(∞) + [𝑣(𝑂) − 𝑣(∞)]𝑒−𝑡/𝜏  (5.13) 

where 𝑣(𝑂) is the initial voltage at 𝑡 = 0+ and 𝑣(∞) is the final or steady‐ state value. 

Thus, to find the step response of an 𝑅𝐶 circuit requires three things: 

1. The initial capacitor voltage 𝑣(𝑂) . 
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2. The final capacitor voltage 𝑣(∞) . 

3. The time constant 𝜏. 

We obtain item 1 from the given circuit for 𝑡 < 0 and items 2 and 3 from the circuit for 

𝑡 > 0. Once these items are determined, we obtain the response using Eq. (5.13). This 

technique equally applies to 𝑅𝐿 circuits, as we shall see in the next section. 

Note that if the switch changes position at time 𝑡 = 𝑡0 instead of at 𝑡 = 0, there is a time 

delay in the response so that Eq. (5.13) becomes 

𝑣(𝑡) = 𝑣(∞) + [𝑣(𝑡0) − 𝑣(∞)]𝑒−(𝑡−𝑡𝑂)/𝜏   (5.14) 

where 𝑣(𝑡0) is the initial value at 𝑡 = 𝑡0
+. Keep in mind that Eq. (5.13) or (5.14) applies 

only to step responses, that is, when the input excitation is constant. 

Example 10:  The switch in Fig.1 has been in position 𝐴 for along time. At 𝑡 = 0, the 

switch moves to 𝐵. Determine 𝑣(𝑡) for 𝑡 > 0 and calculate its value at 𝑡 = 1𝑠 and 4 𝑠. 

Solution: For 𝑡 < 0, the switch is at 

position 𝐴. The capacitor acts like an 

open circuit to 𝑑𝑐, but 𝑣 is the same 

as the voltage across the 5 − 𝑘𝛺 

resistor. Hence, the voltage across 

the capacitor just before 𝑡 = 0 is 

obtained by voltage division as 

𝑣(0−) =
5

5+3
(24) = 15𝑉                                                          Fig.1 

Using the fact that the capacitor voltage cannot change instantaneously, 

𝑣(𝑂) = 𝑣(0−) = 𝑣(0+) = 15𝑉 

For 𝑡 > 0, the switch is in position 𝐵. The Thevenin resistance connected to the capacitor 

is 𝑅𝑇ℎ = 4𝑘𝛺, and the time constant is 

𝜏 = 𝑅𝑇ℎ𝐶 = 4 × 103 × 0.5 × 10−3 = 2𝑠 

Since the capacitor acts like an open circuit to dc at steady state, 𝑣(∞) = 30 V. Thus, 

𝑣(𝑡) = 𝑣(∞) + [𝑣(0) − 𝑣(∞)]𝑒−𝑡/𝜏 = 30 + (15 − 30)𝑒−𝑡/2 = (30 − 15𝑒−0.5𝑡)𝑉 

At 𝑡 = 1, ⇒  𝑣(1) = 30 − 15𝑒−0.5 = 20.9𝑉 

At 𝑡 = 4, ⇒  𝑣(4) = 30 − 15𝑒−2 = 27.97𝑉 
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H.W. 10:  Find 𝑣(𝑡) for 𝑡 > 0 in the circuit of Fig.1. Assume the switch has been open for 

a long time and is closed at 𝑡 = 0. Calculate 𝑣(𝑡) at 𝑡 = 0.5 

Answer:  (𝟔. 𝟐𝟓 + 𝟑. 𝟕𝟓𝒆−𝟐𝒕)𝑽 for all 𝒕 >

𝟎, 𝟕. 𝟔𝟑𝑽. 

 

 

 

 

Example 11: In Fig.1, the switch has been closed for a long time and is opened at 𝑡 = 0. 

Find 𝑖 and 𝑣 for all time. 

Solution: The resistor current 𝑖 can 

be discontinuous at 𝑡 = 0, while the 

capacitor voltage 𝑣 cannot. Hence, it 

is always better to find 𝑣 and then 

obtain 𝑖 from 𝑣. 

By definition of the unit step function, 

30𝑢(𝑡) = {
0, 𝑡 < 0
30, 𝑡 > 0

                                                                       Fig.1 

For 𝑡 < 0, the switch is closed and 30𝑢(𝑡) = 0, so that the 30𝑢(𝑡) voltage source is 

replaced by a short circuit and should be regarded as contributing nothing to 𝑣. Since the 

switch has been closed for a long time, the capacitor voltage has reached steady state and 

the capacitor acts like an open circuit. Hence, the circuit becomes that shown in Fig.2 (a) 

for 𝑡 < 0. From this circuit we obtain 

𝑣 = 10𝑉, 𝑖 = −
𝑣

10
= −1𝐴 

Since the capacitor voltage cannot change instantaneously, 

𝑣(𝑂) = 𝑣(0−) = 10𝑉 

For 𝑡 > 0, the switch is opened and the 10‐𝑉 voltage source is disconnected from the 

circuit. The 30𝑢(𝑡) voltage source is now operative, so the circuit becomes that shown in 

Fig.2 (b). After a long time, the circuit reaches steady state and the capacitor acts like an 

open circuit (b) again. We obtain 𝑣(∞) by using voltage division, writing 
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𝑣(∞) =
20

20 + 10
(30) = 20𝑉 

The Thevenin resistance at the capacitor terminals is 

𝑅𝑇ℎ = 10‖20 =
10 × 20

30
=

20

3
𝛺 

and the time constant is 

𝜏 = 𝑅𝑇ℎ𝐶 =
20

3
⋅

1

4
=

5

3
𝑠 

Thus, 

𝑣(𝑡) = 𝑣(∞) + [𝑣(𝑂) − 𝑣(∞)]𝑒−𝑡/𝜏 

          = 20 + (10 − 20)𝑒
−(

3
5

)𝑡
 

           = (20 − 10𝑒−0.6𝑡)𝑉 

To obtain 𝑖, we notice from Fig.2 (b) that 𝑖 is the sum of the currents through the 20 − 𝛺 

resistor and the capacitor; that is, 

𝑖 =
𝑣

20
+ 𝐶

𝑑𝑣

𝑑𝑡
 = 1 − 0.5𝑒−0.6𝑡 + 0.25(−0.6)(−10)𝑒−0.6𝑡 = (1 + 𝑒−0.6𝑡)𝐴 

Notice from Fig.2 (b) that 𝑣 + 10𝑖 = 30 is satisfied, as expected. Hence, 

𝑣 = {
10𝑉, 𝑡 < 0

(20 − 10𝑒−0.6𝑡)𝑉, 𝑡 ≥ 0
 𝑖 = {

‐ 1𝐴, 𝑡 < 0

(1 + 𝑒−0.6𝑡)𝐴, 𝑡 > 0
 

Notice that the capacitor voltage is continuous while the resistor current is not. 

H.W. 11: The switch in Fig.1 is closed at 𝑡 = 0. Find 𝑖(𝑡) and 𝑢(𝑡) for all time. Note that 

𝑢(−𝑡) = 1 for 𝑡 < 0 and 0 for 𝑡 > 0. Also, 𝑢(−𝑡) = 1 − 𝑢(𝑡) . 

Answer:  

𝒊(𝒕) = {
𝟎, 𝒕 < 𝟎

−𝟐(𝟏 + 𝒆−𝟏𝟓𝒕)𝑨, 𝒕 > 𝟎’
  

𝒗 = {
𝟐𝟎𝑽, 𝒕 < 𝟎

𝟏𝟎(𝟏 + 𝒆−𝟏𝟓𝒕)𝑽, 𝒕 > 𝟎
 

                                                                                                          Fig.1 

Fig.2 (a) for t<0, for t>0.   
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6) Step Response of an 𝑹𝑳 Circuit 

Consider the 𝑅𝐿 circuit in Fig.6.1 (a), which may be replaced by the circuit in Fig.6.1 (b). 

Rather than apply Kirchhoff’s laws, we will use the simple technique in Eqs. (5.11) 

through (5.14). Let the response be the sum of the transient response and the steady‐state 

response, 

𝑖 =  𝑖𝑡 + 𝑖𝑠𝑠    (6.1) 

We know that the transient response is always a decaying exponential, that is, 

𝑖𝑡 = 𝐴𝑒−𝑡/𝜏,         𝜏 =
𝐿

𝑅
   (6.2) 

where 𝐴 is a constant to be determined. 

The steady‐state response is the value of the current a long time after the switch in Fig.6.1 

(a) is closed. We know that the transient response essentially dies out after five time 

constants. At that time, the inductor becomes a short circuit, and the voltage across it is 

zero. The entire source voltage 𝑉𝑠 appears across 𝑅. Thus, the steady‐state response is 

𝑖𝑠𝑠 =
𝑉𝑠

𝑅
    (6.3) 

Substituting Eqs. (6.2) and (6.3) into Eq. (6.1) gives 

𝑖 = 𝐴𝑒−𝑡/𝜏 +
𝑉𝑠

𝑅
    (6.4) 

We now determine the constant 𝐴 ffom the initial value of 𝑖. Let 𝐼0 be the initial current 

through the inductor, which may come from a source other than 𝑉𝑠. Since the current 

through the inductor cannot change instantaneously, 

𝑖(0+) = 𝑖(0−) = 𝐼0    (6.5) 

Thus, at 𝑡 = 0, Eq. (6.4) becomes 

𝐼0 = 𝐴 +
𝑉𝑠

𝑅
 

From this, we obtain 𝐴 as 

𝐴 = 𝐼0 −
𝑉𝑠

𝑅
 

Substituting for 𝐴 in Eq. (6.4), we get 
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𝑖(𝑡) =
𝑉𝑠

𝑅
+ (𝐼0 −

𝑉𝑠

𝑅
)𝑒−𝑡/𝜏     (6.6) 

This is the complete response of the 𝑅𝐿 circuit. It is illustrated in Fig.6.2. The response in 

Eq. (6.6) may be written as 

𝑖(𝑡) = 𝑖(∞) + [𝑖(𝑂) − 𝑖(∞)]𝑒−𝑡/𝜏     (6.7) 

                     

   

 

 

 

where 𝑖(𝑂) and 𝑖(∞) are the initial and final values of 𝑖, respectively. Thus, to find the 

step response of an 𝑅𝐿 circuit requires three things: 

1. The initial inductor current 𝑖(𝑂) at 𝑡 = 0.  

2. The final inductor current 𝑖(∞) . 

3. The time constant 𝜏. 

We obtain item 1 from the given circuit for 𝑡 < 0 and items 2 and 3 from the circuit for 

𝑡 > 0. Once these items are determined, we obtain the response using Eq. (6.7). Keep in 

mind that this technique applies only for step responses. 

Again, if the switching takes place at time 𝑡 = 𝑡0 instead of 𝑡 = 0, Eq. (6.7) becomes 

𝑖(𝑡) = 𝑖(∞) + [𝑖(𝑡0) − 𝑖(∞)]𝑒−(𝑡−𝑡𝑜)/𝜏    (6.8) 

If 𝐼0 = 0, then 

𝑖(𝑡) = {
0, 𝑡 < 0
𝑉𝑠

𝑅
(1 − 𝑒−𝑡/𝜏) , 𝑡 > 0

 (6.9a) 

Fig.6.1 An RL circuit with a 

step input voltage. 

 

Fig.6.2 Total response of 

the 𝑅𝐿 circuit with initial 

inductor current 𝐼0. 
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or 

𝑖(𝑡) =
𝑉𝑠

𝑅
(1 − 𝑒−𝑡/𝜏)𝑢(𝑡)    (6.9b) 

This is the step response of the 𝑅𝐿 circuit with no initial inductor current. The voltage 

across the inductor is obtained from Eq. (6.9) using 𝑣 = 𝐿𝑑𝑖/𝑑𝑡. We get 

𝑣(𝑡) = 𝐿
𝑑𝑖

𝑑𝑡
= 𝑉𝑠

𝐿

𝜏𝑅
𝑒−𝑡/𝜏, 𝜏 =

𝐿

𝑅
, 𝑡 > 0 

or 

𝑣(𝑡) = 𝑉𝑠𝑒−𝑡/𝜏𝑢(𝑡)    (6.10) 

Fig.6.3 shows the step responses in Eqs. (6.9) and (6.10). 

