Chapter 8: Magnetic Forces, Materials, and Devices

8.1 INTRODUCTION
8.2 FORCES DUE TO MAGNETIC FIELDS

There are at least three ways in which force due to magnetic fields can be experienced. The force
can be [2].

e due to a moving charged particle in a B field,

e on acurrent element in an external B field, or

e between two current elements.

8.2.1 Force on a Charged Particle (Moving Charge)

In chapter two, we discussed that the electric force Fe on a stationary or moving electric charge Q

in an electric field is given by Coulomb’s law and is related to the electric field intensity E as [2]:
E=0E (8.1)

This shows that if Q is positive, Fe and E have the same direction and Fe is directly proportional
to both E and Q [1].

A magnetic field can exert force only on a moving charge. From experiments, it is found that the

magnetic force ﬁ experienced by a charge Q moving with a velocity u in a magnetic field B is

[2]:
Fn,=QuxB (8.2)

The force E has direction perpendicular to both u and B and whose magnitude is proportional
to the product of the magnitudes of the charge Q, its velocity u, the flux density B, and to the

sine of the angle between the vectors u and B [1].

A comparison between the electric force and the magnetic force can be made [2].
e The electric force Fe is independent of the velocity of the charge.
e The electric force Fe can perform work on the charge and change its kinetic energy.
e The magnetic force ﬁ depends on the charge velocity and is normal to it.
e The magnetic force F,, cannot perform work because it is at right angles to the direction

of motion of the charge (ﬁ.dL = 0); it does not cause an increase in Kinetic energy of

the charge.

e The magnitude of ﬁ is generally small compared to E except at high velocities.
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For a moving charge Q in the presence of both electric and magnetic fields, the total force on the
charge is given by superposition [2].

F=F,+E,=QE+QuxB
F=0Q(E+uxB) (8.3)

This equation is known as the Lorentz force equation, and its solution is required in determining
electron orbits in the magnetron, proton paths in the cyclotron, plasma characteristics in a
magneto-hydrodynamic (MHD) generator, or, in general, charged-particle motion in combined
electric and magnetic fields [1].

Lorentz force equation relates mechanical force to electrical force. If the mass of the charged
particle moving in E and B fields is (m), by Newton's second law of motion [2].

d
F=md—ltl=ma=Q(E+u><B) (8.4)

Table (8.1) Force on a Charged Particle

No. | State of Particle Electric Field Magnetic Field | Combined E and B Fields

1 Stationary QE - ——— QE
2 Moving QE QuxB Q(E+uxB)

8.2.2 Force on a Differential Current Element.

The force on a charged particle moving through a steady magnetic field may be written as the
differential force exerted on a differential element of charge [1].

dF = dQu X B (8.5)

The force on a current element (IdL) of a current-carrying conductor due to the magnetic field,

can be determined by using the fact that for convection current density [2]:

T=p,u (8.6)

The differential element of charge in equation (8.5) may also be expressed in terms volume

charge density [1].
dQ = pydv
Thus
dF = p,dvu X B
or
dF =J x Bdv (8.7)
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The relationship between differential current elements is [2]:

IdL = KdS = Jdv (8.8)

From equations (8.6) and (8.8) yields

Iszfdvzp,,udv=pvdvu=dQu

or
IdL—dQ dL=d dL—d
Todt = dl dt Qu
Hence,
IdL=dQ u (8.9)

An elemental charge dQ moving with velocity u is equivalent to a conduction current element
IdL. The force on a current element IdL in a magnetic field B is found by using equation (8.2)
with replace Qu by IdL; that is [2].

E,=QuxB
dF = IdL x B (8.10)

If the current [ is through a closed path L or circuit, the force on the circuit is given by

F= §1dL x B (8.11)

The magnetic field produced by the current element IdL does not exert force on the element
itself just as a point charge does not exert force on itself. The B field that exerts force on IdL
must be due to another element. In other words, The B field in equation (8.10) or (8.11) is

external to the current element IdL. If we have surface current elements KdS or a volume current

element Jdv, thus the Lorentz force equation become [1,2]:

dF = KdS x B (8.12)

dF = Jdv x B (8.13)

or

F= f KdS x B (8.14)
S

F = f Jdv x B (8.15)

4
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and
szgldeBz—IjgdeB (8.16)
F=ILxB (8.17)

The magnitude of the force is given by the familiar equation
F = BIL sinf (8.18)

Where, 0 is the angle between the vectors representing the direction of the current flow and the
direction of the magnetic flux density. Equation (17) or (18) applies only to a portion of the

closed circuit [1].

The magnetic field B: is defined as the force per unit current element. The magnetic field B: may

be defined from equation (8.2) as the vector which satisfies ﬁ/Q = u X B. Both of these

definitions of B show that B describes the force properties of a magnetic field [2].

8.2.3 Force between Two Current Elements
Consider the force between two elements I, dL; and I,dL,. According to Biot-Savart's law, both
current elements produce magnetic fields. So we may find the force d(dF;) on element I,dL;

due to the field dB, produced by element I,dL, as shown in Fig. 8.1.

