University of Diyala Engineering College Electronic Department

Year (2013-2014)

Electrical Engineering Fundamentals 1st Class Asst., Lecturer : Wisam N. AL-Obaidi

Capacitors and Inductors

Introduction:

The capacitor and the inductor. Unlike resistors, which dissipate energy, capacitors and inductors do not dissipate but store energy, which can be retrieved at a later time. For this reason, capacitors and inductors are called storage elements.

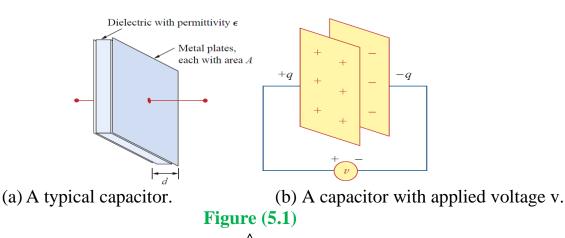
<u>Capacitors</u>

A capacitor is a passive element designed to store energy in its electric field. Capacitors are used extensively in electronics, communications, computers, and power systems. For example, they are used in the tuning circuits of radio receivers and as dynamic memory elements in computer systems.

А	capacitor	consists	of	two	conducting	plates	separated	by	an	insulator	(or
die	electric).										

In many practical applications, the plates may be aluminum foil while the dielectric may be air, ceramic, paper, or mica.

When a voltage source v is connected to the capacitor, as in **Figure (5.1) (b)**, the source deposits a positive charge (q) on one plate and a negative charge (- q) on the other. The capacitor is said to store the electric charge. The amount of charge stored, represented by q, is directly proportional to the applied voltage v so that,


q = Cv

(5.1)

Where *C*, the constant of proportionality, is known as the *capacitance* of the capacitor.

Capacitance is the ratio of the charge on one plate of a capacitor to the voltage difference between the two plates, measured in farads (F).

The unit of capacitance is the farad (F) (1 farad = 1 coulomb/volt).

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Asst., Lecturer : Wisam N. AL-Obaidi

Although the capacitance C of a capacitor is the ratio of the charge q per plate to the applied voltage v, it does not depend on q or v. It depends on the physical dimensions of the capacitor, the capacitance is given by

$$C = \frac{\epsilon A}{d}$$

(5.2)

(5.3)

where A is the surface area of each plate, d is the distance between the plates, and ϵ is the permittivity of the dielectric material between the plates.

The ratio of the flux density to the electric field intensity in the dielectric is called the *permittivity* of the dielectric

For a vacuum, the value of e (denoted by ϵ_0) is 8.85 × 10⁻¹² F/m.

The ratio of the permittivity of any dielectric to that of a vacuum is called the relative **permittivity**, ϵ_r . It simply compares the permittivity of the dielectric to that of air. In equation form,

C	_	ϵ
e_r	_	ϵ_0

Capacitors are commercially available in different values and types. Typically, capacitors have values in the picofarad (pF) to microfarad (μF)range.

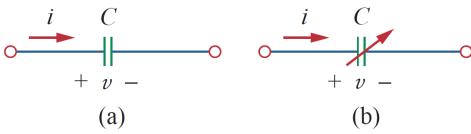


Figure (5.2): Circuit symbols for capacitors: (a) fixed capacitor, (b) variable capacitor.