 

Fig.6.3 Step responses of an 𝑅𝐿 circuit with no initial inductor current: (a) current 

response, (b) voltage response. 

 

Example 12: Find 𝑖(𝑡) in the circuit of Fig.1 for 𝑡 > 0. Assume that the switch has been 

closed for a long time. 

Solution: When 𝑡 < 0, the 3 − 𝛺 resistor is 

short‐circuited, and the inductor acts like a short circuit. 

The current through the inductor at 𝑡 = 0−(𝑖. 𝑒., just 

before 𝑡 = 0) is 

𝑖(0−) =
10

2
= 5𝐴                                                      Fig.1 
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Since the inductor current cannot change instantaneously, 

𝑖(𝑂) = 𝑖(0+) = 𝑖(0−) = 5𝐴 

When 𝑡 > 0, the switch is open. The 2 − 𝛺 and 3 − 𝛺 resistors are in series, so that 

𝑖(∞) =
10

2 + 3
= 2𝐴 

The Thevenin resistance across the inductor terminals is 

𝑅𝑇ℎ = 2 + 3 = 5𝛺 

For the time constant, 

𝜏 =
𝐿

𝑅𝑇ℎ
=

1
3
5

=
1

15
𝑠 

Thus, 

𝑖(𝑡) = 𝑖(∞) + [𝑖(𝑂) − 𝑖(∞)]𝑒−𝑡/𝜏 

= 2 + (5 − 2)𝑒−15𝑡 = 2 + 3𝑒−15𝑡𝐴, 𝑡 > 0 

Check.⋅ In Fig.1, for 𝑡 > 0, KVL must be satisfied; that is, 

10 = 5𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
 

5𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
= [10 + 15𝑒−15𝑡] + [

1

3
(3)(−15)𝑒−15𝑡] = 10 

This confirms the result. 

 

H.W. 12: The switch in Fig.1 has been closed for a long time. It opens at 𝑡 = 0. Find 𝑖(𝑡) 

for 𝑡 > 0. 

Answer:   (𝟔 + 𝟑𝒆−𝟏𝟎𝒕) A for all 𝒕 > 𝟎. 

  

 

                             Fig.1 
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Example 13: At 𝑡 = 0, switch 1 in Fig.1is closed, and switch 2 is closed 4 𝑠 later. Find 

𝑖(𝑡) for 𝑡 > 0. Calculate 𝑖 for 𝑡 = 2𝑠 and 𝑡 = 5𝑠. 
Solution: We need to consider the three time 

intervals 𝑡 ≤ 0, 0 ≤ 𝑡 ≤ 4, and 𝑡 ≥ 4 separately. For 

𝑡 < 0, switches 𝑆1 and 𝑆2 are open so that 𝑖 = 0. 

Since the inductor current cannot change instantly, 

𝑖(0−) = 𝑖(𝑂) = 𝑖(0+) = 0 

For 0 ≤ 𝑡 ≤ 4, 𝑆1 is closed so that the 4 − 𝛺 and 

6 − 𝛺 resistors are in series. (Remember, 𝑎𝑡 this 

time, 𝑆2 𝑖𝑠 still open.) Hence, assuming for now that 

𝑆1 is closed forever,                                                                                   Fig.1 

𝑖(∞) =
40

4 + 6
= 4𝐴,     𝑅𝑇ℎ = 4 + 6 = 10𝛺 

𝜏 =
𝐿

𝑅𝑇ℎ
=

5

10
=

1

2
𝑠 

Thus, 

𝑖(𝑡) = 𝑖(∞) + [𝑖(𝑂) − 𝑖(∞)]𝑒−𝑡/𝜏 = 4 + (0 − 4)𝑒−2𝑡 = 4(1 − 𝑒−2𝑡)𝐴, 0 ≤ 𝑡 ≤ 4 

For 𝑡 ≥ 4, 𝑆2 is closed; the 10‐𝑉 voltage source is connected, and the circuit changes. This 

sudden change does not affect the inductor current because the current cannot change 

abruptly. Thus, the initial current is 

𝑖(4) = 𝑖(4−) = 4(1 − 𝑒−8) = 4𝐴 

To find 𝑖(∞) , let 𝑣 be the voltage at node 𝑃 in Fig.1. Using KCL, 

40 − 𝑣

4
+

10 − 𝑣

2
=

𝑈

6
 ⇒  𝑣 =

180

11
𝑉 

𝑖(∞) =
𝑣

6
=

30

11
= 2.727𝐴 

The Thevenin resistance at the inductor terminals is 

𝑅𝑇ℎ = 4‖2 + 6 =
4 × 2

6
+ 6 =

22

3
𝛺 

and 
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𝜏 =
𝐿

𝑅𝑇ℎ
=

5

22
3

=
15

22
𝑠 

Hence, 

𝑖(𝑡) = 𝑖(∞) + [𝑖(4) − 𝑖(∞)]𝑒−(𝑡−4)/𝜏, 𝑡 ≥ 4 

We need (𝑡 − 4) in the exponential because of the time delay. Thus, 

𝑖(𝑡) = 2.727 + (4 − 2.727)𝑒−(𝑡−4)/𝜏, 𝜏 =
15

22
  

        = 2.727 + 1.273𝑒−14667(𝑡−4), 𝑡 ≥ 4 

Putting all this together, 

𝑖(𝑡) = {

0, 𝑡 ≤ 0

4(1 − 𝑒−2𝑡) , 0 ≤ 𝑡 ≤ 4

2.727 + 1.273𝑒−14667(𝑡−4), 𝑡 ≥ 4

 

At 𝑡 = 2, 

𝑖(2) = 4(1 − 𝑒−4) = 3.93𝐴 

At 𝑡 = 5, 

𝑖(5) = 2.727 + 1.273𝑒−14667 = 3.02𝐴 

 

H.W. 13: Switch 𝑆1 in Fig.1 is closed at 𝑡 = 0, and switch 𝑆2 is closed at 𝑡 = 2𝑠. 

Calculate 𝑖(𝑡) for all 𝑡. Find 𝑖(1) and 𝑖(3) . 

Answer: 

𝒊(𝒕) = {

𝟎, 𝒕 < 𝟎

𝟐(𝟏 − 𝒆−𝟗𝒕) , 𝟎 < 𝒕 < 𝟐

𝟑. 𝟔 − 𝟏. 𝟔𝒆−𝟓(𝒕−𝟐), 𝒕 > 𝟐

 

𝒊(𝟏) = 𝟏. 𝟗𝟗𝟗𝟕𝑨, 𝒊(𝟑) = 𝟑. 𝟓𝟖𝟗𝑨. 

 

 

                                                                                                                  Fig.1 
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Lecture (  )                                 Transient 
Second-Order Circuits 

1) Introduction   
In the previous lecture we considered circuits with a single storage element (a capacitor or 

an inductor). Such circuits are first-order because the differential equations describing them are first-

order. In this lecture we will consider circuits containing two storage elements. These are 
known as second-order circuits because their responses are described by differential equations that contain 
second derivatives. 

Typical examples of second-order circuits are RLC circuits, in which the three kinds of 

passive elements are present. Examples of such circuits are shown in Fig. 1.1(a) and (b). 

Other examples are RL and RC circuits, as shown in Fig. 1.1(c) and (d). It is apparent from 

Fig. 1.1 that a second-order circuit may have two storage elements of different type or the same type 
(provided elements of the same type cannot be represented by an equivalent single element). 
 

A second-order circuit is characterized by a second-order differential equation. It 
consists of resistors and the equivalent of two energy storage elements. 
 

 

                       

                       
 

Fig. 1.1 Typical examples of second-order circuits: (a) series RLC circuit, (b) parallel RLC 

circuit, (c) RL circuit, (d) RC circuit. 
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2) Finding Initial and Final Values 
There are two key points to keep in mind in determining the initial conditions. First—as 

always in circuit analysis—we must carefully handle the polarity of voltage 𝑣(𝑡) across the 

capacitor and the direction of the current 𝑖(𝑡) through the inductor. Keep in mind that 𝑣 and 

𝑖 are defined strictly according to the passive sign convention. Second, keep in mind that 

the capacitor voltage is always continuous so that 

𝑣(0+) = 𝑣(0−)  (2.1a) 

and the inductor current is always continuous so that 

𝑖(0+) = 𝑖(0−)  (2.1b) 

where 𝑡 = 0− denotes the time just before a switching event and 𝑡 = 0+ is the time just 

after the switching event, assuming that the switching event takes place at 𝑡 = 0. 

Thus, in finding initial conditions, we first focus on those variables that cannot change 

abruptly, capacitor voltage and inductor current, by applying Eq. (2.1). The following 

examples illustrate these ideas. 

 

Example 1: The switch in Fig.1 has been closed for a long time. It is open at  𝑡 = 0. Find: 

(a) 𝑖(0+), 𝑣(0+), (𝑏)𝑑𝑖(0+)/𝑑𝑡, 𝑑𝑣(0+)/𝑑𝑡, (𝑐)𝑖(∞), 𝑣(∞) . 

Solution: 

 (a) If the switch is closed a long time before 𝑡 = 0, it 

means that the circuit has reached dc steady state at 

𝑡 = 0. At dc steady state, the inductor acts like a short 

circuit, while the capacitor acts like an open circuit, so 

we have the circuit in Fig.2 (a) at 𝑡 = 0−. Thus,                                                                                                    

Fig.1 

𝑖(0−) =
12

4 + 2
= 2𝐴,         𝑣(0−) = 2𝑖(0−) = 4𝑉 

 
Fig.2 Equivalent circuit of that in Fig.1 for: (a) 𝑡 = 0−, (𝑏)𝑡 = 0+, (𝑐)𝑡 → ∞. 
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As the inductor current and the capacitor voltage cannot change abruptly, 

𝑖(0+) = 𝑖(0−) = 2𝐴, 𝑣(0+) = 𝑣(0−) = 4𝑉 

(b) At 𝑡 = 0+, the switch is open; the equivalent circuit is as shown in Fig. 2(b). The same 

current flows through both the inductor and capacitor. Hence, 

𝑖𝐶(0+) = 𝑖(0+) = 2𝐴 

Since 𝐶𝑑𝑣/𝑑𝑡 = 𝑖𝐶 ,  𝑑𝑣/𝑑𝑡 = 𝑖𝐶/𝐶, and 

𝑑𝑣(0+)

𝑑𝑡
=

𝑖𝐶(0+)

𝐶
=

2

0.1
= 20𝑉/𝑠 

Similarly, since  𝐿𝑑𝑖/𝑑𝑡 = 𝑣𝐿,  𝑑𝑖/𝑑𝑡 = 𝑣𝐿/𝐿. We now obtain 𝑣𝐿 by applying KVL to the 

loop in Fig. 2(b). The result is 

−12 + 4𝑖(0+) + 𝑣𝐿(0+) + 𝑣(0+) = 0 

or 

𝑣𝐿(0+) = 12 − 8 − 4 = 0 

Thus, 

𝑑𝑖(0+)

𝑑𝑡
=

𝑣𝐿(0+)

𝐿
=

0

0.25
= 0𝐴/𝑠 

(c) For 𝑡 > 0, the circuit undergoes transience. But as 𝑡 → ∞, the circuit reaches steady state 

again. The inductor acts like a short circuit and the capacitor like an open circuit, so that the 

circuit in Fig. 2(b) becomes that shown in Fig. 2(c), from which we have 

𝑖(∞) = 𝑂𝐴, 𝑣(∞) = 12𝑉 

 

H.W.1:  The switch in Fig. 1 was open for a long time but closed at 𝑡 = 0. Determine: (a) 

𝑖(0+), 𝑣(0+), (𝑏)𝑑𝑖(0+)/𝑑𝑡, 𝑑𝑣(0+)/𝑑𝑡, (𝑐)𝑖(∞), 𝑣(∞) . 

Answer: (a) 1 𝑨, 𝟐𝑽, (𝒃)𝟐𝟓𝑨/𝒔, 𝟎𝑽/𝒔, (𝒄)𝟔𝑨, 

𝟏𝟐𝑽. 

