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8.1 INTRODUCTION 

8.2 FORCES DUE TO MAGNETIC FIELDS 

There are at least three ways in which force due to magnetic fields can be experienced. The force 

can be [2].  

 due to a moving charged particle in a B field,  

 on a current element in an external B field, or  

 between two current elements. 

8.2.1 Force on a Charged Particle (Moving Charge) 

In chapter two, we discussed that the electric force   ⃑⃑  ⃑ on a stationary or moving electric charge   

in an electric field is given by Coulomb's law and is related to the electric field intensity   as [2]: 

  ⃑⃑  ⃑                                                                                                                                                                

This shows that if   is positive,   ⃑⃑  ⃑ and   have the same direction and   ⃑⃑  ⃑ is directly proportional 

to both   and   [1]. 

A magnetic field can exert force only on a moving charge. From experiments, it is found that the 

magnetic force   ⃑⃑ ⃑⃑   experienced by a charge   moving with a velocity   in a magnetic field B is 

[2]: 

  ⃑⃑ ⃑⃑                                                                                                                                                           

The force   ⃑⃑ ⃑⃑   has direction perpendicular to both   and B and whose magnitude is proportional 

to the product of the magnitudes of the charge  , its velocity  , the flux density  , and to the 

sine of the angle between the vectors   and   [1]. 

A comparison between the electric force and the magnetic force can be made [2]. 

 The electric force   ⃑⃑  ⃑  is independent of the velocity of the charge.  

 The electric force   ⃑⃑  ⃑ can perform work on the charge and change its kinetic energy. 

 The magnetic force   ⃑⃑ ⃑⃑   depends on the charge velocity and is normal to it.  

 The magnetic force   ⃑⃑ ⃑⃑   cannot perform work because it is at right angles to the direction 

of motion of the charge (  ⃑⃑ ⃑⃑        ); it does not cause an increase in kinetic energy of 

the charge.  

 The magnitude of   ⃑⃑ ⃑⃑   is generally small compared to   ⃑⃑  ⃑ except at high velocities. 
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For a moving charge   in the presence of both electric and magnetic fields, the total force on the 

charge is given by superposition [2]. 

     ⃑⃑  ⃑    ⃑⃑ ⃑⃑            

                                                                                                                                                     

This equation is known as the Lorentz force equation, and its solution is required in determining 

electron orbits in the magnetron, proton paths in the cyclotron, plasma characteristics in a 

magneto-hydrodynamic (MHD) generator, or, in general, charged-particle motion in combined 

electric and magnetic fields [1]. 

Lorentz force equation relates mechanical force to electrical force. If the mass of the charged 

particle moving in   and   fields is (m), by Newton's second law of motion [2]. 

    
  

  
                                                                                                                          

Table (8.1) Force on a Charged Particle 

No. State of Particle Electric Field Magnetic Field Combined   and   Fields 

1 Stationary            

2 Moving                   

8.2.2 Force on a Differential Current Element. 

The force on a charged particle moving through a steady magnetic field may be written as the 

differential force exerted on a differential element of charge [1]. 

                                                                                                                                                         

The force on a current element       of a current-carrying conductor due to the magnetic field, 

can be determined by using the fact that for convection current density [2]: 

 ⃑⃑                                                                                                                                                                  

The differential element of charge in equation (8.5) may also be expressed in terms volume 

charge density [1]. 

        

Thus 

           

or 

    ⃑⃑                                                                                                                                                      
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The relationship between differential current elements is [2]: 

         ⃑⃑                                                                                                                                             

From equations (8.6) and (8.8) yields 

     ⃑⃑                        

or 

    
  

  
       

  

  
      

Hence, 

                                                                                                                                                              

An elemental charge    moving with velocity u is equivalent to a conduction current element 

   . The force on a current element     in a magnetic field B is found by using equation (8.2) 

with replace    by    ; that is [2]. 