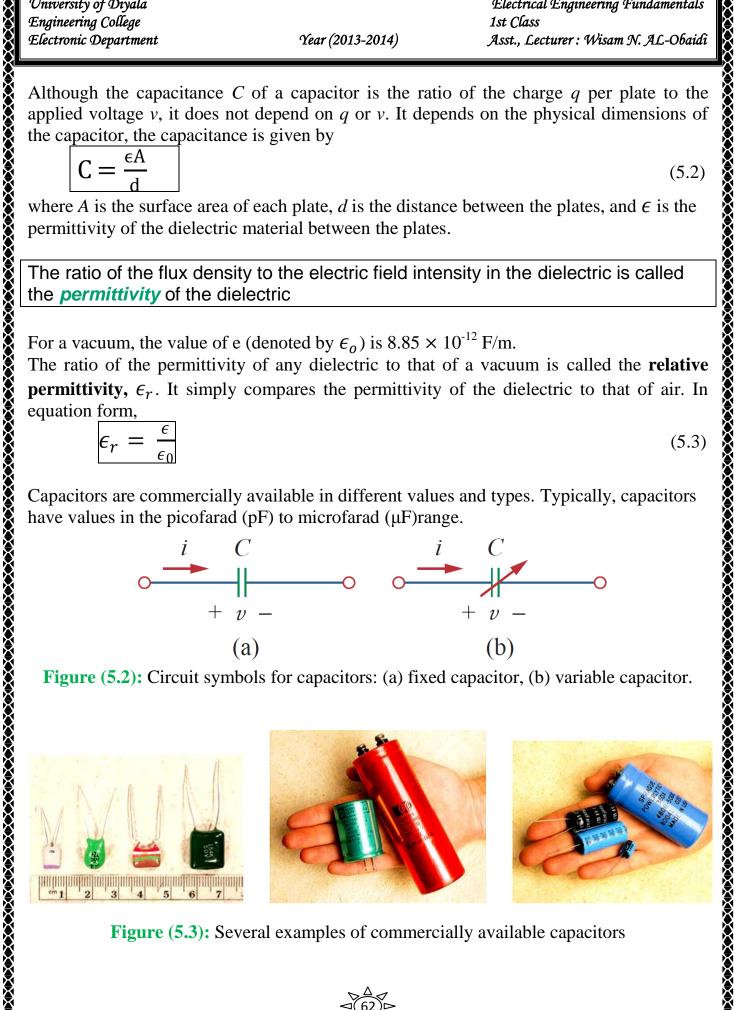
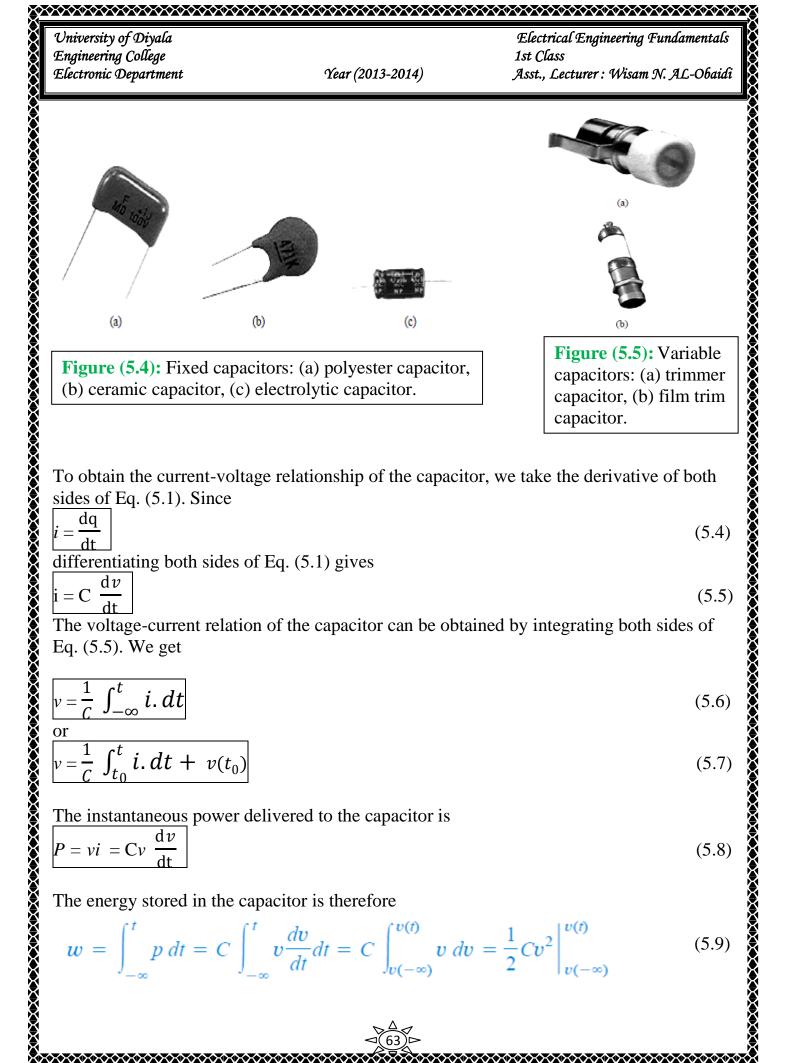