 

 

 

 

     Fig. 1 
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Example 2: In the circuit of Fig. 1 , calculate: (a) 𝑖𝐿(0+), 𝑣𝐶(0+), 𝑣𝑅(0+) , 

(b)𝑑𝑖𝐿(0+)/𝑑𝑡, 𝑑𝑣𝑐(0+)/𝑑𝑡, 𝑑𝑣𝑅(0+)/𝑑𝑡, (𝑐)𝑖𝐿(∞), 𝑣𝑐(∞), 𝑣𝑅(∞) . 

Solution: 

(a) For 𝑡 < 0, 3𝑢(𝑡) = 0. At 𝑡 = 0− since the circuit 

has reached steady state, the inductor can be replaced 

by a short circuit, while the capacitor is replaced by 

an open circuit as shown in Fig. 2(a). From this figure 

we obtain                                                                       Fig. 1 

𝑖𝐿(0−) = 0, 𝑣𝑅(0−) = 0, 𝑣𝐶(0−) = −20𝑉  (1.1) 

Although the derivatives of these quantities at 𝑡 = 0− are not required, it is evident that 

they are all zero, since the circuit has reached steady state and nothing changes. 

 
Fig. 2 The circuit in Fig. 1 for: (a) 𝑡 = 0−, (𝑏)𝑡 = 0+ 

 

For 𝑡 > 0,   3𝑢(𝑡) = 3, so that the circuit is now equivalent to that in Fig. 2(b). Since the 

inductor current and capacitor voltage cannot change abruptly, 

𝑖𝐿(0+) = 𝑖𝐿(0−) = 0,    𝑣𝐶(0+) = 𝑣𝐶(0−) = −20𝑉  (1.2) 

 

Although the voltage across the 4 − 𝛺 resistor is not required, we will use it to apply KVL 

and KCL; let it be called 𝑣𝑜. Applying KCL at node 𝑎 in Fig. 2(b) gives 

3 =
𝑣𝑅(0+)

2
+

𝑣𝑜(0+)

4
 (1.3) 

Applying KVL to the middle mesh in Fig. 2(b) yields 

−𝑣𝑅(0+) + 𝑣𝑜(0+) + 𝑣𝐶(0+) + 20 = 0  (1.4) 
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Since 𝑣𝐶(0+) = −20𝑉 from Eq. (1.2), Eq. (1.4) implies that 

𝑣𝑅(0+) = 𝑣𝑜(0+)    (1.5) 

 

From Eqs. (1.3) and (1.5), we obtain 

𝑣𝑅(0+) = 𝑣𝑜(0+) = 4𝑉      (1.6) 

 

 (b) Since 𝐿𝑑𝑖𝐿/𝑑𝑡 = 𝑣𝐿, 

𝑑𝑖𝐿(0+)

𝑑𝑡
=

𝑣𝐿(0+)

𝐿
 

But applying KVL to the right mesh in Fig. 2(b) gives 

𝑣𝐿(0+) = 𝑣𝑐(0+) + 20 = 0 

Hence, 

𝑑𝑖𝐿(0+)

𝑑𝑡
= 0 (1.7) 

 

Similarly, since 𝐶𝑑𝑣𝐶/𝑑𝑡 = 𝑖𝐶, then 𝑑𝑣𝐶/𝑑𝑡 = 𝑖𝐶/𝐶. We apply KCL at node 𝑏 in Fig. 

2(b) to get 𝑖𝐶: 

𝑣𝑜(0+)

4
= 𝑖𝐶(0+) + 𝑖𝐿(0+)    (1.8) 

Since 𝑣𝑜(0+) = 4 and 𝑖𝐿(0+) = 0, 𝑖𝐶(0+) = 4/4 = 1 A. Then 

𝑑𝑣𝑐(0+)

𝑑𝑡
=

𝑖𝐶(0+)

𝐶
=

1

0.5
= 2𝑉/𝑠   (1.9) 

To get 𝑑𝑣𝑅(0+)/𝑑𝑡, we apply KCL to node 𝑎 and obtain 

3 =
𝑣𝑅

2
+

𝑣𝑜

4
 

Taking the derivative of each term and setting 𝑡 = 0+ gives 

0 = 2
𝑑𝑣𝑅(0+)

𝑑𝑡
+

𝑑𝑣𝑜(0+)

𝑑𝑡
   (1.10) 

We also apply KVL to the middle mesh in Fig. 2(b) and obtain 

−𝑣𝑅 + 𝑣𝑐 + 20 + 𝑣𝑜 = 0 

Again, taking the derivative of each term and setting 𝑡 = 0+ yields 



University of Diyala                                                                                                  Electrical Circuits               
Engineering College 

 

6 
 

−
𝑑𝑣𝑅(0+)

𝑑𝑡
+

𝑑𝑣𝑐(0+)

𝑑𝑡
+

𝑑𝑣𝑜(0+)

𝑑𝑡
= 0 

Substituting for 𝑑𝑣𝐶(0+)/𝑑𝑡 = 2 gives 

𝑑𝑣𝑅(0+)

𝑑𝑡
= 2 +

𝑑𝑣𝑜(0+)

𝑑𝑡
 (1.11) 

From Eqs. (1.10) and (1.11), we get 

𝑑𝑣𝑅(0+)

𝑑𝑡
=

2

3
𝑉/𝑠 

We can find 𝑑𝑖𝑅(0+)/𝑑𝑡 although it is not required. Since 𝑣𝑅 = 5𝑖𝑅 , 

𝑑𝑖𝑅(0+)

𝑑𝑡
=

1

5

𝑑𝑣𝑅(0+)

𝑑𝑡
=

1

5

2

3
=

2

15
𝐴/𝑠 

(c) As 𝑡 → ∞, the circuit reaches steady state. We have the equivalent circuit in Fig. 2(a) 

except that the 3‐𝐴 current source is now operative. By current division principle, 

𝑖𝐿(∞) =
2

2 + 4
3𝐴 = 1𝐴 (1.12) 

𝑣𝑅(∞) =
4

2 + 4
3𝐴×2 = 4𝑉,    𝑣𝐶(∞) = −20𝑉 

 

 

H.W.2: For the circuit in Fig. 1, find: (a) 𝑖𝐿(0+), 𝑣𝐶(0+), 𝑣𝑅(0+) , (b) 𝑑𝑖𝐿(0+)/𝑑𝑡, 
𝑑𝑣𝐶(0+)/𝑑𝑡, 𝑑𝑣𝑅(0+)/𝑑𝑡, (𝑐)𝑖𝐿(∞), 𝑣𝐶(∞), 𝑣𝑅(∞) . 

Answer: (a) −𝟔𝑨, 𝟎, 𝟎, (𝒃)𝟎, 𝟐𝟎𝑽/𝒔, 𝟎, (𝒄) − 𝟐𝑨, 𝟐𝟎𝑽, 𝟐𝟎𝑽. 

 

Fig. 1 
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3) The Source‐Free Series RLC Circuit 

Consider the series RLC circuit shown in Fig. 3.1. The circuit is being excited by the energy 

initially stored in the capacitor and inductor. The energy is represented by the initial 

capacitor voltage 𝑉0 and initial inductor current 𝐼0. Thus, at 𝑡 = 0, 

𝑣(𝑂) =
1

𝐶
∫ 𝑖

0

−∞

𝑑𝑡 = 𝑉0 (3.1a) 

𝑖(0) = 𝐼0 (3.1b) 

Applying KVL around the loop in Fig. 3.1, 

𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+

1

𝐶
∫ 𝑖

𝑡

−∞
𝑑𝑡 = 0  (3.2) 

 
Fig. 3.1. A source-free series RLC circuit. 

 

To eliminate the integral, we differentiate with respect to 𝑡 and rearrange terms. We get 

d2𝑖

𝑑𝑡2
+ 

𝑅

𝐿

𝑑𝑖

𝑑𝑡
+

𝑖

𝐿𝐶
= 0    

 
(3.3) 

This is a second‐order differential equation and is the reason for calling the RLC circuits in this 

lecture second‐order circuits. To solve such a second‐order differential equation requires that 

we have two initial conditions, such as the initial value of 𝑖 and its first derivative or initial 

values of some 𝑖 and 𝑣. The initial value of 𝑖 is given in Eq. (8.2b). We get the initial value 

of the derivative of 𝑖 from Eqs. (3.1a) and (3.2); that is, 

𝑅𝑖(𝑂) + 𝐿
𝑑𝑖(0)

𝑑𝑡
+ 𝑉0 = 0   

or 
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𝑑𝑖(0)

𝑑𝑡
= −

1

𝐿
(𝑅𝐼0 + 𝑉0)    (3.4) 

With the two initial conditions in Eqs. (3.1b) and (3.4), we can now solve Eq. (3.4). Our 

experience in the preceding lecture on first‐order circuits suggests that the solution is of 

exponential form. So we let 

𝑖 = 𝐴𝑒𝑠𝑡    (3.5) 

where 𝐴 and 𝑠 are constants to be determined. Substituting Eq. (3.5) into Eq. (3.3) and 

carrying out the necessary differentiations, we obtain 

𝐴𝑠2𝑒𝑠𝑡 +
𝐴𝑅

𝐿
𝑠𝑒𝑠𝑡 +

𝐴

𝐿𝐶
𝑒𝑠𝑡 = 0  

or 

𝐴𝑒𝑠𝑡(𝑠2 +
𝑅

𝐿
𝑠 +

1

𝐿𝐶
) = 0    (3.6) 

Since 𝑖 = 𝐴𝑒𝑠𝑡 is the assumed solution we are trying to find, only the expression in 

parentheses can be zero: 

𝑠2 +
𝑅

𝐿
𝑠 +

1

𝐿𝐶
= 0    (3.7) 

This quadratic equation is known as the characteristic equation of the formula to differential 

Eq. (3.3), since the roots of the equation dictate the character of 𝑖. The two roots of Eq. (3.7) 

are 

𝑠1 = −
𝑅

2𝐿
+ √(

𝑅

2𝐿
)2 −

1

𝐿𝐶
    (3.8a) 

𝑠2 = −
𝑅

2𝐿
− √(

𝑅

2𝐿
)2 −

1

𝐿𝐶
   (3.8b) 

A more compact way of expressing the roots is 

𝑠1 = −𝛼 + √𝛼2 − 𝜔0
2,     𝑠2 = −𝛼 − √𝛼2 − 𝜔0

2    (3.9) 

 

where 

𝛼 =
𝑅

2𝐿
, 𝜔0 =

1

√𝐿𝐶
   (3.10) 

The roots 𝑠1 and 𝑠2 are called natural frequencies, measured in nepers per second (𝑵𝒑/𝒔) , 

because they are associated with the natural response of the circuit; 𝜔0 is known as the 

resonant frequency or strictly as the undamped natural frequency, expressed in radians per 

second (𝒓𝒂𝒅/𝒔) ;and 𝛼 is the neper frequency  or the damping factor, expressed in nepers per 

second. In terms of 𝛼 and 𝜔0, Eq. (3.7) can be written as  
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𝑠2 + 2𝛼𝑠 + 𝜔0
2 = 0  (3.7a) 

The variables 𝑠 and 𝜔0 are important quantities we will be discussing throughout the rest 

of the lecture. 

The two values of 𝑠 in Eq. (3.9) indicate that there are two possible solutions for 𝑖, each of 

which is of the form of the assumed solution in Eq. (3.5); that is, 

𝑖1 = 𝐴1𝑒𝑠1𝑡 , 𝑖2 = 𝐴2𝑒𝑠2𝑡  (3.11) 

 

Since Eq. (3.3) is a linear equation, any linear combination of the two distinct solutions 𝑖1 

and 𝑖2 is also a solution of Eq. (3.3). A complete or total solution of Eq. (3.3) would therefore 

require a linear combination of 𝑖1 and 𝑖2. Thus, the natural response ofthe series RLC circuit 

is 

𝑖(𝑡) = 𝐴1𝑒𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡   (3.12) 

where the constants 𝐴1 and 𝐴2 are determined ffom the initial values 𝑖(𝑂) and 𝑑𝑖(𝑂)/𝑑𝑡 

in Eqs. (3.1b) and (3.4). 

From Eq. (3.9), we can infer that there are three types of solutions 

 1. If 𝛼 > 𝜔0, we have the overdamped case. 

2. If 𝛼 = 𝜔0, we have the critically damped case. 

3. If 𝛼 < 𝜔0, we have the underdamped case.  

We will consider each of these cases separately. 