Fig. 8.1 Force between two current loops
From equation (8.7) dF = IdL X B

But from Biot-Savart's law,
I,dL, X a
dezlloz 22 Ryq
4R,

(8.13)

Hence,
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Woly dLy X (I, dL, X ag,,)
41 R3,

d(dF,) = (8.14)

The law of force between two current elements. The total force F;, on current loop 1 due to

current loop 2 shown in Fig. 8.1 as

uolllz jg jg dL; x (dL, X ag, ) (8.15)

Ll R,
The force F, on loop 2 due to the magnetic field B; from loop 1 is obtained from equation (8.15)
by interchanging subscripts 1 and 2. It can be shown that F, = —F; thus F, and F, obey
Newton's third law that action and reaction are equal and opposite.
Example 8.1 [3]: Find the force on a straight conductor of length 0.30 m carrying a current of
5.0 A in the —a,, direction, where the field is

B =3.50+10"3(a,—a,) T

Solution: F=I(LXxB)

F = (5.0)[(0.30)(—a,) x (3.50 x 103(a,—a,))]

—da,—a
F=742%10"3 (#> N
V2

The force, of magnitude 7.42 mN, is at right angles to both the field B and the current

direction, as shown in Fig. 8.2.

Fig. 8.2
Example 8.2 [3]: Find the force on a particle of mass 1.70 = 10727 kg and charge 1.60 *
10719 ¢, if it enters a field B = 5 mT with an initial speed of 83.5 km/s.
Solution: Unless directions are known for B and U,, the particle's initial velocity, the force
cannot be calculated. Assuming that U, and B are perpendicular, as shown in Fig. 8.3.
= |Q|UB = (1.60 x 10719)(83.5 x 103)(5 x 1073) = 6.68 x 10717 N
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X X X X
(B into page)
Fig. 8.3
Example 8.3 [2]: A charged particle of mass 2kg and charge 3C starts at point (1, —2,0) with
velocity 4a, + 3a, m/s in an electric field (12a, + 10a, V/m). Attime t = 1 s, determine
(a) The acceleration of the particle, (b) Its velocity, (c) Its kinetic energy, (d) Its position

Solution: (a) According to Newton's second law of motion,

F =ma = QE
Where, a is the acceleration of the particle. Hence,
E 3
a= % = E(lZax + 10a,) = 18a, + 15a, m/s?

dua d
a=_-= E(u"' uy,u,) = 18a, + 15a,

(b) Equating components gives

du,

It =18 = u,=18t+ A
%=15 = u, =15t+B
dt x

du,

it =0 > u,=0C¢

Where A, B, and C are integration constants. But at t = 0, u = 4a, + 3a,. Hence,
u(t=0=4 = 4=04+4 > A=4
u,(t=0)=0 > 0=0+B = B=0
u,(t=0)=3 = 3=C = C=3

Substituting the values of A, B, and C, then

u = (ue uy, u,) = (18t + 4,15¢,3)

Hence

Uo1s) = (We Uy, u,) = 22a, + 15a, + 3a, m/s
(c) Kinetic energy

1 1
K.E.= Em|u|2 = E(Z)[ZZZ + 152 +32] =1187J
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(d)
dL

d
u= i a(x,y,z) = (18t + 4,15¢t,3)

Equating components yields

dx
E=ux=18t+4 = x =9t +4t+ A,
d
o, =15t > y=75t2+B,
dt
dz
E=uz=3 = z=3t+(;

Att =0, (x,y,2) =(1,-2,0); hence, A; =1, B;=-2, (=0
Substituting the values of A;, B; and C;, we get

(x,v,z) = (9t% + 4t + 1,7.5t% — 2,3t)
Hence,att =1, (x,y,z) = (14,5.5, 3).

Example 8.4 [2]: A charged particle of mass 1kg and charge 2C starts at the origin with zero
initial velocity in a region where E = 3a, V/m. Find

(@) The force on the particle, (b) The time it takes to reach point P(0,0, 12 m),

(c) Its velocity and acceleration at P, (d) Its K.E. at P.

Solution: (a)
ou
F=mE=QE=2(3az)=6aZN
ou d
(b) = = 6a, = = (uy, uy,u,)
du
Tt =0 % WS
ou,,
720 = uy:B
du,
T =6 = u,=6t+C
Since, u(t=0)=0 > A=B=C=0
Uy =u, =0, u, =6t
dx
ux—a=0 = x=4;
dy
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0z
uz=a=6t > z=3t*+(C,
At, t =0; (x,y,z) = (0,0,0) > Ai=B,=C, =
Hence, (x,y,2) = (0,0,3t2) = U= 6ta,
Atanytime,at P(0,0,12 m) > z=12=3t> > t=2sec
(c) u = 6ta, = 12a, m/s
a ou = 6a, m/s?