Figure (5.3): Several examples of commercially available capacitors

To obtain the current-voltage relationship of the capacitor, we take the derivative of both sides of Eq. (5.1). Since

$$\frac{i = \frac{dq}{dt}}{differentiating both sides of Eq. (5.1) gives}$$
(5.4)

$$i = C \frac{dv}{dt}$$
(5.5)

The voltage-current relation of the capacitor can be obtained by integrating both sides of Eq. (5.5). We get

$$v = \frac{1}{C} \int_{-\infty}^{t} i \cdot dt$$
or
$$(5.6)$$

$$v = \frac{1}{C} \int_{t_0}^{t} i \cdot dt + v(t_0)$$
(5.7)

The instantaneous power delivered to the capacitor is

$$P = vi = Cv \frac{\mathrm{d}v}{\mathrm{dt}}$$
(5.8)

The energy stored in the capacitor is therefore

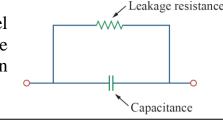
$$w = \int_{-\infty}^{t} p \, dt = C \int_{-\infty}^{t} v \frac{dv}{dt} dt = C \int_{v(-\infty)}^{v(t)} v \, dv = \frac{1}{2} C v^2 \Big|_{v(-\infty)}^{v(t)}$$
(5.9)

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Asst., Lecturer : Wisam N. AL-Obaidi
-		

We note that $v(-\infty) = 0$, because the capacitor was uncharged at $t = -\infty$. Thus,

 $w = \frac{1}{2} C v^{2}$ or $w = \frac{q^{2}}{2C}$

1) Note from Eq. (5.5) that when the voltage across a capacitor is not changing with time (i.e., dc voltage), the current through the capacitor is zero. Thus,


A capacitor is an open circuit to dc.

However, if a battery (dc voltage) is connected across a capacitor, the capacitor charges.

2) The voltage on the capacitor must be continuous.

The voltage on a capacitor cannot change abruptly.

- 3) The ideal capacitor does not dissipate energy. It takes power from the circuit when storing energy in its field and returns previously stored energy when delivering power to the circuit.
- 4) A real, non-ideal capacitor has a parallel-model leakage resistance, as shown in **Figure (5.6)**. The leakage resistance may be as high as 100 M and can be neglected for most practical applications.

(5.10)

Figure (5.6): Circuit model of a non-ideal capacitor.

Example 1: (a) Calculate the charge stored on a 3-pF capacitor with 20 V across it. (b) Find the energy stored in the capacitor.

Solution: (a) Since q = Cv,

$$q = 3 \times 10^{-12} \times 20 = 60 \text{ pC}$$

(b) The energy stored is

$$w = \frac{1}{2}Cv^2 = \frac{1}{2} \times 3 \times 10^{-12} \times 400 = 600 \text{ pJ}$$

University of Diyala Engineering College Electronic Department

Year (2013-2014)

Electrical Engineering Fundamentals 1st Class Asst., Lecturer : Wisam N. AL-Obaidi

A

H.W.: What is the voltage across a $3-\mu$ F capacitor if the charge on one plate is 0.12 mC? How much energy is stored? **Answer: 40 V, 2.4 mJ.**

Example 2: The voltage across a 5- μ F capacitor is, $v(t) = 10 \cos 6000t$ V Calculate the current through it.

Solution:

By definition, the current is

$$i(t) = C \frac{dv}{dt} = 5 \times 10^{-6} \frac{d}{dt} (10 \cos 6000t)$$

= -5 × 10⁻⁶ × 6000 × 10 sin 6000t = -0.3 sin 6000t

H.W.: If a 10- μ F capacitor is connected to a voltage source with, v(t) = 50 sin 2000t V Determine the current through the capacitor. **Answer: cos 2000t A**.