  ⃑⃑ ⃑⃑        

                                                                                                                                                         

If the current   is through a closed path   or circuit, the force on the circuit is given by 

  ∮                                                                                                                                                    

The magnetic field produced by the current element     does not exert force on the element 

itself just as a point charge does not exert force on itself. The   field that exerts force on     

must be due to another element. In other words, The   field in equation (8.10) or (8.11) is 

external to the current element    . If we have surface current elements     or a volume current 

element  ⃑⃑   , thus the Lorentz force equation become [1,2]: 

                                                                                                                                                        

    ⃑⃑                                                                                                                                                     

or 

  ∫      

 

                                                                                                                                             

  ∫  ⃑⃑     
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and 

  ∮         ∮                                                                                                                     

                                                                                                                                                            

The magnitude of the force is given by the familiar equation 

                                                                                                                                                           

Where,   is the angle between the vectors representing the direction of the current flow and the 

direction of the magnetic flux density. Equation (17) or (18) applies only to a portion of the 

closed circuit [1]. 

The magnetic field B: is defined as the force per unit current element. The magnetic field B: may 

be defined from equation (8.2) as the vector which satisfies   ⃑⃑ ⃑⃑        . Both of these 

definitions of   show that   describes the force properties of a magnetic field [2]. 

8.2.3 Force between Two Current Elements 

Consider the force between two elements       and      . According to Biot-Savart's law, both 

current elements produce magnetic fields. So we may find the force        on element       

due to the field     produced by element       as shown in Fig. 8.1.  

 

Fig. 8.1 Force between two current loops 

From equation (8.7)                                 

                                                                                                                       

But from Biot-Savart's law, 

    
            

     
                                                                                                        

Hence, 
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         (           

)

      
                                                                            

The law of force between two current elements. The total force   , on current loop 1 due to 

current loop 2 shown in Fig. 8.1 as 

   
      
  

∮ ∮
     (         

)

    
 

    

                                                                        

The force    on loop   due to the magnetic field    from loop   is obtained from equation (8.15) 

by interchanging subscripts   and  . It can be shown that        thus    and    obey 

Newton's third law that action and reaction are equal and opposite. 

Example 8.1 [3]: Find the force on a straight conductor of length        carrying a current of 

      in the    , direction, where the field is  

                     

Solution:                                             

       [            (                )] 

           (
      

√ 
)     

The force, of magnitude        , is at right angles to both the field B and the current 

direction, as shown in Fig. 8.2. 

 

Fig. 8.2 

Example 8.2 [3]: Find the force on a particle of mass               and charge      

       , if it enters a field        with an initial speed of          . 

Solution: Unless directions are known for   and   , the particle's initial velocity, the force 

cannot be calculated. Assuming that    and   are perpendicular, as shown in Fig. 8.3. 

  | |                                                
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Fig. 8.3 

Example 8.3 [2]: A charged particle of mass  kg and charge  C starts at point          with 

velocity             in an electric field (             ). At time      , determine 

(a) The acceleration of the particle, (b) Its velocity, (c) Its kinetic energy, (d) Its position 

Solution: (a) According to Newton's second law of motion, 

        

Where, a is the acceleration of the particle. Hence, 

  
  

 
 

 

 
(         )                 

  
  

  
 

 

  
(        )            

(b) Equating components gives 

   

  
                  

   

  
                  

   

  
                              

Where A, B, and C are integration constants. But at    ,          . Hence, 

                            

                            

                                 

Substituting the values of A, B, and C, then 

     (        )                

Hence 

        (        )                    

(c) Kinetic energy 

     
 

 
 | |  

 

 
   [          ]        



Chapter 8:                                                          Magnetic Forces, Materials, and Devices 

13 
 

(d)  

  
  

  
 

 

  
                      

Equating components yields 

  

  
                          

  

  
                       

  

  
                  

At    ,                 ; hence,                                  

Substituting the values of   ,    and   , we get 

                              

Hence, at    ,                   . 

Example 8.4 [2]: A charged particle of mass  kg and charge  C starts at the origin with zero 

initial velocity in a region where          . Find 

(a) The force on the particle, (b) The time it takes to reach point            ,  

(c) Its velocity and acceleration at  , (d) Its K.E. at  . 