~ ot
(d) Kinetic energy

1 1
K.E.= Em|u|2 = E(1)(122) =727

Example 8.5 [2]: A charged particle of mass 2kg and 1C starts at the origin with velocity
3a, m/s and travels in a region of uniform magnetic field B = 10 a, Wb/m?. At t=4s.
Calculate (a) The velocity and acceleration of the particle (b) The magnetic force on it (c) Its

K.E. and location

Solution: (a)
P du PN
=m P Qu
du Q,. =
=—=—(uxB
a dt m(u )
Hence

P a, a, a,
E(uxax +uya, +u,a,) = Sl W U= 5(uya, —uyay)
0 0 10

By equating components, we get

du, du, ou,
P AT e S P

We can eliminate u, or u,, in above equations by taking second derivatives of one equation and

=0 => u,=¢,

making use of the other. Thus

0%u, du 0%u
=5—2=-25 al
ot2 dt Ur T G2

which is a linear differential equation

+ 25u,, =0

u, = C; cos5t + C, sin 5t

du, _
Su, = Pk —5C; sin 5t + 5C, cos 5t
or u, = —C; sin5t + C;, cos 5t

We now determine constants C,, C; and C, using the initial conditions. At t =0, u = 3a,,

hence.
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u, =0 = 0=C.1+C.0 = (=0
u,=3 = 3=-C.0+C.1 > (=3 & u,=0 = (C,=0
Substituting the values of C,, C; and C, into equations, gives
u = (uy,uy,u,) = (3sin5t, 3cos 5¢,0)
u(t =4) = (3sin20,3c0s20,0) = 2.739 a, + 1.224a, m/s

N

du .
a= i (15 cos 5t,—15sin 5¢,0)
and a(t = 4) = 6.101 a, — 13.703 a, m/s?
(b) F=ma=122a,—274a, N

o, F=QuxB=(1)(2739a,+ 1.224a,)(10a,) = 12.2a, — 27.4a, N
(c) Kinetic energy

1 2 1 2 2
K.E.=5mluf® = 5 (2)(2739 + 1.224°) = 9J

Example 8.6 [1]: A square loop of wire in the z = 0 plane carrying 2mA in the field of an

infinite filament on the y axis, as shown in Figure (8.4). Find the total force on the loop.

Free space
«~ 15A
(1,2,0)
(3,0,0) ;mA
Figure (8.4)
Solution: The field produced in the plane of the loop by the straight filament is
_ 1 _ 1 _ 15 A
B 4npa¢ T amx T mx /m
Therefore,
3x107°
B=p,H=47rx10""H = — % T

We use the integral form,

F=—Ij€B><dL
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The total force is the sum of the forces on the four sides.

F=—2><10‘3fl<3x—10_6a>><(dxa + dya, + dza )l
x z x yay z

2 1 2
a a a
F=-6x10"° f—zxdxax+ f—zxdyay+ J—Zxdxax J—Zxdyay
X 3 X 1
= y=0 x=3 y=0 i

- , ]
x

F=-2x10"3x3x%x10"° f7 J—( a,) + J—ay de( a,)

-x= = J

3 1 0

1
F=—-6x10"%|lnx a,+-|y

3 (_ax)

2

(—ax) +lnx a, +

1 0 3

2 1
F=-6x10""° [ln(3) ay —za, +In (5) a, + Zax] = —8a, pN

Example 8.7 [1]: Consider the two differential current elements shown in Figure (9.3).

Determine the differential force on dL,.

LdL,

; l—’ d(dE,)

Free space R, Poinl 2

e
LdL;

Point |

Solution: We have I;dL; = —3a,, Am at P;(5,2,1), and I,dL, = —4a, A.-m at P,(1,8,5).

Thus, Ry, = —4a, + 6a, + 4a,, |[Ry,| = /(—4)% + (6)% + (4)% and we use this equation,

Moly dL, X (I; dLy X ag, )
41 R2,

41 x 1077 x (—4a,) x [(—3a,) x (—4a, + 6a, + 4a,)]

d(dF,) =

d(dF,) = = 8.56a, nN
(dF;) 41( 16 + 36 + 16)15 4y n
oly dLy X (I dL, X ag,,)
d(dF,) = ik 417 R2 =
T Ky,
47 x 1077 x (—=3a,) X [(—4a,) x (4a, — 6a, — 4a
d(dF,) = (=3a,) x [(~4a,) x (4a, 4 )] = 12.84a, nN

47( 16 + 36 + 16)15
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8.3 MAGNETIC TORQUE AND MOMENT

The torque T (or mechanical moment of force) on the loop is the vector product of the force F

and the moment arm r. That is,
T=rxF in(N.m) (8.16)

Let us apply this to a rectangular loop of length £ and width w placed in a uniform magnetic
field B Fig. 8.5(a). We notice that dL is parallel to B along sides 1-2 and 3-4 of the loop and no

force is exerted on those sides. Thus

3 1 £ 0
F=Ide><B+Ide><B=Ifdzaz><B+IfdzaZ><B
2 4 0 £

Z

4
/!

/
+ »
3 4 4
/f f; ; B

e /) s
L/

2-.__-“:.}.]—-—_1-. I-

7
/= axis of rotation

(a) (b)

Fig. 8.5 Rectangular planar loop in a uniform magnetic field.
F=F,—-F, =0 (8.17)

where |F,| = IB¥ because B is uniform.
e no force is exerted on the loop.
e F, and —F, act at different points on the loop, thereby creating a couple
e if the normal to the plane of the loop makes an angle a with B, as in Fig. 8.5(b).
The torque on the loop is
|T| = |F,|wsina

or

T = Bl¥wsina (8.18)

But fw = S, the area of the loop. Hence,
T = BISsina (8.19)

41



Chapter 8: Magnetic Forces, Materials, and Devices

We define the quantity
m = [Sa, (8.20)
This magnetic dipole moment (in A/m?). a,, is a unit vector normal to the plane of the loop.