Note: The response is overdamped when the roots of the circuit’s characteristic 
equation are unequal and real, critically damped when the roots are equal and real, 
and underdamped when the roots are complex. 

 
 

 

Notes: 

1) The neper (Np) is a dimensionless unit named after John Napier (1550–
1617), a Scottish mathematician. 

2) The ratio 𝛼/𝜔0 is known as the damping ratio 𝜁. 

 



University of Diyala                                                                                                  Electrical Circuits               
Engineering College 

 

10 
 

Overdamped Case (𝜶 > 𝝎𝟎) 

From Eqs. (3.8) and (3.9), 𝛼 > 𝜔0 implies 𝐶 > 4𝐿/𝑅2. When this happens, both roots 𝑠1 

and 𝑠2 are negative and real. The response is 

𝑖(𝑡) = 𝐴1𝑒𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡   (3.13) 

which decays and approaches zero as 𝑡 increases. Fig. 3.2(a) illustrates a typical overdamped 

response. 

 

Critically Damped Case (𝜶 = 𝝎𝟎)  

When 𝛼 = 𝜔0, 𝐶 = 4𝐿/𝑅2 and 

𝑠1 = 𝑠2 = −𝛼 = −
𝑅

2𝐿
   (3.14) 

For this case, Eq. (3.12) yields 

𝑖(𝑡) = 𝐴1𝑒−𝛼𝑡 + 𝐴2𝑒−𝛼𝑡 = 𝐴3𝑒−𝛼𝑡 

where 𝐴3 = 𝐴1 + 𝐴2. This cannot be the solution, because the two initial conditions cannot 

be satisfied with the single constant 𝐴3. What then could be wrong? Our assumption of an 

exponential solution is incorrect for the special case of critical damping. Let us go back to 

Eq. (3.3). When 𝛼 = 𝜔0 = 𝑅/2𝐿, Eq. (3.3) becomes 

𝑑2𝑖

𝑑𝑡2
+ 2𝛼

𝑑𝑖

𝑑𝑡
+ 𝛼2𝑖 = 0 

or 

𝑑

𝑑𝑡
(

𝑑𝑖

𝑑𝑡
+ 𝛼𝑖) + 𝛼(

𝑑𝑖

𝑑𝑡
+ 𝛼𝑖) = 0    (3.15) 

If we let 

𝑓 =
𝑑𝑖

𝑑𝑡
+ 𝛼𝑖  (3.16) 

then Eq. (8. 15) becomes 

𝑑𝑓

𝑑𝑡
+ 𝛼𝑓 = 0   

which is a first‐order differential equation with solution 𝑓 = 𝐴1𝑒−𝛼𝑡 , where 𝐴1 is a constant. 

Equation (3.16) then becomes 

𝑑𝑖

𝑑𝑡
+ 𝛼𝑖 = 𝐴1𝑒−𝛼𝑡 
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or 

 𝑒𝛼𝑡  
𝑑𝑖

𝑑𝑡
+ 𝑒𝛼𝑡𝛼𝑖 = 𝐴1    (3.17) 

This can be written as 

𝑑

𝑑𝑡
(𝑒𝛼𝑡𝑖) = 𝐴1 (3.18) 

Integrating both sides yields 

𝑒𝛼𝑡𝑖 = 𝐴1𝑡 + 𝐴2 

or 

𝑖 = (𝐴1𝑡 + 𝐴2)𝑒−𝛼𝑡    (3.19) 

where 𝐴2 is another constant. Hence, the natural response of the critically damped circuit 

is a sum of two terms: a negative exponential and a negative exponential multiplied by a 

linear term, or 

𝑖(𝑡) = (𝐴2 + 𝐴1𝑡)𝑒−𝛼𝑡 (3.20) 

A typical critically damped response is shown in Fig. 3.2 (b). In fact, Fig. 3.2 (b) is a sketch 

of 𝑖(𝑡) = 𝑡𝑒−𝛼𝑡, which reaches a maximum value of 𝑒−1/𝛼 at 𝑡 = 1/𝛼, one time constant, 

and then decays all the way to zero. 

 

 

Fig. 3.2 (a) Overdamped response, (b) critically damped response, (c) underdamped 

response. 
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Underdamped Case (𝜶 < 𝝎𝟎) 

For 𝛼 < 𝜔0, 𝐶 < 4𝐿/𝑅2. The roots may be written as 

𝑠1 = −𝛼 + √−(𝜔0
2 − 𝛼2) = −𝛼 + 𝑗𝜔𝑑 (3.21a) 

𝑠2 = −𝛼 − √−(𝜔0
2 − 𝛼2) = −𝛼 − 𝑗𝜔𝑑 (3.21b) 

where 𝑗 = √−1 and 𝜔𝑑 = √𝜔0
2 − 𝛼2, which is called the damping frequency. Both 𝜔0 and 𝜔𝑑 

are natural frequencies because they help determine the natural response; while 𝜔0 is often 

called the undamped natural frequency, 𝜔𝑑 is called the damped natural frequency. The natural 

response is 

𝑖(𝑡) = 𝐴1𝑒−(𝛼−𝑗𝜔𝑑)𝑡 + 𝐴2𝑒−(𝛼+𝑗𝜔𝑑)𝑡  = 𝑒−𝛼𝑡(𝐴1𝑒𝑗𝜔𝑑𝑡 + 𝐴2𝑒−𝑗𝜔𝑑𝑡) (3.22) 

Using Euler’s identities,  

𝑒𝑗𝜃 =  cos 𝜃 + 𝑗 sin 𝜃, 𝑒−𝑗𝜃 =  cos 𝜃 − 𝑗 sin 𝜃 (3.23) 

we get  

𝑖(𝑡) = 𝑒−𝛼𝑡[𝐴1( cos 𝜔𝑑𝑡 + 𝑗 sin 𝜔𝑑𝑡) + 𝐴2( cos 𝜔𝑑𝑡 − 𝑗 sin 𝜔𝑑𝑡)] 
         = 𝑒−𝛼𝑡[(𝐴1 + 𝐴2) cos 𝜔𝑑𝑡 + 𝑗(𝐴1 − 𝐴2) sin 𝜔𝑑𝑡] 

(3.24) 

Replacing constants (𝐴1 + 𝐴2) and 𝑗(𝐴1 − 𝐴2) with constants 𝐵1 and 𝐵2, we write 

𝑖(𝑡) = 𝑒−𝛼𝑡(𝐵1 cos 𝜔𝑑𝑡 + 𝐵2 sin 𝜔𝑑𝑡)  (3.25) 

With the presence of sine and cosine functions, it is clear that the natural response for this 

case is exponentially damped and oscillatory in nature. The response has a time constant of 

1/𝛼 and a period of 𝑇 = 2𝜋/𝜔𝑑. Fig. 3.2(c) depicts a typical underdamped response. [Fig. 

3.2 assumes for each case that 𝑖(𝑂) = 0.]. 

Once the inductor current 𝑖(𝑡) is found for the RLC series circuit as shown above, other 

circuit quantities such as individual element voltages can easily be found. For example, the 

resistor voltage is 𝑣𝑅 = 𝑅𝑖, and the inductor voltage is 𝑣𝐿 = 𝐿𝑑𝑖/𝑑𝑡. The inductor current 

𝑖(𝑡) is selected as the key variable to be determined first in order to take advantage of Eq. 

(2.lb). 

We conclude this section by noting the following interesting, peculiar properties of an RLC 

network: 

1. The behavior of such a network is captured by the idea of damping, which is the gradual 

loss of the initial stored energy, as evidenced by because of the inherent losses in them. the 

continuous decrease in the amplitude of the response. The damping effect is due to the 
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presence of resistance 𝑅. The damping factor 𝛼 determines the rate at which the response is 

damped. If 𝑅 = 0, then 𝛼 = 0, and we have an 𝐿𝐶 circuit with 1/√𝐿𝐶 as the undamped 

natural frequency. Since 𝛼 < 𝜔0 in this case, the response is not only undamped but also 

oscillatory. The circuit is said to be loss‐less, because the dissipating or damping element (R) 

is absent. By adjusting the value of 𝑅, the response may be made undamped, overdamped, 

critically damped or undamped. 

2. Oscillatory response is possible due to the presence of the two types of storage elements. 

Having both 𝐿 and 𝐶 allows the flow of  energy back and forth between the two. The damped 

oscillation exhibited by the underdamped response is known as ringing. It stems from the 

ability of the storage elements 𝐿 and 𝐶 to transfer energy back and forth between them. 

3. Observe from Fig. 3.2 that the waveforms of the responses differ. In general, it is difficult 

to tell from the waveforms the difference between the overdamped and critically damped 

responses. The critically damped case is the borderline between the underdamped and 

overdamped cases and it decays the fastest. With the same initial conditions, the overdamped 

case has the longest settling time, because it takes the longest time to dissipate the initial 

stored energy. If we desire the response that approaches the final value most rapidly without 

oscillation or ringing, the critically damped critically damped circuit. circuit is the right 

choice. 

Example 3: In Fig.3.1, 𝑅 = 40𝛺, 𝐿 = 4𝐻, and 𝐶 = 1/4 F. Calculate the characteristic roots 

of the circuit. Is the natural response overdamped, under‐ damped, or critically damped? 

Solution: We first calculate 

𝛼 =
𝑅

2𝐿
=

40

2(4)
= 5,     𝜔0 =

1

√𝐿𝐶
=

1

√4×
1
4

= 1 

The roots are 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −5 ± √25 − 1 

or 

𝑠1 = −0.101,      𝑠2 = −9.899 

Since 𝛼 > 𝜔0, we conclude that the response is overdamped. This is also evident from the 

fact that the roots are real and negative. 
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H.W. 3: If 𝑅 = 10𝛺, 𝐿 = 5𝐻, and 𝐶 = 2𝑚𝐹 in Fig.3.1, find 𝛼, 𝜔0, 𝑠1, and 𝑠2. What type 

of natural response will the circuit have? 

Answer: 

Answer: 1, 10, −1 ± 𝑗9.95, underdamped. 

 

Example 4: Find 𝑖(𝑡)in the circuit of Fig.1. Assume that the circuit has reached steady 

state at 𝑡 = 0−. 

Solution: 

For 𝑡 < 0, the switch is closed. The capacitor acts like an open circuit while the inductor 

acts like a shunted circuit. The equivalent circuit is shown in Fig.2(a). Thus, at 𝑡 = 0, 

𝑖(𝑂) =
10

4 + 6
= 1𝐴, 𝑣(𝑂) = 6𝑖(𝑂) = 6𝑉 

where 𝑖(𝑂) is the initial current through the inductor and 𝑣(𝑂) is the initial voltage across 

the capacitor. 

For 𝑡 > 0, the switch is opened and the voltage source is disconnected. The equivalent 

circuit is shown in Fig.2(b), which is a source‐ free series RLC circuit. Notice that the 3𝛺 

and 6𝛺 resistors, which are in series in Fig.1 when the switch is opened, have been combined 

to give 𝑅 = 9𝛺 in Fig.2(b). The roots are calculated as follows: 

𝛼 =
𝑅

2𝐿
=

9

2(
1
2

)
= 9,   𝜔0 =

1

√𝐿𝐶
=

1

√1
2 ×

1
50

= 10 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −9 ± √81 − 100 = −9 ± 𝑗4.359 

Hence, the response is underdamped (𝛼 < 𝜔) ; that is, 

𝑖(𝑡) = 𝑒−9𝑡(𝐴1 cos 4.359𝑡 + 𝐴2 sin 4.359𝑡)    (1) 

We now obtain 𝐴1 and 𝐴2 using the initial conditions. At 𝑡 = 0, 

𝑖(𝑂) = 1 = 𝐴1  (2) 

From Eq. (3.4), 

𝑑𝑖

𝑑𝑡
|

𝑡=0
 = −

1

𝐿
[𝑅𝑖(𝑂) + 𝑣(𝑂)] = −2[9(1) −6] = −6𝐴/𝑠  (3) 
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Note that 𝑣(𝑂) = 𝑉0 = −6𝑉 is used, because the polarity of 𝑣 in Fig.2 (b) is opposite that 

in Fig. 3.1. Taking the derivative of 𝑖(𝑡) in Eq. (1), 

𝑑𝑖

𝑑𝑡
= −9𝑒−9𝑡(𝐴1 cos 4.359𝑡 + 𝐴2 sin 4.359𝑡) + 𝑒−9𝑡(4.359)(−𝐴1 sin 4.359𝑡 + 𝐴2 cos 4.359𝑡) 

Imposing the condition in Eq. (3) at 𝑡 = 0 gives 

−6 = −9(𝐴1 + 0) + 4.359(−0 + 𝐴2) 

But 𝐴1 = 1 from Eq. (2). Then 

−6 = −9 + 4.359𝐴2  ⇒  𝐴2 = 0.6882 

Substituting the values of 𝐴1 and 𝐴2 in Eq. (1) yields the complete solution as 

𝑖(𝑡) = 𝑒−9𝑡( cos 4.359𝑡 + 0.6882 sin 4.359𝑡)𝐴 

  

                        Fig.1                           Fig.2 The circuit in Fig.1: (a) for t < 0, (b) for t > 0. 