Solution: (a) 

   
  ⃑ 

  
                 

 

(b)                                        
  ⃑⃑ 

  
     

 

  
(        ) 

   

  
            

   

  
            

   

  
               

Since,      ⃑                            
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At,    ;                                                      

Hence,                                              ⃑       

At any time, at                                                           

(c)                                           ⃑                

  
  ⃑ 

  
          

(d) Kinetic energy 

     
 

 
 | |  

 

 
              

Example 8.5 [2]: A charged particle of mass 2kg and 1C starts at the origin with velocity 

        and travels in a region of uniform magnetic field              . At      . 

Calculate (a) The velocity and acceleration of the particle (b) The magnetic force on it (c) Its 

K.E. and location 

Solution: (a) 

   
  ⃑ 

  
   ⃑   ⃑  

  
  ⃑ 

  
 

 

 
( ⃑   ⃑ ) 

Hence 

 

  
(              )  

 

 
(

      

      

    
)   (         ) 

By equating components, we get 

   

  
          

   

  
           

   

  
             

We can eliminate    or    in above equations by taking second derivatives of one equation and 

making use of the other. Thus 

    

   
  

   

  
             

    

   
        

which is a linear differential equation 

                   

    
   

  
                    

or                                                           

We now determine constants   ,    and    using the initial conditions. At    ,  ⃑     , 

hence. 
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Substituting the values of   ,    and    into equations, gives 

  (        )                    

                                               

  
  ⃑ 

  
                       

and                                                          

(b)                                                              

or,              (                  )                          

(c) Kinetic energy        

     
 

 
 | |  

 

 
                       

Example 8.6 [1]: A square loop of wire in the     plane carrying     in the field of an 

infinite filament on the y axis, as shown in Figure (8.4). Find the total force on the loop. 

 

Figure (8.4) 

Solution: The field produced in the plane of the loop by the straight filament is 

  
 

   
   

 

   
   

  

   
       

Therefore, 

               
      

 
     

We use the integral form, 

    ∮     
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The total force is the sum of the forces on the four sides.  

         ∫ *(
      

 
  )  (              )+ 

         [ ∫
  

 

 

   

      ∫
  

 

 

   

      ∫
  

 

 

   

      ∫
  

 

 

   

     ] 

                [ ∫
  

 
  

 

   

 ∫
  

 
     

 

   

 ∫
  

 
  

 

   

 ∫        

 

   

] 

         [   |

 

 

   
 

 
[  ]

 

 

         |

 

 

   [  ]

 

 

     ] 

         [        
 

 
     (

 

 
)       ]          

Example 8.7 [1]: Consider the two differential current elements shown in Figure (9.3). 

Determine the differential force on    . 

 

 

Solution: We have                at          , and                at          . 

Thus,                 , |   |  √                and we use this equation, 

       
         (           

)

      
  

       
               [(    )  (            )]

                
           

       
         (           

)

      
  

       
        (    )  [       (           )]
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8.3 MAGNETIC TORQUE AND MOMENT 

The torque   (or mechanical moment of force) on the loop is the vector product of the force    

and the moment arm r. That is, 

                                                                                                                                                    

Let us apply this to a rectangular loop of length 𝓁 and width   placed in a uniform magnetic 

field B Fig. 8.5(a). We notice that    is parallel to B along sides 1-2 and 3-4 of the loop and no 

force is exerted on those sides. Thus 

   ∫    

 

 

  ∫    

 

 

  ∫       

𝓁

 

  ∫       

 

𝓁

 

 

Fig. 8.5 Rectangular planar loop in a uniform magnetic field. 

                                                                                                                                                     

where |  |    𝓁 because B is uniform.  

 no force is exerted on the loop.  

    and     act at different points on the loop, thereby creating a couple 

 if the normal to the plane of the loop makes an angle   with B, as in Fig. 8.5(b). 

The torque on the loop is 

| |  |  |      

or 

    𝓁                                                                                                                                                  

But 𝓁   , the area of the loop. Hence, 
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We define the quantity 

                                                                                                                                                              

This magnetic dipole moment (       ).    is a unit vector normal to the plane of the loop. 

The magnetic dipole moment: is the product of current and area of the loop; its direction is 

normal to the loop. Thus, 

                                                                                                                                                           

 This applicable in determining the torque on a planar loop.  