The magnetic dipole moment: is the product of current and area of the loop; its direction is

normal to the loop. Thus,

T=mxB (8.21)

e This applicable in determining the torque on a planar loop.

e The magnetic field must be uniform.

e the torque is in the direction of the axis of rotation, it is directed such as to reduce a so
that m and B are in the same direction.

e In an equilibrium position (when m and B are in the same direction), the loop is
perpendicular to the magnetic field and the torque will be zero as well as the sum of the
forces on the loop.

Example 8.6: A conductor located at x = 0.4 m, y = 0 and 0 < z < 2 m carries a current of 5A

in the a, direction. Along the length of the conductor B = 2.5 a, T. Find the torque about the z-

axis.

Solution: F=I(LxB)=(5(2a,x25a,) =25a,N
T=rxF=(04a,)x(25a,)=10a,N.m
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8.4 A MAGNETIC DIPOLE
A bar magnet or a small filamentary current loop is usually referred to as a magnetic dipole. Let
us determine the magnetic field B at an observation point P(r,0,¢) due to a circular loop

carrying current I as in Fig. 8.6. The magnetic vector potential at P is

Wl [ dL

== 22
4 r (8.22)

Pir, 6. ¢)

|
-

/

2
/
/

/]
A

X

Fig. 8.6 Magnetic field at P due to a current loop.
At far field (r >> a, so that the loop appears small at the observation point), A has only ¢-

component and it is given by

_ WoIma®sinf ay

8.23
41 12 ( a)
or

Hom X a,

= 8.23b
41 12 ( )
Where m = Iwa’a,
a, X a, =sinfay

And determine the magnetic flux density B from B =V X A as
B = Homm (2cosf a, +sinf ag) (8.24)

47 73 r
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Table 8.1 Comparisons between Electric and Magnetic Monopoles and Dipoles

Electric r Magnetic
e .
0 ;

V=

darer
E= Qa, ] Does not exist

4:-:rst,r1

.
O
Monopele (point charge) Monopele {point charge)
=Qmsﬂ A=numsinﬂa¢
dmes? 4nrl

E= il (2 cos # +sin'ﬁ‘ ) B=£ﬂ{2oosea + s fa,}

4’“36r3 g 2 daird J ¢

: P
P
+Q,,
8 T r
; = Tk
T
x O
Dipole (two point charge} Dipole (small current loop or bar magnet)

(a) {b)

Fig. 8.7 The B lines due to magnetic dipoles: (a) a small current loop with m = IS, (b) a bar

magnet with m = Q,,,¢.
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Consider the bar magnet of Fig. 8.8. If Q,, is an isolated magnetic charge and # is the length of
the bar, the bar has a dipole moment Q,,,¢. (Notice that Q,,, does exist; however, it does not exist

without an associated Q,,,. When the bar is in a uniform magnetic field B, it experiences a torque

T=mxB=0Q,{xXB (8.25)

Where, ¢ points in the direction south-to-north. The torque tends to align the bar with the

external magnetic field.
The force acting on the magnetic charge is given by

F=0Q,B (8.26)

L ]

Fig. 8.8 A bar magnet in an external magnetic field.
Both a small current loop and a bar magnet produce magnetic dipoles, they are equivalent if they

produce the same torque in a given B field; that is, when

T = Q,,¢B = ISB (8.27)

Hence, showing that they must have the same dipole moment.

Qmt =1S (8.28)
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8.5 MAGNETIZATION IN MATERIALS

The material is composed of atoms. Each atom may be regarded as consisting of electrons
orbiting about a central positive nucleus; the electrons also rotate (or spin) about their own axes.
An internal magnetic field is produced by (electronic motions) electrons orbiting around the
nucleus or electrons spinning as in Figure (8.9a,b), that are similar to the magnetic field
produced by a current loop of Figure (8.10). The equivalent current loop has a magnetic moment
of m = [,S a,,, where S is the area of the loop and I, is the bound current (bound to the atom).
Without an external B field applied to the material, the sum of m's is zero due to random
orientation as in Figure (8.11a). When an external B field is applied, the magnetic moments of

the electrons more or less align themselves with B so that the net magnetic moment is not zero,
as illustrated in Figure (8.11Db).
nucleus !
electron
) electron
I

(a) (b)

Fig. 8.9 (a) Electron orbiting around the nucleus; (b) electron spin.

} B,

Fig 8.10 Circular current loop equivalent to electronic motion of Figure 8.9.
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The magnetization M (in amperes/meter) is the magnetic dipole moment per unit volume.

If there are N atoms in a given volume Av and the k" atom has a magnetic moment my,,

m = lim ==X (8.29)

For a differential volume dv', the magnetic moment is dm = Mdv'. From eq. (8.23a), the vector

magnetic potential due to dm is

_ quxaRdv, _ poM X R
41 R? 41 R3

!

dA dv

(a) (b)
Fig. 8.11 Magnetic dipole moment in a volume (a) before B is applied, (b) after B is applied.
R_.1
R® "R
hence,
Azﬁfov'ldv' (8.30)
41 R '

MxV1—1VxM VxM
R R R
Substituting this into eq. (8.30) yields

_ Mo VIXMU_E
_477, R 471',

4

A

Applying the vector identity

to the second integral, we obtain
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Mo (VXM uongxan ,
A= 471,[- R dv +47r R as
v! s’
_ Mo j?b ' Ho Kb '
A—47TJ.Rdv +4nj§RdS (8.31)
v! s’
hence,
J,=VxM (8.32)
And
K, =Mxa, (8.33)

where J, is the bound volume current density or magnetization volume current density (in A/
m?), K,, is the bound surface current density (in A/m). Equation (8.31) shows that the potential
of a magnetic body is due to a volume current density Tb throughout the body and a surface
current K, on the surface of the body. The vector M is analogous to the polarization P in
dielectrics and is sometimes called the magnetic polarization density of the medium. In another

sense, M is analogous to H and they both have the same units. In this respect, as J =VxH,so

isJ, =V XM.
In free space, M = 0 and we have
- B -
(%

Where, Tf is the free current volume density.

