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6.1 INTRODUCTION 

The procedure for determining the electric field   in the preceding chapters has 

generally been using either Coulomb's law or Gauss's law when the charge 

distribution is known, or using (     ) when the potential   is known 

throughout the region.  

In this chapter, we shall consider practical electrostatic problems where only 

electrostatic conditions (charge and potential) at some boundaries are known and it 

is desired to find (  and  ) throughout the region. Such problems are usually 

tackled using Poisson's or Laplace's equation or the method of images, and they are 

usually referred to as boundary value problems. We shall use Laplace's equation in 

deriving the resistance of an object and the capacitance of a capacitor. 

6.2 POISSON'S AND LAPLACE'S EQUATIONS 

Poisson's and Laplace's equations are easily derived from Gauss's law (for a linear 

material medium) 

                                                                                                                             

and 

                                                                                                                                       

Substituting equation (6.2) into equation (6.1) gives 

                                                                                                                                 

for an inhomogeneous medium. For a homogeneous medium, equation (6.3) 

becomes 

     
  

 
                                                                                                                            

This is known as Poisson's equation. A special case of this equation occurs when 

     (i.e., for a charge-free region). Equation (6.4) then becomes 
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which is known as Laplace's equation. Note that in taking ( ) out of the left-hand 

side of equation (6.3) to obtain equation (6.4), we have assumed that ( ) is constant 

throughout the region in which   is defined; for an inhomogeneous region, ( ) is 

not constant and equation (6.4) does not follow equation (6.3). Equation (6.3) is 

Poisson's equation for an inhomogeneous medium; it becomes Laplace's equation 

for an inhomogeneous medium when        . 

Where    is called the Laplacian operator.  

Thus Laplace's equation in Cartesian, cylindrical, or spherical coordinates 

respectively is given by 
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depending on whether the potential is         ,         , or         . 

Poisson's equation in those coordinate systems may be obtained by simply 

replacing zero on the right-hand side of equations (6.6), (6.7), and (6.8) with  
  

 
. 

Laplace's equation is of primary importance in solving electrostatic problems 

involving a set of conductors maintained at different potentials.  

6.3 UNIQUENESS THEOREM 

If a solution of Laplace's equation satisfies a given set of boundary conditions, 

there is only one solution. We say that the solution is unique. Thus any solution of 

Laplace's equation which satisfies the same boundary conditions must be the only 

solution regardless of the method used. This is known as the uniqueness theorem. 

We assume that there are two solutions    and    of Laplace's equation both of 

which satisfy the prescribed boundary conditions. Thus 
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We consider their difference 

                                                                                                                                  

which obeys 

                                                                                                                 

                                                                                                                      

according to equation (6.9). From the divergence theorem. 

∫          

 

 ∮      
 

                                                                                                     

We let          and use a vector identity 

                               

But        according to equation (6.11), so 

                                                                                                                               

Substituting equation (6.13) into eq. (6.12) gives 

∫           

 

 ∮         
 

                                                                                      

From equations (6.9) and (6.11), it is evident that the right-hand side of eq. (6.14) 

vanishes. 

Hence: 

∫         
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Since the integration is always positive. 

                                                                                                                                    

                                                                                                                                      

                                                                                               

But equation (6.15) must be consistent with equation (6.9b). Hence,      or 

      everywhere, showing that    and    cannot be different solutions of the 

same problem. 

This is the uniqueness theorem: If a solution to Laplace's equation can be found 

that satisfies the boundary conditions, then the solution is unique. 

Similar steps can be taken to show that the theorem applies to Poisson's equation 

and to prove the theorem for the case where the electric field (potential gradient) is 

specified on the boundary. 

Before we begin to solve boundary-value problems, we should bear in mind the 

three things that uniquely describe a problem: 

 The appropriate differential equation (Laplace's or Poisson's equation) 

 The solution region 

 The prescribed boundary conditions 

A problem does not have a unique solution and cannot be solved completely if any 

of the three items is missing. 