H.W. 4: The circuit in Fig.1 has reached steady state at 𝑡 = 0−. If the make  before‐break 

switch moves to position 𝑏 at 𝑡 = 0, calculate 𝑖(𝑡) for t > 0 

Answer: 𝒆−𝟐.𝟓𝒕( 𝟓𝐜𝐨𝐬 𝟏. 𝟔𝟓𝟖𝟑𝒕 − 𝟕. 𝟓𝟑𝟕𝟖 𝐬𝐢𝐧 𝟏. 𝟔𝟓𝟖𝟑𝒕)𝑨 

 

Fig.1 
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4) The Source-Free Parallel RLC Circuit 

Parallel RLC circuits find many practical applications, notably in communications networks 

and filter designs.  

Consider the parallel RLC circuit shown in Fig.4.1. Assume initial inductor current Io and 

initial capacitor voltage Vo, 

𝑖(0) =  𝐼𝑜 =  
1

𝐿
 ∫ 𝑣(𝑡)𝑑𝑡

0

∞

 (4.1a) 

𝑣(0) =  𝑉0 (4.1b) 

Since the three elements are in parallel, they have the same voltage v across them. According 

to passive sign convention, the current is entering each element; that is, the current through 

each element is leaving the top node. Thus, applying KCL at the top node gives 
𝑣

𝑅
+

1

𝐿
∫ 𝑣

𝑡

−∞
𝑑𝑡 + 𝐶

𝑑𝑣

𝑑𝑡
= 0    (4.2) 

Taking the derivative with respect to 𝑡 and dividing by 𝐶 results in  
𝑑2𝑣

𝑑𝑡2
+

1

𝑅𝐶

𝑑𝑣

𝑑𝑡
+

1

𝐿𝐶
𝑣 = 0    (4.3) 

We obtain the characteristic equation by replacing the first derivative by 𝑠 and the second 

derivative by 𝑠2. By following the same reasoning used in establishing Eqs. (3.3) through 

(3.7), the characteristic equation is obtained as 

𝑠2 +
1

𝑅𝐶
𝑠 +

1

𝐿𝐶
= 0    (4.4) 

The roots of the characteristic equation are 

𝑠1,2 = −
1

2𝑅𝐶
± √(

1

2𝑅𝐶
)2 −

1

𝐿𝐶
 (4.5) 

or 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 (4.6) 

where  

𝛼 =
1

2𝑅𝐶
,          𝜔0 =

1

√𝐿𝐶
 (4.7) 

The names of these terms remain the same as in the preceding section, as they play the same 

role in the solution. Again, there are three possible solutions, depending on whether 𝛼 >

𝜔0, 𝛼 = 𝜔0, or 𝛼 < 𝜔0. Let us consider these cases separately. 
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Fig.4.1 A source-free parallel RLC circuit. 

 

Overdamped Case (𝜶 > 𝝎𝟎) 

From Eq. (4.7), 𝛼 > 𝜔0 when 𝐿 > 4𝑅2𝐶. The roots of the characteristic equation are real 

and negative. The response is 

𝑣(𝑡) = 𝐴1𝑒𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡  (4.8) 

 

Critically Damped Case (𝜶 = 𝝎𝟎) 

For 𝛼 = 𝜔0, 𝐿 = 4𝑅2𝐶. The roots are real and equal so that the response is 

𝑣(𝑡) = (𝐴1 + 𝐴2𝑡)𝑒−𝛼𝑡 (4.9) 

 

Underdamped Case (𝜶 < 𝝎𝟎) 

When 𝛼 < 𝜔0, 𝐿 < 4𝑅2𝐶. In this case the roots are complex and may be expressed as 

𝑠1,2 = −𝛼 ± 𝑗𝜔𝑑 (4.10) 

where  

𝜔𝑑 = √𝜔0
2 − 𝛼2 (4.11) 

The response is 

𝑣(𝑡) = 𝑒−𝛼𝑡(𝐴1 cos 𝜔𝑑𝑡 + 𝐴2 sin 𝜔𝑑𝑡)    (4.12) 
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The constants 𝐴1 and 𝐴2 in each case can be determined ffom the initial conditions. We 

need 𝑣(𝑂) and 𝑑𝑣(𝑂)/𝑑𝑡. The first term is known from Eq. (4.1b). We find the second 

term by combining Eqs. (4.1) and (4.2), as 

𝑉0

𝑅
+ 𝐼0 + 𝐶

𝑑𝑣(0)

𝑑𝑡
= 0  

or  

𝑑𝑣(0)

𝑑𝑡
= −

(𝑉0 + 𝑅𝐼0)

𝑅𝐶
 (4.13) 

The voltage waveforms are similar to those shown in Fig. 3.2 and will depend on whether 

the circuit is overdamped, underdamped, or critically damped. 

Having found the capacitor voltage 𝑣(𝑡) for the parallel RLC circuit as shown above, we 

can readily obtain other circuit quantities such as individual element currents. For example, 

the resistor current is 𝑖𝑅 = 𝑣/𝑅 and the capacitor voltage is 𝑣𝐶 = 𝐶𝑑𝑣/𝑑𝑡. We have selected 

the capacitor voltage 𝑣(𝑡) as the key variable to be determined first in order to take 

advantage of Eq. (2.la). Notice that we first found the inductor current 𝑖(𝑡) for the RLC 

series circuit, whereas we first found the capacitor voltage 𝑣(𝑡) for the parallel RLC circuit. 

 

Example 5: In the parallel circuit of Fig. 4.1, find 𝑣(𝑡) for 𝑡 > 0, assuming 𝑣(𝑂) = 5𝑉, 
𝑖(𝑂) = 0, 𝐿 = 1𝐻, and 𝐶 = 10𝑚𝐹. Consider these cases: 𝑅 = 1.923𝛺, 𝑅 = 5𝛺, and 𝑅 =
6.25𝛺. 
Solution: 

CASE 1 If 𝑅 = 1.923𝛺, 

𝛼 =
1

2𝑅𝐶
=

1

2×1.923×10×10−3
= 26 

𝜔0 =
1

√𝐿𝐶
=

1

√1×10×10−3
= 10 

Since 𝛼 > 𝜔0 in this case, the response is overdamped. The roots of the characteristic 

equation are 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −2, −50 

and the corresponding response is 
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𝑣(𝑡) = 𝐴1𝑒−2𝑡 + 𝐴2𝑒−50𝑡                                                                                                 (1) 

We now apply the initial conditions to get 𝐴1 and 𝐴2. 

𝑣(𝑂) = 5 = 𝐴1 + 𝐴2                                                                                                        (2) 

𝑑𝑣(0)

𝑑𝑡
= −

𝑣(0) + 𝑅𝑖(0)

𝑅𝐶
= −

5 + 0

1.923×10×10−3
= −260 

But differentiating Eq. (1), 

𝑑𝑣

𝑑𝑡
= −2𝐴1𝑒−2𝑡 − 50𝐴2𝑒−50𝑡 

At 𝑡 = 0, 

−260 = −2𝐴1 − 50𝐴2                                                                                                     (3) 

From Eqs. (2) and (3), we obtain 𝐴1 = −0.2083 and 𝐴2 = 5.208. Substituting 𝐴1 and 𝐴2 

in Eq. (1) yields 

𝑣(𝑡) = −0.2083𝑒−2𝑡 + 5.208𝑒−50𝑡                                                                                  (4) 

 

CASE 2 When 𝑅 = 5𝛺, 

𝛼 =
1

2𝑅𝐶
=

1

2×5×10×10−3
= 10 

while 𝜔0 = 10 remains the same. Since 𝛼 = 𝜔0 = 10, the response is critically damped. 

Hence, 𝑠1 = 𝑠2 = −10, and 

𝑣(𝑡) = (𝐴1 + 𝐴2𝑡)𝑒−10𝑡                                                                                                    (5) 

To get 𝐴1 and 𝐴2, we apply the initial conditions 

𝑢(0) = 5 = 𝐴1                                                                                                                   (6) 

𝑑𝑣(0)

𝑑𝑡
= −

𝑣(0) + 𝑅𝑖(0)

𝑅𝐶
= −

5 + 0

5×10×10−3
= −100 

But differentiating Eq. (5), 

𝑑𝑣

𝑑𝑡
= (−10𝐴1 − 10𝐴2𝑡 + 𝐴2)𝑒−10𝑡 
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At 𝑡 = 0, 

−100 = −10𝐴1 + 𝐴2                                                                                                         (7) 

From Eqs. (6) and (7), 𝐴1 = 5 and 𝐴2 = −50. Thus, 

𝑣(𝑡) = (5 − 50𝑡)𝑒−10𝑡𝑉                                                                                                    (8) 

 

CASE 3 When 𝑅 = 6.25𝛺, 

𝛼 =
1

2𝑅𝐶
=

1

2×6.25×10×10−3
= 8 

while 𝜔0 = 10 remains the same. As 𝛼 < 𝜔0 in this case, the response is underdamped. The 

roots of the characteristic equation are 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −8 ± 𝑗6 

Hence, 

𝑣(𝑡) = (𝐴1 cos 6𝑡 + 𝐴2 sin 6𝑡)𝑒−8𝑡                                                                                  (9) 

We now obtain 𝐴1 and 𝐴2, as 

𝑣(𝑂) = 5 = 𝐴1                                                                                                                 (10) 

𝑑𝑣(0)

𝑑𝑡
= −

𝑣(0) + 𝑅𝑖(0)

𝑅𝐶
= −

5 + 0

6.25×10×10−3
= −80 

But differentiating Eq. (9), 

𝑑𝑣

𝑑𝑡
= (−8𝐴1 cos 6𝑡 − 8𝐴2 sin 6𝑡 − 6𝐴1 sin 6𝑡 + 6𝐴2 cos 6𝑡)𝑒−8𝑡  

At 𝑡 = 0, 

−80 = −8𝐴1 + 6𝐴2                                                                                                         (11) 

From Eqs. (10) and (11), 𝐴1 = 5 and 𝐴2 = −6.667. Thus, 

𝑣(𝑡) = (5 cos 6𝑡 − 6.667 sin 6𝑡)𝑒−8𝑡                                                                            (12) 

Notice that by increasing the value of 𝑅, the degree of damping decreases and the 

responses differ. Fig.1 plots the three cases. 
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Fig.1: responses for three degrees of damping. 

 

H.W. 5: In Fig.4.1, let 𝑅 = 2𝛺, 𝐿 = 0.4𝐻, 𝐶 = 25𝑚𝐹, 𝑣(𝑂) = 0, 𝑖(𝑂) = 10𝑚𝐴. Find 

𝑣(𝑡) for 𝑡 > 0. 

Answer: −𝟒𝟎𝟎𝒕𝒆−𝟏𝟎𝒕𝒗(𝒕)𝒎𝑽. 

 

Example 6:Find 𝑣(𝑡) for 𝑡 > 0 in the RLC circuit of Fig.1. 

Solution: 

When 𝑡 < 0, the switch is open; the 

inductor acts like a short circuit while the 

capacitor behaves like an open circuit. The 

initial voltage across the capacitor is the 

same as the voltage across the 50 − 𝛺 

resistor; that is,                                                                                 Fig.1. 