In a material medium M = 0, and as a result, B changes so that

B - = -
Ho

=VXH+VXM

or
B =p,(H+ M) (8.35)
For linear materials, M (in A/m) depends linearly on H such that
M=y, H (8.36)

Where, y,, is a dimensionless quantity (ratio of M to H) called magnetic susceptibility of the
medium. Substituting eq. (8.35) into eq. (8.34) yields
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B = UO(H+Xm H)

B =p,(1+xm)H=p,u H (8.37)
or
B = uH (8.38)
Where
m
=0+ xm) =— (8.39)
Ho
0= o, (8.40)

e The quantity p = p,u, is called the permeability of the material and is measured in
henrys/meter.

e The dimensionless quantity p,. is the ratio of the permeability of a given material to that
of free space and is known as the relative permeability of the material.

e The relationships in equations (8.36) to (8.40) hold only for linear and isotropic
materials. If the materials are anisotropic (e.g., crystals), equations (8.36) to (8.40) do not
apply.

8.6 CLASSIFICATION OF MAGNETIC MATERIALS
We may use the magnetic susceptibility y,, or the relative permeability p, to classify materials
in terms of their magnetic property or behavior. A material is said to be nonmagnetic if y,, = 0
(or w, = 1); it is magnetic otherwise. Free space, air, and materials with y,, = 0 (or u, = 1) are
regarded as nonmagnetic.
Magnetic materials may be grouped into three major classes:

e diamagnetic.

e paramagnetic.

e ferromagnetic.

This rough classification is depicted in Figure 8.12.
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Magnetic Materials

| Nonlinear
{ ' l
Diamagnetics Paramagnetics Ferromagnetics
Xm = 0, p, = 1.0 X = 0, = 1 Xo = 0, pa, = |

Fig. 8.12 Classification of magnetic materials.

Diamagnetism: occurs in materials where the magnetic fields due to electronic motions of
orbiting and spinning completely cancel each other. For most diamagnetic materials ( bismuth,
lead, copper, silicon, diamond, sodium chloride).

Paramagnetism: occurs in materials where the magnetic fields produced by orbital and spinning
electrons do not cancel completely. For most paramagnetic materials (air, platinum, tungsten,
potassium).

Ferromagnetism: occurs in materials whose atoms have relatively large permanent magnetic
moment. They are called ferromagnetic materials because the best known member is iron. Other

members are cobalt, nickel, and their alloys.

Example 8.7: Region 0 <z <2 m is occupied by an infinite slab of permeable material
(4 = 2.5). If B =10y a, — 5x a, mWb/m? within the slab, determine: (a) J; (b) Tb; (c) M;
(d) K, onz=0.

Solution:

(a) By definition,
a, a, a,

y

1 d ad 0

uour> C 4mx 1077 x (2.5)|0x 9y oz
B, B,

|' a, ay az‘l

_ 1 a 4 0 1 0B, 0By
J=VxH=———{ — — —= - - a,
107 x 10 7lax dy azJ 10 x 107\ ax _ dy
10y —5x O
106
?(—5 - 10)10_3 a, = —4.775 a, kA/m2
(b) Jp,=VXM=VXy,H=yx,(Vx H) = y,J

Jp=dmd =, —1J =@5-1)(-4775a,) = —7.163 a, kA/m?
(©)
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(10y a, —5xa,).1073
41 X 1077 x (2.5)
d) K,=Mxa,

M=15 = (4.775y a, — 2.387x a,) kA/m

Since z = 0 is the lower side of the slab occupying 0 < z < 2, a,, = —a,. Hence,

K, = (4.775y a, — 2.387x a,) x (—a,) = (2.387x a, + 4.775y a,) kA/m
Example 8.8: In a certain region (u = 4.6 u,) and B = 10 e™¥ a, mWb/m?2.
Find: () xm, (b) H, (c) M.

Solution:
(a)
4.6
W = *_ Ho _ 4.6
Ho Ho
Im=W —1=46—1=236
(b)
o B _ 10x103 eV a, 1730 0= 2. A
T ol 4w X 1077 x (4.6) e a, A/m

(c) M=y, H=(3.6) (1730 e a,) = 6228 e ¥ a, A/m

8.7 MAGNETIC BOUNDARY CONDITIONS

We define magnetic boundary conditions as the conditions that H (or B) field must satisfy at the
boundary between two different media.