 The magnetic field must be uniform.  

 the torque is in the direction of the axis of rotation, it is directed such as to reduce   so 

that m and   are in the same direction.  

 In an equilibrium position (when   and   are in the same direction), the loop is 

perpendicular to the magnetic field and the torque will be zero as well as the sum of the 

forces on the loop. 

Example 8.6: A conductor located at        ,     and         carries a current of    

in the    direction. Along the length of the conductor           . Find the torque about the  -

axis. 

Solution:                                                           

               (     )            

 

 

 

 

 

 

 

 

 



Chapter 8:                                                          Magnetic Forces, Materials, and Devices 

31 
 

8.4 A MAGNETIC DIPOLE 

A bar magnet or a small filamentary current loop is usually referred to as a magnetic dipole. Let 

us determine the magnetic field   at an observation point          due to a circular loop 

carrying current   as in Fig. 8.6. The magnetic vector potential at   is 

  
   

  
∮

  

 
                                                                                                                                                 

 

Fig. 8.6 Magnetic field at   due to a current loop. 

At far field (    , so that the loop appears small at the observation point),   has only  -

component and it is given by 

  
     

       

     
                                                                                                                                   

or 

  
      

     
                                                                                                                                              

Where                                                                 

             

And determine the magnetic flux density   from        as 
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Table 8.1 Comparisons between Electric and Magnetic Monopoles and Dipoles 

 

 

 

Fig. 8.7 The B lines due to magnetic dipoles: (a) a small current loop with     , (b) a bar 

magnet with     𝓁. 
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Consider the bar magnet of Fig. 8.8. If    is an isolated magnetic charge and 𝓁 is the length of 

the bar, the bar has a dipole moment   𝓁. (Notice that    does exist; however, it does not exist 

without an associated   . When the bar is in a uniform magnetic field B, it experiences a torque 

        𝓁                                                                                                                                  

Where, 𝓁 points in the direction south-to-north. The torque tends to align the bar with the 

external magnetic field.  

The force acting on the magnetic charge is given by 

                                                                                                                                                               

 

Fig. 8.8 A bar magnet in an external magnetic field. 

Both a small current loop and a bar magnet produce magnetic dipoles, they are equivalent if they 

produce the same torque in a given B field; that is, when 

    𝓁                                                                                                                                               

Hence, showing that they must have the same dipole moment. 

  𝓁                                                                                                                                                             
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8.5 MAGNETIZATION IN MATERIALS 

The material is composed of atoms. Each atom may be regarded as consisting of electrons 

orbiting about a central positive nucleus; the electrons also rotate (or spin) about their own axes. 

An internal magnetic field is produced by (electronic motions) electrons orbiting around the 

nucleus or electrons spinning as in Figure (8.9a,b), that are similar to the magnetic field 

produced by a current loop of Figure (8.10). The equivalent current loop has a magnetic moment 

of         , where   is the area of the loop and    is the bound current (bound to the atom). 

Without an external B field applied to the material, the sum of m's is zero due to random 

orientation as in Figure (8.11a). When an external   field is applied, the magnetic moments of 

the electrons more or less align themselves with   so that the net magnetic moment is not zero, 

as illustrated in Figure (8.11b). 

 

Fig. 8.9 (a) Electron orbiting around the nucleus; (b) electron spin. 

 

Fig 8.10 Circular current loop equivalent to electronic motion of Figure 8.9. 
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The magnetization M (in amperes meter) is the magnetic dipole moment per unit volume. 

If there are   atoms in a given volume    and the     atom has a magnetic moment   , 

     
    

∑   
 
   

  
                                                                                                             

For a differential volume    , the magnetic moment is        . From eq. (     ), the vector 

magnetic potential due to    is 

   
      

     
    

     

     
    

 

Fig. 8.11 Magnetic dipole moment in a volume (a) before B is applied, (b) after B is applied. 