𝑣(𝑂) =
50

30+50
(40) =

5

8
×40 = 25𝑉                                                                                    (1) 

The initial current through the inductor is 

𝑖(0) = −
40

30 + 50
= −0.5𝐴 
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The direction of 𝑖 is as indicated in Fig.1. to conform with the direction of 𝐼0 in Fig.4.1, 

which is in agreement with the convention that current flows into the positive terminal of an 

inductor. We need to express this in terms of 𝑑𝑣/𝑑𝑡, since we are looking for 𝑣. 

𝑑𝑣(0)

𝑑𝑡
= −

𝑣(0)+𝑅𝑖(0)

𝑅𝐶
= −

25−50×0.5

50×20×10−6
= 0                                                                              (2) 

When 𝑡 > 0, the switch is closed. The voltage source along with the 30 − 𝛺 resistor is 

separated ffom the rest of the circuit. The parallel RLC circuit acts independently of the 

voltage source, as illustrated in Fig.2. Next, we determine that the roots of the characteristic 

equation are 

𝛼 =
1

2𝑅𝐶
=

1

2×50×20×10−6
= 500 

𝜔0 =
1

√𝐿𝐶
=

1

√04×20×10−6
= 354 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2                        

 

= −500 ± √250,000 − 124,9976 = −500 ± 354 

or 

𝑠1 = −854, 𝑠2 = −146 

Since 𝛼 > 𝜔0, we have the overdamped response 

𝑣(𝑡) = 𝐴1𝑒−854𝑡 + 𝐴2𝑒−146𝑡                                                                                             (3) 

At 𝑡 = 0, we impose the condition in Eq. (1), 

𝑣(𝑂) = 25 = 𝐴1 + 𝐴2  ⇒  𝐴2 = 25 − 𝐴1                                                                         (4) 

Taking the derivative of 𝑣(𝑡) in Eq. (3), 

𝑑𝑣

𝑑𝑡
= −854𝐴1𝑒−854𝑡 − 146𝐴2𝑒−146𝑡 

Imposing the condition in Eq. (2), 

𝑑𝑣(0)

𝑑𝑡
= 0 = −854𝐴1 − 146𝐴2 

or 

Fig.2 The circuit in Fig.1 when t >0. The 

parallel RLC circuit on the right-hand 

side acts independently of the circuit on 

the left-hand side of the junction. 
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0 = 854𝐴1 + 146𝐴2                                                                                                          (5) 

Solving Eqs. (4) and (5) gives 

𝐴1 = −5.156, 𝐴2 = 30.16 

Thus, the complete solution in Eq. (3) becomes 

𝑣(𝑡) = −5.156𝑒−854𝑡 + 30.16𝑒−146𝑡𝑉 

 

H.W. 6: Refer to the circuit in Fig.1. Find 𝑣(𝑡) for 𝑡 > 0. 

Answer: 𝟏𝟎𝟎(𝒆−𝟏𝟎𝒕 − 𝒆−𝟐.𝟓𝒕)𝑽. 
 

 

 

                                                                                                              Fig.1 

 

 

5) Step Response of a Series RLC Circuit 

Consider the series RLC circuit shown in 

Fig.5.1. Applying KVL around the loop 

for 𝑡 > 0, 

𝐿
𝑑𝑖

𝑑𝑡
+ 𝑅𝑖 + 𝑣 = 𝑉𝑠                            (5.1) 

But 

𝑖 = 𝐶
𝑑𝑣

𝑑𝑡
                                                   Fig.5.1Step voltage applied to a series RLC circuit                                                           

Substituting for 𝑖 in Eq. (8.39) and rearranging terms, 

𝑑2𝑣

𝑑𝑡2
+

𝑅

𝐿

𝑑𝑣

𝑑𝑡
+

𝑣

𝐿𝐶
=

𝑉𝑠

𝐿𝐶
 (5.2) 

which has the same form as Eq. (3.3). More specifically, the coefficients are the same (and 

that is important in determining the frequency parameters) but the variable is different. 
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(Likewise, see Eq. (5.9).) Hence, the characteristic equation for the series RLC circuit is not 

affected by the presence of the dc source. 

The solution to Eq. (5.2) has two components: the transient response 𝑣𝑡(𝑡) and the steady‐

state response 𝑣𝑠𝑠(𝑡) ; that is, 

𝑣(𝑡) = 𝑣𝑡(𝑡) + 𝑣𝑠𝑠(𝑡) (5.3) 

The transient response 𝑣𝑡(𝑡) is the component of the total response that dies out with time. 

The form of the transient response is the same as the form of the solution obtained in Section 
3 for the source‐free circuit, given by Eqs. (3.13), (3.20), and (3.25). Therefore, the transient 

repsonse 𝑣𝑡(𝑡) for the overdamped, underdamped, and critically damped cases are: 

𝑣𝑡(𝑡) = 𝐴1𝑒𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡                               (Overdamped)    (5.4a) 

𝑣𝑡(𝑡) = (𝐴1 + 𝐴2𝑡)𝑒−𝛼𝑡                                (Critically damped)    (5.4b) 

𝑣𝑡(𝑡) = (𝐴1 cos 𝜔𝑑𝑡 + 𝐴2 sin 𝜔𝑑𝑡)𝑒−𝛼𝑡        (Underdamped) (5.4c) 

The steady‐state response is the final value of 𝑣(𝑡) . In the circuit in Fig.5.1, the final value 

of the capacitor voltage is the same as the source voltage 𝑉𝑠. Hence, 

𝑣𝑠𝑠(𝑡) = 𝑣(∞) = 𝑉𝑠    (5.5) 

Thus, the complete solutions for the overdamped, underdamped, and critically damped cases 

are: 

𝑣(𝑡) = 𝑉𝑠  + 𝐴1𝑒𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡                               (Overdamped)    (5.6a) 

𝑣(𝑡) = 𝑉𝑠  + (𝐴1 + 𝐴2𝑡)𝑒−𝛼𝑡                                (Critically damped)    (5.6b) 

𝑣(𝑡) = 𝑉𝑠  + (𝐴1 cos 𝜔𝑑𝑡 + 𝐴2 sin 𝜔𝑑𝑡)𝑒−𝛼𝑡        (Underdamped) (5.6c) 

The values of the constants 𝐴1 and 𝐴2 are obtained from the initial conditions: 𝑣(𝑂) and 

𝑑𝑣(𝑂)/𝑑𝑡. Keep in mind that 𝑣 and 𝑖 are, respectively, the voltage across the capacitor and 

the current through the inductor. Therefore, Eq. (5.6) only applies for finding 𝑣. But once 

the capacitor voltage 𝑣𝐶 = 𝑣 is known, we can determine 𝑖 = 𝐶𝑑𝑣/𝑑𝑡, which is the same 

current through the capacitor, inductor, and resistor. Hence, the voltage across the resistor 

is 𝑣𝑅 = 𝑖𝑅, while the inductor voltage is 𝑣𝐿 = 𝐿𝑑𝑖/𝑑𝑡. 

Alternatively, the complete response for any variable 𝑥(𝑡) can be found directly, because it 

has the general form 

𝑥(𝑡) = 𝑥𝑠𝑠(𝑡) + 𝑥𝑡(𝑡) (5.7) 
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where the 𝑥𝑠𝑠 = 𝑥(∞) is the final value and 𝑥𝑡(𝑡) is the transient response. The final value 

is found as in Section 8.2. The transient response has the same form as in Eq. (5.4), and the 

associated constants are deter‐ mined from Eq. (5.6) based on the values of 𝑥(𝑂) and 

𝑑𝑥(𝑂)/𝑑𝑡. 

Example 7: For the circuit in Fig. 1, find 𝑣(𝑡) and 𝑖(𝑡) for 𝑡 > 0. Consider these cases: 

𝑅 = 5𝛺, 𝑅 = 4𝛺, and 𝑅 = 1𝛺 

Solution: 

CASE 1 When 𝑅 = 5𝛺. For 𝑡 < 0, the switch is 

closed for a long time. The capacitor behaves like 

an open circuit while the inductor acts like a short 

circuit. The initial current through the Figure 8.19 

inductor is                                                                                                Fig. 1 

𝑖(0) =
24

5 + 1
= 4𝐴 

and the initial voltage across the capacitor is the same as the voltage across the 1 − 𝛺 

resistor; that is, 

𝑣(𝑂) = 1𝑖(𝑂) = 4𝑉 

For 𝑡 > 0, the switch is opened, so that we have the 1 − 𝛺 resistor disconnected. What 

remains is the series RLC circuit with the voltage source. The characteristic roots are 

determined as follows: 

𝛼 =
𝑅

2𝐿
=

5

2×1
= 2.5,     𝜔0 =

1

√𝐿𝐶
=

1

√1×025
= 2 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −1, −4 

Since 𝛼 > 𝜔0, we have the overdamped natural response. The total response is therefore 

𝑣(𝑡) = 𝑣𝑠𝑠 + (𝐴1𝑒−𝑡 + 𝐴2𝑒−4𝑡) 

where 𝑣𝑠𝑠 is the steady‐state response. It is the final value of the capacitor voltage. In Fig. 

1, 𝑣𝑓 = 24 V. Thus, 

𝑣(𝑡) = 24 + (𝐴1𝑒−𝑡 + 𝐴2𝑒−4𝑡)  (1) 

We now need to find 𝐴1 and 𝐴2 using the initial conditions. 

𝑣(0) = 4 = 24 + 𝐴1 + 𝐴2 
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or 

−20 = 𝐴1 + 𝐴2 (2) 

 

The current through the inductor cannot change abruptly and is the same current through the 

capacitor at 𝑡 = 0+ because the inductor and capacitor are now in series. Hence, 

𝑖(0) = 𝐶
𝑑𝑣(0)

𝑑𝑡
= 4 ⇒  

𝑑𝑣(0)

𝑑𝑡
=

4

𝐶
=

4

0.25
= 16 

Before we use this condition, we need to take the derivative of 𝑣 in Eq. (1). 

𝑑𝑣

𝑑𝑡
= −𝐴1𝑒−𝑡 − 4𝐴2𝑒−4𝑡 (3) 

At 𝑡 = 0, 
  

𝑑𝑣(0)

𝑑𝑡
= 16 = −𝐴1 − 4𝐴2 (4) 

From Eqs. (2) and (4), 𝐴1 = −64/3 and 𝐴2 = 4/3. Substituting 𝐴1 and 𝐴2 in Eq. (1), we 

get 

𝑣(𝑡) = 24 +
4

3
(−16𝑒−𝑡 + 𝑒−4𝑡)𝑉 (5) 

Since the inductor and capacitor are in series for 𝑡 > 0, the inductor current is the same as 

the capacitor current. Hence, 

𝑖(𝑡) = 𝐶
𝑑𝑣

𝑑𝑡
 

Multiplying Eq. (3) by 𝐶 = 0.25 and substituting the values of 𝐴1 and 𝐴2 gives 

𝑖(𝑡) =
4

3
(4𝑒−𝑡 − 𝑒−4𝑡)𝐴    (6) 

Note that 𝑖(𝑂) = 4𝐴, as expected. 