By using Gauss's law for magnetic fields.

jﬂ B.dS=0 (8.41)

S

and Ampere's circuit law

jﬁ E.dL=1 (8.42)

The boundary between two magnetic media 1 and 2, characterized, respectively, by y; and p, as
in Fig. 8.13. Applying eq. (8.41) to the pillbox (Gaussian surface) of Fig. 8.13(a) and allowing

Ah — 0, we obtain
By,AS — B,,AS =0 (8.43)

Thus,
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Bln = BZTl (844‘3)
or

i Hyp = poHyy, (8.44b)

(b)

Fig. 8.13 Boundary conditions between two magnetic media: (a) for B, (b) for H.

Equation (8.44) shows that the normal component of B is continuous at the boundary and the
normal component of H is discontinuous at the boundary.
Applying eg. (8.42) to the closed path (abcda) of Fig. 8.13(b) where surface current K on the

boundary is assumed normal to the path. We obtain

Ah Ah Ah Ah
K.AW = Hy;. AW + le? + HZn.7 — Hy. AW — HZn.7 - le? (8.45)
as Ah — 0, eq. (8.45) leads to
Hlt - Hzr_— = K (8.46)

This shows that the tangential component of H is also discontinuous. Equation (8.46) may be

written in terms of B as

B,, B
Lok (8.47)
H1 Ha

In the general case, eq. (8.46) becomes

(H; —Hp) X ap;, =K (8.48)
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where a,,;, IS a unit vector normal to the interface and is directed from medium 1 to medium 2.
If the boundary is free of current or the media are not conductors (for K is free current density),
K = 0 and eq. (8.46) becomes

Hlt = H2t (849)
or

Blt BZt

—_— = 8.50

281 M2 ( )

Thus the tangential component of H is continuous while that of B is discontinuous at the

boundary.
If the fields make an angle 6 with the normal to the interface, eq. (8.44) results in
B, cos6; = By, = B,, =B, cos 6, (8.51a)

while eq. (8.50) produces

B, B, .
—SIin 91 = Hlt = HZt = —SIn 92 (851b)
M1 H2

Dividing eq. (8.51b) by eq. (8.51a) gives

tanf; 1y

@nd, i, (8.52)
Example 8.9: Given that H; = —2a, +6a, +4a,A/m in region y —x—2 <0 where
uw; = 5 ,, calculate
(@ M; and B; (b) H, and B, inregiony —x — 2 > 0 where g, = 2 ,
Solution: Since y —x—2 =0 1is aplane, y—x <2 or y < x + 2 is region 1 in Fig. 8.14. A
point in this region may be used to confirm this. For example, the origin (0, 0) is in this region
since 0 — 0 — 2 < 0. If we let the surface of the plane be described by f(x,y) =y—x—2,a
unit vector normal to the plane is given by

Vf —a,+a,

TIWVAlT T V2

Ap
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Figure 8.14 For Example 8.9.
(a) M; = Ym Hy = (Url - 1)H1 =(6- 1)(_2 a,+6 ay + 4 az)
M, =-8a,+24a,+16a, A/m

B, = Hy = potry Hy = 4n x 1077(5)(-2a, + 6a, + 4a,)
B, = —12.57 a, 4+ 37.7a, + 25.13a, pWb/m?
—ay,ta —ay+a
(b) H;, = (H;.a,)a, = [(—2 a, +6a, +4az).( = y)]( = y)

H;, = —4a, + 4a,

But H, = Hy,, + Hye
Hence, H,;,=H;-H;,=(-2a,+6a,+4a,)—(—4a, +4a,)
Hi;=2a,+2a,+4a,
Using the boundary conditions, we have
H,; =Hy; =2a,+2a,+4a,

By, =Bin = uwHyy = pHyy

or
H,, = %Hln _ g(—zlax +4a,) = —10a, + 10a,
Thus,
H, = H,, + H,, = (—10a, + 10a,) + (2a, +2a, + 4a,)
H, =-8a,+12a,+4a, A/m
and

B, = woH, = pop,,Hy = (4r x 1077)(2)(—8a, + 12a, + 4 a,)
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B, = —20.11a, + 30.16 a,, + 10.05a, pWb/m?
Example 8.10: The xy-plane serves as the interface between two different media. Medium 1

(z < 0) is filled with a material whose p, = 6, and medium 2 (z > 0) is filled with a material
whose p, = 4. If the interface carries current (ui) a, mA/m, and B, = 5a, + 8a, mWb/m?
find H; and B;.

Solution: In this example, K # 0, Consider the problem as illustrated in Figure 8.15. Let
B, = (B, By, B;) inmWb/m?.

Figure 8.15 For Example 8.9.

B,,=B,,=8a, > B,=8 (D
But,
2=E= ! (5a,+8a,) mA/m (2)
Hz  4Ho
and,
B, 1
Hl:E:6_uo(Bxax+Byay+BZaZ)mA/m (3)

we can find the tangential components using
(H; —Hp) X ay; =K

or
H; X ap;; = Hy; Xa,; +K (4)
Substituting equations (2) and (3) into equation (4) gives
! (Byay+B,a,+B,a,)xa, = ! (5a,+8a,)xa +(i)a
6, Yoy T Ay, * ’ P
(ﬂa —&a +0a)=Oa +(—E+1>a +0a
6 T g Ay z x 2 y z
Equating components yields B, =0
B 541 5 =521 (5)
6 4 4
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From equations (1) and (5), B; = (1.5a, + 8a,) mWb/m?