 

  
   

 

 
 

hence, 

  
  

  
∫    

 

 
                                                                                                         

    
 

 
 

 

 
        

 

 
 

Substituting this into eq. (8.30) yields 

  
  

  
∫

    

 
  

    
  

  
∫    

 

 
  

    

Applying the vector identity 

∫     

  

     ∮     

  

 

to the second integral, we obtain 
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∫

    

 
  

    
  

  
∮

    

 
  

    

  
  

  
∫

 ⃑⃑  
 

  

    
  

  
∮

  

 
  

                                                                                      

hence, 

 ⃑⃑                                                                                                                                 

And 

                                                                                                                               

where  ⃑⃑   is the bound volume current density or magnetization volume current density (in   

  ),    is the bound surface current density (in    ). Equation (8.31) shows that the potential 

of a magnetic body is due to a volume current density  ⃑⃑   throughout the body and a surface 

current    on the surface of the body. The vector M is analogous to the polarization P in 

dielectrics and is sometimes called the magnetic polarization density of the medium. In another 

sense, M is analogous to H and they both have the same units. In this respect, as  ⃑⃑     , so 

is  ⃑⃑      .  

In free space,     and we have 

     ⃑⃑                   (
 

  
)   ⃑⃑                                                                                 

Where,  ⃑⃑   is the free current volume density. 

In a material medium    , and as a result, B changes so that 

  (
 

  
)   ⃑⃑    ⃑⃑    ⃑⃑  

         

or 

                                                                                                                             

For linear materials, M (in    ) depends linearly on H such that 

                                                                                                                                    

Where,    is a dimensionless quantity (ratio of M to H) called magnetic susceptibility of the 

medium. Substituting eq. (8.35) into eq. (8.34) yields 
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or 

                                                                                                                                       

Where 

           
 

  
                                                                                                          

                                                                                                                                      

 The quantity          is called the permeability of the material and is measured in 

henrys meter. 

 The dimensionless quantity    is the ratio of the permeability of a given material to that 

of free space and is known as the relative permeability of the material. 

 The relationships in equations (8.36) to (8.40) hold only for linear and isotropic 

materials. If the materials are anisotropic (e.g., crystals), equations (8.36) to (8.40) do not 

apply.  

8.6 CLASSIFICATION OF MAGNETIC MATERIALS 

We may use the magnetic susceptibility    or the relative permeability    to classify materials 

in terms of their magnetic property or behavior. A material is said to be nonmagnetic if      

(or     ); it is magnetic otherwise. Free space, air, and materials with      (or     ) are 

regarded as nonmagnetic. 

Magnetic materials may be grouped into three major classes:  

 diamagnetic. 

 paramagnetic. 

 ferromagnetic.  

This rough classification is depicted in Figure 8.12. 
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Fig. 8.12 Classification of magnetic materials. 

Diamagnetism: occurs in materials where the magnetic fields due to electronic motions of 

orbiting and spinning completely cancel each other. For most diamagnetic materials ( bismuth, 

lead, copper, silicon, diamond, sodium chloride). 

Paramagnetism: occurs in materials where the magnetic fields produced by orbital and spinning 

electrons do not cancel completely. For most paramagnetic materials (air, platinum, tungsten, 

potassium). 

Ferromagnetism: occurs in materials whose atoms have relatively large permanent magnetic 

moment. They are called ferromagnetic materials because the best known member is iron. Other 

members are cobalt, nickel, and their alloys. 

Example 8.7: Region       m is occupied by an infinite slab of permeable material 

       ). If                       within the slab, determine: (a)  ⃑⃑ ; (b)  ⃑⃑  ; (c) M; 

(d)    on    . 

Solution: 

(a) By definition, 

 ⃑⃑        (
 

    
)  

 

             

[
 
 
 
      

 

  

 

  

 

  
      ]

 
 
 

 

 ⃑⃑      
 

        

[
 
 
 
      

 

  

 

  

 

  
       ]

 
 
 
 

 

        
(
   

  
 

   

  
)   

   

 
                             

  

(b)                                   ⃑⃑                          ⃑⃑  

 ⃑⃑      ⃑⃑          ⃑⃑                                    
  

(c) 
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(            )   

  

             
 (                   )      

(d)                                                            

Since     is the lower side of the slab occupying      ,       . Hence, 

   (                   )        (                   )      

Example 8.8: In a certain region (        ) and                   .  