 

CASE 2 When 𝑅 = 4𝛺. Again, the initial current through the inductor is 

𝑖(0) =
24

4 + 1
= 4.8𝐴 
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and the initial capacitor voltage is 

𝑣(𝑂) = 1𝑖(𝑂) = 4.8𝑉 

For the characteristic roots, 

𝛼 =
𝑅

2𝐿
=

4

2×1
= 2 

while 𝜔0 = 2 remains the same. In this case, 𝑠1 = 𝑠2 = −𝛼 = −2, and we have the 

critically damped natural response. The total response is therefore 

𝑣(𝑡) = 𝑣𝑠𝑠 + (𝐴1 + 𝐴2𝑡)𝑒−2𝑡 

and, as before 𝑣𝑠𝑠 = 24𝑉, 

𝑣(𝑡) = 24 + (𝐴1 + 𝐴2𝑡)𝑒−2𝑡   (7) 

To find 𝐴1 and 𝐴2, we use the initial conditions. We write  

𝑣(𝑂) = 4.8 = 24 + 𝐴1  ⇒  𝐴1 = −19.2    (8) 

Since 𝑖(𝑂) = 𝐶𝑑𝑣(𝑂)/𝑑𝑡 = 4.8  

or 

𝑑𝑣(0)

𝑑𝑡
=

4.8

𝐶
= 19.2 

From Eq. (7), 

𝑑𝑣

𝑑𝑡
= (−2𝐴1 − 2𝑡𝐴2 + 𝐴2)𝑒−2𝑡    (9) 

At 𝑡 = 0, 

𝑑𝑣(0)

𝑑𝑡
= 19.2 = −2𝐴1 + 𝐴2    (10) 

From Eqs. (8) and (10), 𝐴1 = −19.2 and 𝐴2 = −19.2. Thus, Eq. (7) becomes 

𝑣(𝑡) = 24 − 19.2(1 + 𝑡)𝑒−2𝑡𝑉  (11) 

The inductor current is the same as the capacitor current; that is, 

𝑖(𝑡) = 𝐶
𝑑𝑣

𝑑𝑡
 

Multiplying Eq. (9) by 𝐶 = 0.25 and substituting the values of 𝐴1 and 𝐴2 gives 

𝑖(𝑡) = (4.8 + 9.6𝑡)𝑒−2𝑡𝐴  (12) 

Note that 𝑖(𝑂) = 4.8𝐴, as expected. 
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 CASE 3 When 𝑅 = 1𝛺. The initial inductor current is 

𝑖(0) =
24

1 + 1
= 12𝐴 

and the initial voltage across the capacitor is the same as the voltage across the 1 − 𝛺 

resistor, 

𝑣(𝑂) = 1𝑖(𝑂) = 12𝑉 

𝛼 =
𝑅

2𝐿
=

1

2×1
= 0.5 

Since 𝛼 = 0.5 < 𝜔0 = 2, we have the underdamped response 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −0.5 ± 𝑗1.936 

The total response is therefore 

𝑣(𝑡) = 24 + (𝐴1 cos 1.936𝑡 + 𝐴2 sin 1.936𝑡)𝑒−0.5𝑡    (13) 

We now determine 𝐴1 and 𝐴2. We write 

𝑣(𝑂) = 12 = 24 + 𝐴1  ⇒  𝐴1 = −12    (14) 

Since 𝑖(𝑂) = 𝐶𝑑𝑣(𝑂)/𝑑𝑡 = 12, 

𝑑𝑣(0)

𝑑𝑡
=  

12

𝐶
= 48     (15) 

But 

𝑑𝑣

𝑑𝑡
= 𝑒−0.5𝑡(−1.936𝐴1 sin 1.936𝑡 + 1.936𝐴2 cos 1.936𝑡) 

−0.5𝑒−0.5𝑡(𝐴1 cos 1.936𝑡 + 𝐴2 sin 1.936𝑡) 

(16) 

At 𝑡 = 0, 

𝑑𝑣(0)

𝑑𝑡
= 48 = (−0 + 1.936𝐴2) − 0.5(𝐴1 + 0) 

Substituting 𝐴1 = −12 gives 𝐴2 = 21.694, and Eq. (13) becomes 

𝑣(𝑡) = 24 + (21.694 sin 1.936𝑡 − 12 cos 1.936𝑡)𝑒−0.5𝑡𝑉     (17) 

The inductor current is 
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𝑖(𝑡) = 𝐶
𝑑𝑣

𝑑𝑡
 

Multiplying Eq. (16) by 𝐶 = 0.25 and substituting the values of 𝐴1 and 𝐴2 gives 

𝑖(𝑡) = (3.1 sin 1.936𝑡 + 12 cos 1.936𝑡)𝑒−0.5𝑡𝐴     (18) 

Note that 𝑖(𝑂) = 12𝐴, as expected. 

Fig.2  plots the responses for the three cases. From this figure, we observe that the critically 

damped response approaches the step input of 24 𝑉 the fastest. 

 

Fig.2  response for three degrees of damping. 

 

H.W. 7: Having been in position 𝑎 for a long time, the switch in Fig.1 is moved to position 

𝑏 at 𝑡 = 0. Find 𝑣(𝑡) and 𝑣𝑅(𝑡) for 𝑡 > 0. 

Answer: 10—(𝟏. 𝟏𝟓𝟒𝟕  𝐬𝐢𝐧 𝟑. 𝟒𝟔𝟒𝒕 + 𝟐 𝐜𝐨𝐬 𝟑. 𝟒𝟔𝟒𝒕)𝒆−𝟐𝒕𝑽, 2. 𝟑𝟏𝒆−𝟐𝒕 𝐬𝐢𝐧 𝟑. 𝟒𝟔𝟒𝒕𝑽. 
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Fig.1 

 

 

6) Step Response of a Parallel RLC Circuit 

Consider the parallel RLC circuit shown in 

Fig.6.1. We want to find 𝑖 due to a sudden 

application of a dc current. Applying KCL 

at the top node for 𝑡 > 0,                            Fig.6.1 Parallel RLC circuit with an applied current. 

𝑣

𝑅
+ 𝑖 + 𝐶

𝑑𝑣

𝑑𝑡
= 𝐼𝑠 (6.1) 

But 

𝑣 = 𝐿
𝑑𝑖

𝑑𝑡
 

Substituting for 𝑣 in Eq. (6.1) and dividing by 𝐿𝐶, we get 

𝑑2𝑖

𝑑𝑡2
+

1

𝑅𝐶

𝑑𝑖

𝑑𝑡
+

𝑖

𝐿𝐶
=

𝐼𝑠

𝐿𝐶
     (6.2) 

which has the same characteristic equation as Eq. (4.3). 

The complete solution to Eq. (6.2) consists of the transient response 𝑖𝑡(𝑡) and the steady‐

state response 𝑖𝑠𝑠; that is, 

𝑖(𝑡) = 𝑖𝑡(𝑡) + 𝑖𝑠𝑠(𝑡)     (6.3) 

The transient response is the same as what we had in Section 4. The steady‐state response 

is the final value of 𝑖. In the circuit in Fig.6.1, the final value of the current through the 

inductor is the same as the source current 𝐼𝑠. Thus, 

𝑖(𝑡) = 𝐼𝑠  + 𝐴1𝑒𝑠1𝑡 + 𝐴2𝑒𝑠2𝑡                               (Overdamped)    (6.4a) 

𝑖(𝑡) = 𝐼𝑠  + (𝐴1 + 𝐴2𝑡)𝑒−𝛼𝑡                                (Critically damped)    (6.4b) 

𝑖(𝑡) = 𝐼𝑠  + (𝐴1 cos 𝜔𝑑𝑡 + 𝐴2 sin 𝜔𝑑𝑡)𝑒−𝛼𝑡        (Underdamped) (6.4c) 

The constants 𝐴1 and 𝐴2 in each case can be determined from the initial conditions for 𝑖 and 

𝑑𝑖/𝑑𝑡. Again, we should keep in mind that Eq. (6.4) only applies for finding the inductor 

current 𝑖. But once the inductor current 𝑖𝐿 = 𝑖 is known, we can find 𝑣 = 𝐿𝑑𝑖/𝑑𝑡, which is 

the same voltage across inductor, capacitor, and resistor. Hence, the current through the 
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resistor is 𝑖𝑅 = 𝑣/𝑅, while the capacitor current is 𝑖𝐶 = 𝐶𝑑𝑣/𝑑𝑡. Alternatively, the complete 

response for any variable 𝑥(𝑡) may be found directly, using 

𝑥(𝑡) = 𝑥𝑠𝑠(𝑡) + 𝑥𝑡(𝑡)     (6.5) 

where 𝑥𝑠𝑠 and 𝑥𝑡 are its final value and transient response, respectively. 

Example 8: In the circuit of Fig.1, find 𝑖(𝑡) and 𝑖𝑅(𝑡) for 𝑡 > 0. 

Solution: 

For 𝑡 < 0, the switch is open, and the 

circuit is partitioned into two inde‐ 

pendent subcircuits. The 4‐𝐴 current 

flows through the inductor, so that 

𝑖(0) = 4𝐴                                                                                      Fig.1 

Since 30𝑢(−𝑡) = 30 when 𝑡 < 0 and 0 when 𝑡 > 0, the voltage source is operative for 𝑡 <

0. The capacitor acts like an open circuit and the voltage across it is the same as the voltage 

across the 20 − 𝛺 resistor connected in parallel with it. By voltage division, the initial 

capacitor voltage is 

𝑣(𝑂) =
20

20 + 20
(30) = 15𝑉 

For 𝑡 > 0, the switch is closed, and we have a parallel RLC circuit with a current source. 

The voltage source is zero which means it acts like a short‐circuit. The two 20 − 𝛺 resistors 

are now in parallel. They are combined to give 𝑅 = 20‖20 = 10𝛺. The characteristic roots 

are determined as follows: 

𝛼 =
1

2𝑅𝐶
=

1

2×10×8×10−3
= 6.25 

𝜔0 =
1

√𝐿𝐶
=

1

√20×8×10−3
= 2.5 

𝑠1,2 = −𝛼 ± √𝛼2 − 𝜔0
2 = −6.25 ± √390625 − 625 = −6.25 ± 5.7282 

or 

𝑠1 = −11.978, 𝑠2 = −0.5218 

Since 𝛼 > 𝜔0, we have the overdamped case. Hence, 
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𝑖(𝑡) = 𝐼𝑠 + 𝐴1𝑒−11978𝑡 + 𝐴2𝑒−0.5218𝑡     (1) 

where 𝐼𝑠 = 4 is the final value of 𝑖(𝑡) . We now use the initial conditions to determine 𝐴1 

and 𝐴2. At 𝑡 = 0, 

𝑖(𝑂) = 4 = 4 + 𝐴1 + 𝐴2  ⇒  𝐴2 = −𝐴1 (2) 

Taking the derivative of 𝑖(𝑡) in Eq. (1), 

𝑑𝑖

𝑑𝑡
= −11.978𝐴1𝑒−11978𝑡 − 0.5218𝐴2𝑒−0.5218𝑡 

so that at 𝑡 = 0, 

𝑑𝑖(0)

𝑑𝑡
= −11.978𝐴1 − 0.5218𝐴2     (3) 

But 

𝐿
𝑑𝑖(0)

𝑑𝑡
= 𝑣(0) = 15 ⇒ 

𝑑𝑖(0)

𝑑𝑡
=

15

𝐿
=

15

20
= 0.75 

Substituting this into Eq. (3) and incorporating Eq. (2), we get 

0.75 = (11.978 − 0.5218)𝐴2  ⇒  𝐴2 = 0.0655 

Thus, 𝐴1 = −0.0655 and 𝐴2 = 0.0655. Inserting 𝐴1 and 𝐴2 in Eq. (1) gives the complete 

solution as 

𝑖(𝑡) = 4 + 0.0655(𝑒−0.5218𝑡 − 𝑒−11978𝑡)𝐴 

From 𝑖(𝑡) , we obtain 𝑣(𝑡) = 𝐿𝑑𝑖/𝑑𝑡 and 

𝑖𝑅(𝑡) =
𝑣(𝑡)

20
=

𝐿

20

𝑑𝑖

𝑑𝑡
= 0.785𝑒−11978𝑡 − 0.0342𝑒−0.5218𝑡𝐴 

 

H.W. 8: Find 𝑖(𝑡) and 𝑢(𝑡) for 𝑡 > 0 in the circuit of Fig.1. 

Answer: 𝟏𝟐(𝟏 −  𝐜𝐨𝐬 𝒕)𝑨, 𝟔𝟎 𝐬𝐢𝐧 𝒕𝑽. 

 

Fig.1 
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7) General Second‐Order Circuits 

Now that we have mastered series and parallel RLC circuits, we are prepared to apply the 

ideas to any second-order circuit having one or more independent sources with constant 

values. Although the series and parallel RLC circuits are the second-order circuits of 

greatest interest, other second-order circuits including op amps are also useful. Given a 

second-order circuit, we determine its step response x(t) (which may be voltage or current) 

by taking the following four steps: 

1. We first determine the initial conditions 𝑥(𝑂) and 𝑑𝑥(𝑂)/𝑑𝑡 and the final value 𝑥(∞) , 

as discussed in Section 2. 