B, 1
H, =—=—(0.25a, + 1.33a,) mA/m
H1 Mo
and
1
H, =—(1.25a, + 2a,) mA/m

Ho

Example 8.11: Region 1, described by 3x + 4y > 10, is free space whereas region 2, described
by 3x + 4y < 10, is a magnetic material for which p = 10p,. Assuming that the boundary
between the material and free space is current free find B, if B, =0.1a,+0.4a, +
0.2a, Wb/m?

Solution:

_Vf 3a,+4a,
V£l 5

an

3a, + 4ay>] <3ax + 4ay>
5 5

BlTl == 0.228 ax + 0-304‘ ay == an

B,, = (By.a,)a, = [(0.1 a,+04a,+0.2 aZ).(

B,, = (B, —By,) =(0.1a,+0.4a,+0.2a,) — (0.228 a, + 0.304 a,)
B,, = —0.128a, + 0.096a, + 0.2 a,

My 10p
Bt =—By: = -
M1 Ho

B, = —-128a,+096a,+2a,

(—0.128a, + 0.096a, + 0.2a,)

B, = B,, + B,, = (0.228a, + 0.304a,) + (—1.28a, + 0.96a, + 2 a,)
B, = —1.052a, + 1.264 a, + 2a, Wb/m?

Example 8.12: A unit normal vector from region 2 (u = 2y,) to region 1 (L= W,) IS Ay =
6a,+2a,—3a, If H,=10a,+a, +12a,A/m and H, = H,,a, —5a, +4a, A/m,
determine
(@) H,, (b) The surface current density K on the interface (c) The angles B; and B, make with
the normal to the interface.
Solution: (@) ~ By, = Byp = WHy, = poHyy or piHy agg; = woHz a0,

6a, + 2a, — 3a
= 7y Z) = 2p0(H,a, — 5a, + 4az).<

60 + 2 — 36 6Hyy — 10 — 12
o () = 2 )

6a, + 2a, — 3az)

o (10a, +a, + 12a2).( -

7 7
35 =6H,, = H,, = 5833
(b) K= (H; —H;) Xa,; = apy; X (H; —Hy)

(H, —H,) =[(10a, +a,+12a,)— (5.833a,—5a, +4a,)]
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(H; —H,) = (4167 a, + 6a, +8a,)

1] & a a
K=an21><(H1—H2):§ 6 2 -3
4167 6 8

K = 486 a, — 8.64a, +3.95a, A/m

(c) Since B = pH, B; and H; are parallel, i.e. they make the same angle with the normal to the

interface.
H,.a 26
cosf; = —2L — = 0.2373 = 6,=7627°
|H,| 74100 + 1 + 144
H,.a 13
cos§, = ——121 — =02144 = 6, =77.62°

H.l — 7,/(5833)2 + 25 + 16

8.8 INDUCTORS AND INDUCTANCES

Self-inductance of a circuit (L):

A circuit (or closed conducting path) carrying current I produces a magnetic field B which
causes a flux 1 = [ B.dS to pass through each turn of the circuit (Fig. 8.16). If the circuit has N
identical turns, we define the flux linkage A as

A= Ny (8.53)

If the medium surrounding the circuit is linear, the flux linkage A is proportional to the current I
producing it; that is,

Ao
or

A=LI (8.54)

e where L is a constant of proportionality called the inductance of the circuit.
e The unit of inductance is the henry (H) which is the same as webers/ampere.

e A circuit or part of a circuit that has inductance is called an inductor.

Inductance (L) of an inductor: is define as the ratio of the magnetic flux linkage A to the current I
through the inductor; that is,
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= (8.55)

Figure 8.16 Magnetic field B produced by a circuit.

The magnetic energy W, (in joules) stored in an inductor is expressed in circuit theory as:

1
Wi =5 L 12 (8.56)
or
2 W,
L= ,zm (8.57)

Mutual inductance (M):

If we have two circuits carrying current I; and I, as shown in Fig. 8.17, a magnetic interaction
exists between the circuits. Four component fluxes ¥4, Y12, W54, and y,, are produced. The
flux vy, is the flux passing through circuit 1 due to current I, in circuit 2. If B, in the field due

to I, and S; is the area of circuit 1, then

Y12 = f B,.dS (8.58)

S1
Mutual inductance M,,: is define as the ratio of the flux linkage A,, = N;y¥;, on circuit 1 to
current I,, that is,

A1z _ N11,

12 = Z T (8.59a)
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circuit | circuit 2

Figure 8.18 Magnetic interaction between two circuits.

Similarly, the mutual inductance M, is defined as the flux linkages of circuit 2 per unit current

I;; that is,

Ay N
My === = 21%1 (8.59b)
1 1

in the absence of ferromagnetic material

M12 = M21 (859C)

We define the self-inductance of circuits 1 and 2, respectively, as

A N
L=t M (8.60)
I Iy
and
A N.
, =tz Navs (8.61)
I I
Where
Y1 =11 + P12
Y =Y+ ¢y
The total energy in the magnetic field is the sum of the energies due to L,, L, and M;, (or M,,);
that is,
1 2 1 2
Wm = W1 + W2 + le = ELlIl + ELzlz i M12 1112 (862)
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The positive sign is taken if currents I; and I, flow such that the magnetic fields of the two
circuits strengthen each other. If the currents flow such that their magnetic fields oppose each

other, the negative sign is taken.