Find: (a)   , (b) H, (c) M. 

Solution: 

(a) 

   
 

  
 

      

  
     

                  

(b) 

  
 

    
 

              

             
                 

(c)                                                            

8.7 MAGNETIC BOUNDARY CONDITIONS 

We define magnetic boundary conditions as the conditions that H (or B) field must satisfy at the 

boundary between two different media.  

By using Gauss's law for magnetic fields. 

∮      

 

                                                                                                                            

and Ampere's circuit law 

∮      

 

                                                                                                                             

The boundary between two magnetic media 1 and 2, characterized, respectively, by    and    as 

in Fig. 8.13. Applying eq. (8.41) to the pillbox (Gaussian surface) of Fig. 8.13(a) and allowing 

    , we obtain  

                                                                                                                         

Thus, 
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or 

                                                                                                                              

 

Fig. 8.13 Boundary conditions between two magnetic media: (a) for B, (b) for H. 

Equation (8.44) shows that the normal component of B is continuous at the boundary and the 

normal component of H is discontinuous at the boundary. 

Applying eq. (8.42) to the closed path (abcda) of Fig. 8.13(b) where surface current   on the 

boundary is assumed normal to the path. We obtain 

                
  

 
     

  

 
            

  

 
     

  

 
              

as     , eq. (8.45) leads to 

                                                                                                                               

This shows that the tangential component of   is also discontinuous. Equation (8.46) may be 

written in terms of   as 

   

  
 

   

  
                                                                                                                        

In the general case, eq. (8.46) becomes 
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where      is a unit vector normal to the interface and is directed from medium 1 to medium 2. 

If the boundary is free of current or the media are not conductors (for   is free current density), 

    and eq. (8.46) becomes 

                                                                                                                                     

or 

   

  
 

   

  
                                                                                                                              

Thus the tangential component of H is continuous while that of B is discontinuous at the 

boundary. 

If the fields make an angle   with the normal to the interface, eq. (8.44) results in 

                                                                                                    

while eq. (8.50) produces 

  

  
              

  

  
                                                                                    

Dividing eq. (8.51b) by eq. (8.51a) gives 

     

     
 

  

  
                                                                                                                           

Example 8.9: Given that                        in region         where 

       , calculate 

(a)    and     (b)    and    in region         where         

Solution: Since         is a plane,       or       is region 1 in Fig. 8.14. A 

point in this region may be used to confirm this. For example, the origin (0, 0) is in this region 

since        . If we let the surface of the plane be described by             , a 

unit vector normal to the plane is given by 

   
  

|  |
 

      

√ 
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Figure 8.14 For Example 8.9. 

(a)                               (               ) 

                          

                            (               ) 

                                       

(b)                   *(               ) (
      

√ 
)+ (

      

√ 
) 

             

But                                                          

Hence,                   (               )  (        ) 

                   

Using the boundary conditions, we have 

                       

                        

or 

    
  

  
    

 

 
(        )             

Thus, 

           (          )  (              ) 

                         

and 

                            (                ) 
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Example 8.10: The   -plane serves as the interface between two different media. Medium 1 

(   ) is filled with a material whose     , and medium 2 (   ) is filled with a material 

whose     . If the interface carries current  
 

  
         , and                      

find    and   . 

Solution: In this example,    , Consider the problem as illustrated in Figure 8.15. Let                

                       . 

 

Figure 8.15 For Example 8.9. 

                                                                                                                

But, 

   
  

  
 

 

   

                                                                                                

and, 

   
  

  
 

 

   
(                 )                                                                

we can find the tangential components using 

               

or 

                                                                                                                 

Substituting equations (2) and (3) into equation (4) gives 

 

   
(                 )     

 

   

                
 

  
     

(
  

 
    

  

 
        )       ( 

 

 
  )         

Equating components yields                     
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From equations (1) and (5),                               

   
  

  
 

 

  

                       

and 

   
 

  

                    

Example 8.11: Region 1, described by         , is free space whereas region 2, described 

by         , is a magnetic material for which       . Assuming that the boundary 

between the material and free space is current free find    if                  

              

Solution: 

   
  

|  |
 

       

 
 

              [(                    ) (
       

 
)] (

       

 
) 

                          

             (                    )  (                 ) 

                              

    
  

  
    

    

  
(                         ) 

                          

           (                 )  (                     ) 

                                  

Example 8.12: A unit normal vector from region 2 (     ) to region 1 (    ) is      

              . If                       and                        , 

determine 

(a)     (b) The surface current density   on the interface (c) The angles    and    make with 

the normal to the interface. 