2. We turn off the independent sources and find the form of the transient response 𝑥𝑡(𝑡) by 

applying KCL and KVL. Once a second‐order differential equation is obtained, we 

determine its characteristic roots. Depending on whether the response is overdamped, 

critically damped, or underdamped, we obtain 𝑥𝑡(𝑡) with two unknown constants as we did 

in the previous sections. 

3. We obtain the steady‐state response as 

𝑥𝑠𝑠(𝑡) = 𝑥(∞)   (7.1) 

where 𝑥(∞) is the final value of 𝑥, obtained in step 1. 

4. The total response is now found as the sum of the transient response and steady‐state 

response 

𝑥(𝑡) = 𝑥𝑡(𝑡) + 𝑥𝑠𝑠(𝑡)   (7.2) 

We finally determine tℎ𝑒𝑐onstants associated with the transients response by imposing the 

initial conditions x(0) and dx(0)/dt, determined in step 1. 

We can apply this general procedure to find the step response of any second‐order circuit, 

including those with op amps. The following examples illustrate the four steps. 

Example 9: Find the complete response 𝑣 and then 𝑖 for 𝑡 > 0 in the circuit of Fig.1 

Solution: 

We first find the initial and final values. At 𝑡 = 0−, 

the circuit is at steady state. The switch is open; the 

equivalent circuit is shown in Fig.2(a). It is evident 

from the figure that 

 

𝑣(0−) = 12𝑉,        𝑖(0−) = 0                                                                     Fig.1 
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At 𝑡 = 0+, the switch is closed; the equivalent circuit is in Fig.2(b). By the continuity of 

capacitor voltage and inductor current, we know that 

𝑣(0+) = 𝑣(0−) = 12𝑉, 𝑖(0+) = 𝑖(0−) = 0   (1) 

To get 𝑑𝑣(0+)/𝑑𝑡, we use 𝐶𝑑𝑢/𝑑𝑡 = 𝑖𝐶 or 𝑑𝑣/𝑑𝑡 = 𝑖𝐶/𝐶. 

Applying KCL at node 𝑎 in Fig.2(b), 

𝑖(0+) = 𝑖𝐶(0+) +
𝑣(0+)

2
 

0 = 𝑖𝐶(0+) +
12

2
 ⇒  𝑖𝐶(0+) = −6𝐴 

Hence, 

𝑑𝑣(0+)

𝑑𝑡
=

−6

0.5
= −12𝑉/𝑠    (2) 

The final values are obtained when the inductor is replaced by 

a short circuit and the capacitor by an open circuit in Fig.2(b), 

giving 

𝑖(∞) =
12

4+2
= 2𝐴, 𝑣(∞) = 2𝑖(∞) = 4𝑉     (3) 

Next, we obtain the form of the transient response for 𝑡 > 0. By turning off the 12‐𝑉 voltage 

source, we have the circuit in Fig.3. Applying KCL at node 𝑎 in Fig.3 gives 

𝑖 =
𝑣

2
+

1

2
 
𝑑𝑣

𝑑𝑡
    (4) 

Applying KVL to the left mesh results in 

4𝑖 + 1
𝑑𝑖

𝑑𝑡
+ 𝑣 = 0     (5) 

Since we are interested in 𝑢 for the moment, we substitute 

𝑖 from Eq. (4) into Eq. (5). We obtain 

2𝑣 + 2
𝑑𝑣

𝑑𝑡
+

1

2

𝑑𝑣

𝑑𝑡
+

1

2

𝑑2𝑣

𝑑𝑡2
+ 𝑣 = 0  

or 

𝑑2𝑣

𝑑𝑡2
+ 5

𝑑𝑣

𝑑𝑡
+ 6𝑣 = 0 

From this, we obtain the characteristic equation as 

Fig.2 Equivalent circuit of 

the circuit in Fig.1 for: (a) 

𝑡 < 0, (𝑏)𝑡 > 0.  

 

Fig.3 Obtaining the form 

of the transient response 
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𝑠2 + 5𝑠 + 6 = 0 

with roots 𝑠 = −2 and 𝑠 = −3. Thus, the natural response is 

𝑣𝑛(𝑡) = 𝐴𝑒−2𝑡 + 𝐵𝑒−3𝑡 (6) 

where 𝐴 and 𝐵 are unknown constants to be determined later. The steady‐state response is 

𝑣𝑠𝑠(𝑡) = 𝑣(∞) = 4    (7) 

The complete response is  

𝑣(𝑡) = 𝑣𝑡 + 𝑣𝑠𝑠 = 4 + 𝐴𝑒−2𝑡 + 𝐵𝑒−3𝑡    (8) 

We now determine 𝐴 and 𝐵 using the initial values. From Eq. (1), 𝑣(𝑂) = 12. Substituting 

this into Eq. (8) at 𝑡 = 0 gives 

12 = 4 + 𝐴 + 𝐵 ⇒  𝐴 + 𝐵 = 8    (9) 

Taking the derivative of 𝑣 in Eq. (8), 

𝑑𝑣

𝑑𝑡
= −2𝐴𝑒−2𝑡 − 3𝐵𝑒−3𝑡  (10) 

Substituting Eq.(2) into Eq.(10), at t=0 gives  

−12 = −2𝐴 − 3𝐵 ⇒ 2𝐴 + 3𝐵 = 12 (11) 

From Eqs. (9) and (11), we obtain 

𝐴 = 12, 𝐵 = −4 

so that Eq. (8) becomes 

𝑣(𝑡) = 4 + 12𝑒−2𝑡 − 4𝑒−3𝑡𝑉,           𝑡 > 0   (12) 

From 𝑣, we can obtain other quantities of interest by referring to Fig.2(b). To obtain 𝑖, for 

example, 

𝑖 =
𝑣

2
+

1

2

𝑑𝑣

𝑑𝑡
= 2 + 6𝑒−2𝑡 − 2𝑒−3𝑡 − 12𝑒−2𝑡 + 6𝑒−3𝑡   

   = 2 − 6𝑒−2𝑡 + 4𝑒−3𝑡𝐴,        𝑡 > 0 
(13) 

Notice that 𝑖(𝑂) = 0, in agreement with Eq. (1). 

H.W. 9: Determine 𝑣 and 𝑖 for 𝑡 > 0 in the circuit of Fig.1.  

Answer: 𝟏𝟐(𝟏 − 𝒆−𝟓𝒕)𝑽, 𝟑(𝟏 − 𝒆−𝟓𝒕)𝑨. 
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Example 10: Find 𝑣𝑜(𝑡) for 𝑡 > 0 in the circuit of Fig.1. 

Solution: 

This is an example of a second‐order circuit with two 

inductors. We first obtain the mesh currents 𝑖1 and 𝑖2, 

which happen to be the currents through the inductors. 

We need to obtain the initial and final values of these 

currents. 

For 𝑡 < 0,     7𝑢(𝑡) = 0, so that 𝑖1(0−) = 0 = 𝑖2(0−) .                               Fig.1 

For 𝑡 > 0,    7𝑢(𝑡) = 7, so that the equivalent circuit is as shown in Fig.2(a). Due to the 

continuity of inductor current, 

𝑖1(0+) = 𝑖1(0−) = 0, 𝑖2(0+) = 𝑖2(0−) = 0   (1) 

𝑣𝐿2
(0+) = 𝑣𝑜(0+) = 1[(𝑖1(0+) − 𝑖2(0+)] = 0 (2) 

Applying KVL to the left loop in Fig.2(a)  at 𝑡 = 0+, 

7 = 3𝑖1(0+) + 𝑣𝐿1
(0+) + 𝑣𝑜(0+) 

 

Fig.2 Equivalent circuit of that in Fig.1  for: (a) 𝑡 > 0, (𝑏)𝑡 → ∞. 

or 

𝑣𝐿1
(0+) = 7𝑉 

Since 𝐿1𝑑𝑖1/𝑑𝑡 = 𝑣𝐿1
, 

𝑑𝑖1(0+)

𝑑𝑡
=

𝑣𝐿1

𝐿1
=

7
1

2

= 14𝑉/𝑠     (3) 

Similarly, since 𝐿2𝑑𝑖2/𝑑𝑡 = 𝑣𝐿2
,  

𝑑𝑖2(0+)

𝑑𝑡
=

𝑣𝐿2

𝐿2
= 0    (4) 
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As 𝑡 → ∞, the circuit reaches steady state, and the inductors can be replaced by short 

circuits, as shown in Fig.2 (b). From this figure, 

𝑖1(∞) = 𝑖2(∞) =
7

3
𝐴     (5) 

Next, we obtain the form of the transient responses by removing the voltage source, as 

shown in Fig.3. Applying KVL to the two meshes yields 

4𝑖1 − 𝑖2 +
1

2

𝑑𝑖1

𝑑𝑡
= 0    (6) 

and  

𝑖2 + 
1

5

𝑑𝑖2

𝑑𝑡
− 𝑖1 = 0  (7) 

From Eq. (6),  

𝑖2 = 4𝑖1 +
1

2

𝑑𝑖1

𝑑𝑡
    (8) 

Substituting Eq. (8) into Eq. (7) gives 

4𝑖1 +
1

2

𝑑𝑖1

𝑑𝑡
+

4

5

𝑑𝑖1

𝑑𝑡
+

1

10

𝑑2𝑖1

𝑑𝑡2
− 𝑖1 = 0 

𝑑2𝑖1

𝑑𝑡2
+ 13

𝑑𝑖1

𝑑𝑡
+ 30𝑖1 = 0 

From this we obtain the characteristic equation as 

𝑠2 + 13𝑠 + 30 = 0 

which has roots 𝑠 = −3 and 𝑠 = −10. Hence, the form of the transient response is 

𝑖1𝑛 = 𝐴𝑒−3𝑡 + 𝐵𝑒−10𝑡     (9) 

where 𝐴 and 𝐵 are constants. The steady‐state response is 

𝑖1𝑠𝑠 = 𝑖1(∞) =
7

3
𝐴   (10) 

From Eqs. (9) and (10), we obtain the complete response as  

𝑖1(𝑡) =
7

3
+ 𝐴𝑒−3𝑡 + 𝐵𝑒−10𝑡 (11) 

We finally obtain 𝐴 and 𝐵 ffom the initial values. From Eqs. (1) and (11),  

0 =
7

3
+ 𝐴 + 𝐵 (12) 

Taking the derivative of Eq. (11), setting 𝑡 = 0 in the derivative, and enforcing Eq. (3), we 

obtain 

14 = −3𝐴 − 10𝐵  (13) 

From Eqs. (12) and (13), 𝐴 = −4/3 and 𝐵 = −1. Thus,  

Fig.3 Obtaining the form 

of the transient response 
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𝑖1(𝑡) =
7

3
−

4

3
𝑒−3𝑡 −𝑒−10𝑡   (14) 

We now obtain 𝑖2 from 𝑖1. Applying KVL to the left loop in Fig.2 (a) gives 

7 = 4𝑖1 − 𝑖2 +
1

2

𝑑𝑖1

𝑑𝑡
 ⇒  𝑖2 = −7 + 4𝑖1 +

1

2

𝑑𝑖1

𝑑𝑡
 

Substituting for 𝑖1 in Eq. (14) gives 

 

𝑖2(𝑡) = −7 +
28

3
−

16

3
𝑒−3𝑡 − 4𝑒−10𝑡 + 2𝑒−3𝑡 + 5𝑒−10𝑡

=
7

3
−

10

3
𝑒−3𝑡 + 𝑒−10𝑡 

(15) 

From Fig.1,  

𝑣𝑜(𝑡) = 1[𝑖1(𝑡) − 𝑖2(𝑡)] (16) 

Substituting Eqs. (14) and (15) into Eq. (16) yields  

𝑣𝑜(𝑡) = 2(𝑒−3𝑡 − 𝑒−10𝑡) (17) 

Note that 𝑣𝑜(0) = 0, as expected from Eq. (2). 

 

H.W. 10: For 𝑡 > 0, obtain 𝑣𝑜(𝑡) in the circuit of Fig.1. (Hint: First find 𝑣1 and 𝑣2. ) 

Answer: 𝟖(𝒆−𝒕 − 𝒆−𝟔𝒕)𝑽, 𝒕 > 𝟎. 
 

 