 

6.4 GENERAL PROCEDURE FOR SOLVING POISSON'S OR LAPLACE'S 

EQUATION 

The following general procedure may be taken in solving a given boundary-value 

problem involving Poisson's or Laplace's equation: 

1. Solve Laplace's (if     ) or Poisson's (if     ) equation using either (a) 

direct integration when   is a function of one variable, or (b) separation of 

variables if   is a function of more than one variable. The solution at this point is 
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not unique but expressed in terms of unknown integration constants to be 

determined. 

2. Apply the boundary conditions to determine a unique solution for  . Imposing 

the given boundary conditions makes the solution unique. 

3. Having obtained  , find E using       and D from      . 

4. If desired, find the charge   induced on a conductor using   ∫    
   where 

      and    is the component of D normal to the conductor. If necessary, the 

capacitance between two conductors can be found using      .  

Solving Laplace's (or Poisson's) equation, as in step 1, is not always as complicated 

as it may seem. In some cases, the solution may be obtained by mere inspection of 

the problem. Also a solution may be checked by going backward and finding out if 

it satisfies both Laplace's (or Poisson's) equation and the prescribed boundary 

conditions. 

Example 7.1: 

Let us assume that   is a function only of   and worry later about which physical 

problem we are solving when we have a need for boundary conditions.  

Applying Laplace’s equation to   

     
   

    
   

    
   

      

  is not a function of   or  , then Laplace’s equation reduces to 

     
   

   
   

and the partial derivative may be replaced by an ordinary derivative, since   is not 

a function of   or  , 

   

   
   

We integrate twice, obtaining 

  

  
   

And                                                       
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where   and   are constants of integration. 

Since the field varies only with   and is not a function of   and  , then   is a 

constant if   is a constant, in other words, the equipotential surfaces are described 

by setting   constant. These surfaces are parallel planes normal to the   axis. The 

field is thus that of a parallel-plate capacitor, and as soon as we specify the 

potential on any two planes, we may evaluate our constants of integration. 

In general, let      at      and      at     . This is boundary conditions 

         and                   

  
     

     
                               

         

     
                                                                    

and  

  
                 

     
 

A simpler answer would have been obtained by choosing simpler boundary 

conditions. If we had fixed     at     and      at    , then 

  
  

 
                       

and 

  
  

 
  

Here, we have  
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  ∫   
  

 
   

 

  
   

 
 

and the capacitance is 

  
   

  
 

   

 
 

Example 7.2: 

Let us assume that   is a function only of  , i.e we assume that the variation with 

respect to   only.  

Applying Laplace’s equation to   
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Laplace's equation becomes 
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)    

or the partial derivative may be replaced by an ordinary derivative 

     
 

 

 

  
( 

  

  
)    

Noting the   in the denominator, we exclude     from our solution and then 

multiply by   and integrate, 

 
  

  
   

rearrange, and integrate again, 

         

The equipotential surfaces are given by            and are cylinders, and the 

problem is that of the coaxial capacitor or coaxial transmission line. We choose a 

potential difference of    by letting      at    ,     at    ,    , and 

obtain 

    

   
 
 

 

   
 
 

 
 

from which  
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Example 7.3: 

Let us assume that   is a function only of   in cylindrical coordinates. We see that 

equipotential surfaces are given by           . These are radial planes. 

Boundary conditions might be     at     and      at    , leading to the 

physical problem detailed in Fig. 6.1.  

Applying Laplace’s equation to   
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Laplace's equation becomes 

 

  

   

                                                       
   

      

The solution is 

       

The boundary conditions determine   and  , and 

    

 

 
 

Taking the gradient of equation above produces the electric field intensity, 
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Fig 6.1 Two infinite radial planes with an interior angle  . An infinitesimal 

insulating gap exists at    . 

Note that E is a function of   and not of  . This does not contradict our original 

assumptions, which were restrictions only on the potential field. Note, however, 

that the vector field E is a function of  . 

 