Solution: (a)                                                       

  (            ) (
           

 
)     (             ) (

           

 
) 

  (
       

 
)     (

          

 
) 

                       

(b)                                                       

        [(              )  (                  )] 
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        (                  ) 

               
 

 
|

      

    
       

| 

                              

(c) Since     ,    and    are parallel, i.e. they make the same angle with the normal to the 

interface. 

      
       

|  |
 

  

 √         
                                         

      
       

|  |
 

  

 √              
                                 

 

 

 

 

 

8.8 INDUCTORS AND INDUCTANCES 

Self-inductance of a circuit ( ): 

A circuit (or closed conducting path) carrying current   produces a magnetic field B which 

causes a flux   ∫     to pass through each turn of the circuit (Fig. 8.16). If the circuit has   

identical turns, we define the flux linkage   as 

                                                                                                                                       

If the medium surrounding the circuit is linear, the flux linkage   is proportional to the current   

producing it; that is, 

    

or 

                                                                                                                                         

 where   is a constant of proportionality called the inductance of the circuit. 

 The unit of inductance is the henry ( ) which is the same as webers ampere. 

 A circuit or part of a circuit that has inductance is called an inductor. 

Inductance     of an inductor: is define as the ratio of the magnetic flux linkage   to the current   

through the inductor; that is, 



Chapter 8:                                                          Magnetic Forces, Materials, and Devices 

33 
 

  
 

 
 

  

 
                                                                                                                          

 

Figure 8.16 Magnetic field B produced by a circuit. 

 

The magnetic energy    (in joules) stored in an inductor is expressed in circuit theory as: 

   
 

 
                                                                                                                               

or 

  
    

  
                                                                                                                               

Mutual inductance ( ): 

If we have two circuits carrying current    and    as shown in Fig. 8.17, a magnetic interaction 

exists between the circuits. Four component fluxes    ,    ,    , and     are produced. The 

flux    , is the flux passing through circuit 1 due to current    in circuit 2. If    in the field due 

to    and    is the area of circuit 1, then 

    ∫   

  

                                                                                                                      

Mutual inductance    : is define as the ratio of the flux linkage           on circuit 1 to 

current   , that is, 
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Figure 8.18 Magnetic interaction between two circuits. 

Similarly, the mutual inductance     is defined as the flux linkages of circuit 2 per unit current 

  ; that is, 

    
   

  
 

     

  
                                                                                                          

in the absence of ferromagnetic material 

                                                                                                                                   

We define the self-inductance of circuits 1 and 2, respectively, as 

   
   
  

 
    

  
                                                                                                                 

and 

   
   

  
 

    

  
                                                                                                                

Where 

           

           

The total energy in the magnetic field is the sum of the energies due to   ,    and     (or    ); 

that is, 
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The positive sign is taken if currents    and    flow such that the magnetic fields of the two 

circuits strengthen each other. If the currents flow such that their magnetic fields oppose each 

other, the negative sign is taken. 

 

 

 

In an inductor such as a coaxial or a parallel-wire transmission line, the inductance 

produced by the flux internal to the conductor is called the internal inductance    , while that 

produced by the flux external to it is called external inductance     . The total inductance   is 

                                                                                                                                

8.9 MAGNETIC ENERGY 

From equation (8.56), 

   
 

 
                                                                                                                               

The energy is stored in the magnetic field B of the inductor. We would like to express equation 

(8.56) in terms of B or H. 

Consider a differential volume in a magnetic field as shown in Figure 8.19. Let the volume be 

covered with conducting sheets at the top and bottom surfaces with current   . 