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance
produced by the flux internal to the conductor is called the internal inductance L;,, while that

produced by the flux external to it is called external inductance L,,. The total inductance L is
L=Lip+ Loy (8.63)

8.9 MAGNETIC ENERGY
From equation (8.56),

1
Wi =5 L1 (8.56)

The energy is stored in the magnetic field B of the inductor. We would like to express equation
(8.56) in terms of B or H.
Consider a differential volume in a magnetic field as shown in Figure 8.19. Let the volume be

covered with conducting sheets at the top and bottom surfaces with current Af.

-

-
-
"
. -
conducting <7

sheets e

Ax
1’5} o [
- -~ Az
= B

e .: a}":g_,ff’? T

Figure 8.19 A differential volume in a magnetic field.

We assume that the whole region is filled with such differential volumes. From equation (8.55),

each volume has an inductance

_ Ay pH AxAz

AL =—r=—0 (8.64)

where Al = H Ay. Substituting equation (8.64) into eq. (8.56), we have
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1 1
AW, =5 ALAI® = 5 p H? AxAyhz (8.652)
or
1
AW = 5 1w H? Av (8.65b)

TABLE 8.2 A Collection of Formulas for Inductance of Common Elements

1. Wire / : 5. Circular loop .
ot : i r) e N
L=§; _ L=’—‘1(ln—~—2.45)
Zal 2w d

£ = 2npg. p, = d

6. Solenoid ["""'" ;
: 1o S Mo : :
£=a : 2 :

s %
A Ty

s ? Tom;s(oféi:e:.i]ar.crosa':'iecliom} L T
L= Nla ‘/93'._“?1 : ﬂ': S AR

— —_ 2
Wm_Av—>0 Av 2“
Hence,
—1 Hz—lBH—B2 8.66

Thus the energy in a magnetostatic field in a linear medium is

szfwmdv

or

1 1
szsz.HdU:Equzdv (867)

8.10 MAGNETIC CIRCUITS
Magnetic devices such as toroids, transformers, motors, generators, and relays may be

considered as magnetic circuits.
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The analysis of such circuits is made simple if an analogy between magnetic circuits and electric
circuits is exploited.

The analogy between magnetic and electric circuits is summarized in table 8.3 and portrayed in
Figure 8.20.

We define the magnetomotive force (mmf) F (in ampere-turns) as

F=NI= f H.dL (8.68)
We also define reluctance R (in ampere-turns/weber) as

R=3 (8.69)

TABLE 8.3 Analogy between Electric and Magnetic Circuits

Electric Magnetic
Conductivity Permeability p
Field intensity E Field intensity H
Current I = [ J.dS Magnetic flux ¢ = [ B.dS
Current density J = é =oE Flux density B = % = uH
Electromotive force (emf) V Magnetomotive force (mmf) F
Resistance R Reluctance R
Conductance G = % Permeance p = %
Ohm's IawR=¥=£ Ohm's Iawﬂz:%:ﬁ
orV=E¢f=1IR orF =Hf =¢yR = NI
Kirchoff's laws: Kirchhoff's laws:
XI=0 Sp=0
SV-YIR=0 SF-YyYR =0

The reciprocal of reluctance is permeance p. The basic relationship for circuit elements is Ohm's

law (V = IR):

F =yR (8.70)
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(a) (k)

Figure 8.20 Analogy between (a) an electric circuit, and (b) a magnetic circuit.

The rules of adding voltages and for combining series and parallel resistances also hold for mmfs

and reluctances. for n magnetic circuit elements in series

and

Y1 =Y, =3 ==y (8.71)

F=F1+F,+Fs++F, (8.72)

For n magnetic circuit elements in parallel,

and

Y=Y+, + P34+ Yy (8.73)

Fi=F,=F;=-=7F, (8.74)

The differences between electric and magnetic circuits.

unlike an electric circuit where current I flows, magnetic flux does not flow.
conductivity o is independent of current density J in an electric circuit whereas
permeability p varies with flux density B in a magnetic circuit. this is because

ferromagnetic (nonlinear) materials are normally used in most practical magnetic devices.

8.11 FORCE ON MAGNETIC MATERIALS

The magnetic force is useful in electromechanical systems such as electromagnets, relays,

rotating machines, and magnetic levitation. Consider, for example, an electromagnet made of

iron of constant relative permeability as shown in Fig. 8.21.
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2 1[ = = i‘
11 Nrums i
1 !
S |
He J
i I
1 F i ERES
a~ ok 4 ) I12F
SRR e b L

Figure 8.21 An electromagnet.

The work required to effect the displacement is equal to the change in stored energy in the air

gap (assuming constant current), that is

1B?
—FdL = dW,, = 2|z—Sdl (8.75)
21,

where
e Sisthe cross-sectional area of the gap,
e the factor 2 accounts for the two air gaps, and
¢ the negative sign indicates that the force acts to reduce the air gap (or that the force is

attractive). Thus

R B?S
=

The tractive force across a single gap can be obtained from eq. (8.75) as

F= B7S (8.77)
24, '

Equation (8.77) can be used to calculate the forces in many types of devices including relays,

rotating machines, and magnetic levitation.
The tractive pressure (in N/m?) in a magnetized surface is

F—Bz—lBH 8.78
S 2u, 2 (8.78)

which is the same as the energy density w,,, in the air gap.
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