Example 3:

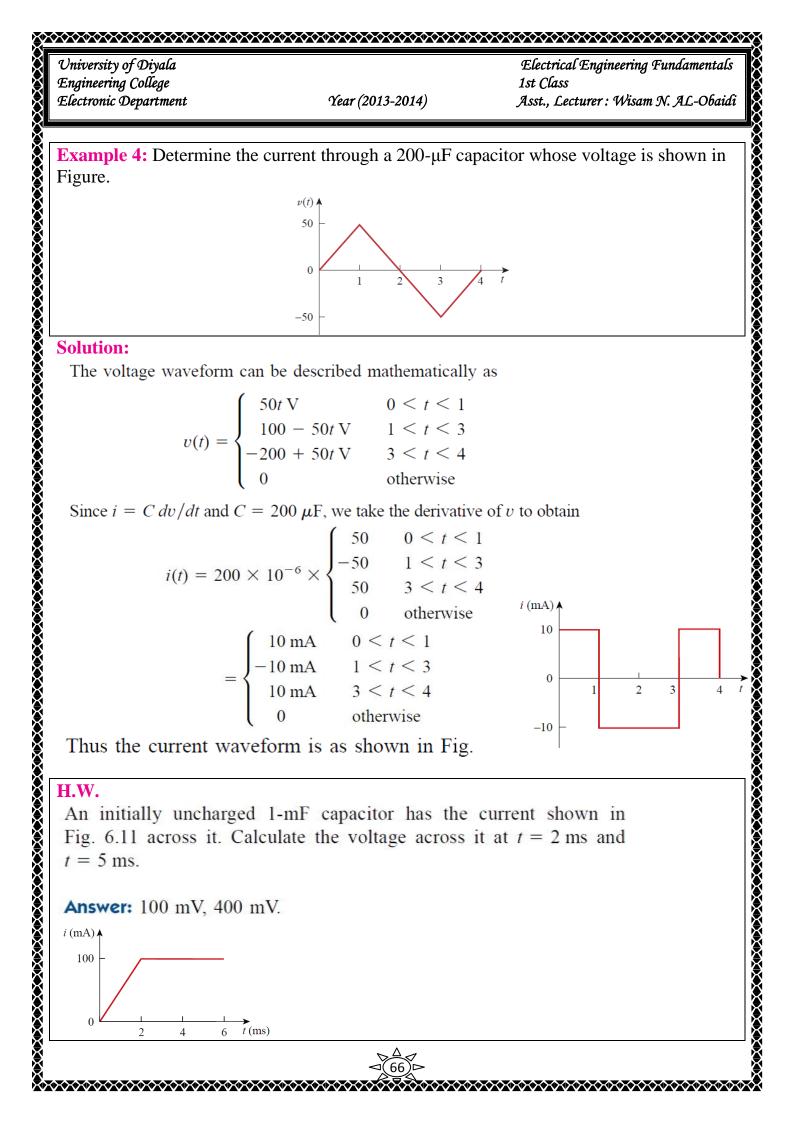
Determine the voltage across a $2-\mu F$ capacitor if the current through it is

$$i(t) = 6e^{-3000t} \,\mathrm{mA}$$

Assume that the initial capacitor voltage is zero.

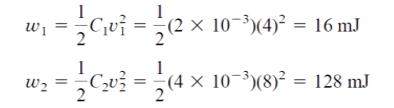
 $1 \int^t$

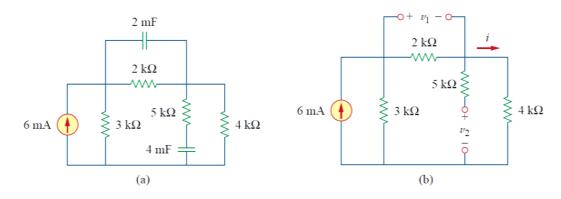
Since
$$v = \frac{1}{C} \int_{0}^{t} i \, dt + v(0)$$
 and $v(0) = 0$,
$$\frac{1}{2 \times 10^{-6}} \int_{0}^{t} 6e^{-3000t} \, dt \cdot 10^{-3}$$

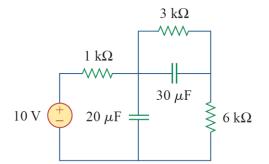

$$= \frac{3 \times 10^3}{-3000} e^{-3000t} \Big|_0^t = (1 - e^{-3000t}) \,\mathrm{V}$$

H.W.:

v =

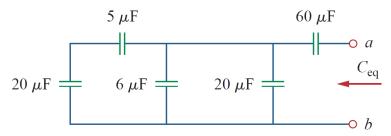

The current through a 100- μ F capacitor is $i(t) = 50 \sin 120 \pi t$ mA. Calculate the voltage across it at t = 1 ms and t = 5 ms. Take v(0) = 0.