 

Figure 8.19 A differential volume in a magnetic field. 

We assume that the whole region is filled with such differential volumes. From equation (8.55), 

each volume has an inductance 

   
  

  
 

       

  
                                                                                                         

where        . Substituting equation (8.64) into eq. (8.56), we have 
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or 

    
 

 
                                                                                                                      

 

TABLE 8.2 A Collection of Formulas for Inductance of Common Elements 

 

The magnetostatic energy density    (       ) is defined as 

      
    

   

  
 

 

 
      

Hence, 

   
 

 
      

 

 
     

  

  
                                                                                          

Thus the energy in a magnetostatic field in a linear medium is 

   ∫      

or 

   
 

 
∫        

 

 
∫                                                                                        

8.10 MAGNETIC CIRCUITS 

Magnetic devices such as toroids, transformers, motors, generators, and relays may be 

considered as magnetic circuits.  
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The analysis of such circuits is made simple if an analogy between magnetic circuits and electric 

circuits is exploited. 

The analogy between magnetic and electric circuits is summarized in table 8.3 and portrayed in 

Figure 8.20. 

We define the magnetomotive force (mmf)   (in ampere-turns) as 

     ∮                                                                                                                  

We also define reluctance   (in ampere-turns weber) as 

  
𝓁

  
                                                                                                                                   

TABLE 8.3 Analogy between Electric and Magnetic Circuits 

Electric Magnetic 

Conductivity   

Field intensity   

Current   ∫  ⃑⃑     

Current density   
 

 
    

Electromotive force (emf)   

Resistance   

Conductance   
 

 
  

Ohm's law   
 

 
 

𝓁

  
  

or    𝓁     

Kirchoff's laws: 

∑      

∑  ∑       

Permeability   

Field intensity   

Magnetic flux   ∫     

Flux density   
 

 
    

Magnetomotive force (mmf)   

Reluctance   

Permeance   
 

 
 

Ohm's law   
 

 
 

𝓁

  
 

or    𝓁        

Kirchhoff's laws: 

∑     

∑  ∑      

The reciprocal of reluctance is permeance  . The basic relationship for circuit elements is Ohm's 

law (    ): 
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Figure 8.20 Analogy between (a) an electric circuit, and (b) a magnetic circuit. 

The rules of adding voltages and for combining series and parallel resistances also hold for mmfs 

and reluctances. for   magnetic circuit elements in series 

                                                                                                              

and 

                                                                                                           

For   magnetic circuit elements in parallel, 

                                                                                                         

and 

                                                                                                                

The differences between electric and magnetic circuits.  

 unlike an electric circuit where current   flows, magnetic flux does not flow. 

 conductivity   is independent of current density  ⃑⃑  in an electric circuit whereas 

permeability   varies with flux density B in a magnetic circuit. this is because 

ferromagnetic (nonlinear) materials are normally used in most practical magnetic devices. 

 

8.11 FORCE ON MAGNETIC MATERIALS 

The magnetic force is useful in electromechanical systems such as electromagnets, relays, 

rotating machines, and magnetic levitation. Consider, for example, an electromagnet made of 

iron of constant relative permeability as shown in Fig. 8.21. 
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Figure 8.21 An electromagnet. 

The work required to effect the displacement is equal to the change in stored energy in the air 

gap (assuming constant current), that is 

          *
 

 

  

  
    +                                                                                         

where  

 S is the cross-sectional area of the gap,  

 the factor 2 accounts for the two air gaps, and  

 the negative sign indicates that the force acts to reduce the air gap (or that the force is 

attractive). Thus 

    *
   

   
+                                                                                                                       

The tractive force across a single gap can be obtained from eq. (8.75) as 

    
   

   
                                                                                                                            

Equation (8.77) can be used to calculate the forces in many types of devices including relays, 

rotating machines, and magnetic levitation. 

The tractive pressure (in     ) in a magnetized surface is 

  
 

 
 

  

   
 

 

 
                                                                                                            

which is the same as the energy density    in the air gap. 



Chapter 8:                                                          Magnetic Forces, Materials, and Devices 

33 
 

 