Answer: 93.14 mV, 1.736 V.



University of Diyala Engineering College Electronic Department	Year (2013-2014)	1st Class	ngineering Fundamenta rer : Wisam N. AL-Obai
Example 5: Obtain the energy of the energy	rgy stored in each cap	acitor in Figure under	dc conditions.
Solution:		-	
Under dc conditions, we as shown in Fig. 6.12(b)		-	
of the 2-k Ω and 4-k Ω re	•		uion
	2		
$i = -\frac{1}{3}$	$\frac{3}{1+2+4}$ (6 mA) =	2 mA	
Hence, the voltages v_1 a	nd v_2 across the cap	acitors are	
-	$v_i = 4 \text{ V}$ $v_2 = 40$		
-	_		
and the energies stored i	1		
$w_1 = \frac{1}{2}C_1 v$	$v_1^2 = \frac{1}{2}(2 \times 10^{-3})(4)$	$^2 = 16 \text{ mJ}$	
$w_2 = \frac{1}{2}C_2 u$	$v_2^2 = \frac{1}{2}(4 \times 10^{-3})(8)$	$^{2} = 128 \text{ mJ}$	
2	mF	- + v ₁	
		2 kΩ	i
21	kΩ ///	5 kΩ ≷	
		$mA + \frac{1}{5} 3 k\Omega$	$\leq 4 k\Omega$
$6 \text{ mA} \stackrel{\bullet}{\blacklozenge} \stackrel{\circ}{\lessgtr} 3 \text{ k}\Omega$	$\leq \leq 4 k\Omega$		
	4 mF =		
-	a)	(b)	
H.W.: Under dc conditions		d in the capacitors in I	Fig.
Answer: 810 μJ, 135 μJ	J.		
		3 kΩ	
	1 kΩ	v v v v	
	$10 V \stackrel{+}{=} 20 \mu F \stackrel{-}{=}$	$30 \mu\text{F} \downarrow \leq 6 \mathrm{k}\Omega$	
	۸		
	$\triangleleft (67) \triangleright$		

$$i = \frac{3}{3+2+4}(6 \text{ mA}) = 2 \text{ mA}$$



<u> </u>		
<u>Serie</u>	e <u>s and Parallel Capacitors</u> Table (5.	1)
NO	Series Circuit	Parallel Circuit
1	The connection is as shown	The connection is as shown
	$v \stackrel{i}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{\stackrel{-}{$	$v \stackrel{+}{-} C_1 \stackrel{i_2}{-} C_2 \stackrel{i_3}{-} C_3 \stackrel{i_N}{-} C_N \stackrel{+}{-} $
2	The same current flows through each capacitor. $I = I_1 = I_2 = = I_n$	The same voltage exists across all the capacitor in parallel. $V = V_1 = V_2 = = V_n$
3	The voltage across each capacitor is different.	The current through each capacitor is different.
4	The sum of the voltages across all the capacitor is the supply voltage. $V = V_1 + V_2 + \dots + V_n$ $v = \frac{1}{C_1} \int_{t_0}^t i(t) dt + v_1(t_0) + \frac{1}{C_2} \int_{t_0}^t i(t) dt + v_2(t_0)$ $+ \dots + \frac{1}{C_N} \int_{t_0}^t i(t) dt + v_N(t_0)$ $= \left(\frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}\right) \int_{t_0}^t i(t) dt + v_1(t_0) + v_2(t_0)$	The sum of the currents through all the capacitor is the supply current. $I = I_1 + I_2 + \dots + I_n$ $i = C_1 \frac{dv}{dt} + C_2 \frac{dv}{dt} + C_3 \frac{dv}{dt} + \dots + C_N \frac{dv}{dt}$ $= \left(\sum_{k=1}^N C_k\right) \frac{dv}{dt} = C_{eq} \frac{dv}{dt}$
5	$+ \dots + v_{N}(t_{0})$ $= \frac{1}{C_{eq}} \int_{t_{0}}^{t} i(t) dt + v(t_{0})$ The equivalent capacitance is, $\frac{1}{C_{eq}} = \frac{1}{C_{1}} + \frac{1}{C_{2}} + \dots + \frac{1}{C_{n}}$	The equivalent capacitance is, $C_{eq} = C_1 + C_2 + + C_n$
6	C_{eq} C_1 C_2 C_n The equivalent capacitance is the smallerthan the smallest of all the capacitance inparallel.	The equivalent capacitance is the largest than each of the capacitance in series. $C_{eq} > C_1, C_{eq} > C_2 \dots, C_{eq} > C_n$

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Asst., Lecturer : Wisam N. AL-Obaidi

Example 6: Find the equivalent capacitance seen between terminals *a* and *b* of the circuit **Solution:**

The 20- μ F and 5- μ F capacitors are in series; their equivalent capacitance is

$$\frac{20\times5}{20+5} = 4\,\mu\mathrm{F}$$

This 4- μ F capacitor is in parallel with the 6- μ F and 20- μ F capacitors; their combined capacitance is

$$4 + 6 + 20 = 30 \,\mu\text{F}$$

This 30- μ F capacitor is in series with the 60- μ F capacitor. Hence, the equivalent capacitance for the entire circuit is

$$C_{\rm eq} = \frac{30 \times 60}{30 + 60} = 20 \,\mu\text{F}$$

H.W.: Find the equivalent capacitance seen between terminals *a* and *b* of the circuit.

50 μF

60 μF

20 µF

120 μF

Answer: 40 μF.

University of Diyala Engineering College Electronic Department

Year (2013-2014)

Electrical Engineering Fundamentals 1st Class

Asst., Lecturer : Wisam N. AL-Obaidi

Example 7: For the circuit in Fig., find the voltage across each capacitor

Solution:

y Deserved to the second to the

Solution:

We first find the equivalent capacitance C_{eq} , shown in Fig. **b** The two parallel capacitors in Fig.a can be combined to get 40 + 20 = 60 mF. This 60-mF capacitor is in series with the 20-mF and 30-mF capacitors. Thus,

$$C_{\rm eq} = \frac{1}{\frac{1}{60} + \frac{1}{30} + \frac{1}{20}} \,\mathrm{mF} = 10 \,\mathrm{mF}$$

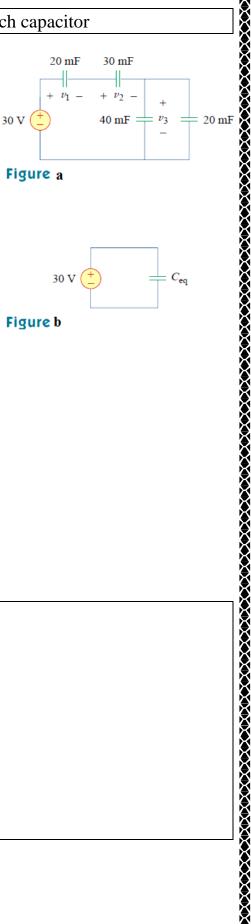
The total charge is

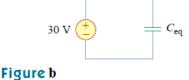
$$q = C_{eq}v = 10 \times 10^{-3} \times 30 = 0.3 \text{ C}$$

This is the charge on the 20-mF and 30-mF capacitors, because they are in series with the 30-V source. (A crude way to see this is to imagine that charge acts like current, since i = dq/dt.) Therefore,

$$v_1 = \frac{q}{C_1} = \frac{0.3}{20 \times 10^{-3}} = 15 \text{ V}$$
 $v_2 = \frac{q}{C_2} = \frac{0.3}{30 \times 10^{-3}} = 10 \text{ V}$

Having determined v_1 and v_2 , we now use KVL to determine v_3 by


 $v_3 = 30 - v_1 - v_2 = 5 V$


Alternatively, since the 40-mF and 20-mF capacitors are in parallel, they have the same voltage v_3 and their combined capacitance is 40 + 20 = 60 mF. This combined capacitance is in series with the 20-mF and 30-mF capacitors and consequently has the same charge on it. Hence,

$$v_3 = \frac{q}{60 \text{ mF}} = \frac{0.3}{60 \times 10^{-3}} = 5 \text{ V}$$

H.W.: Find the voltage across each of the capacitors in Fig. **Answer:** $v_1 = 30$ V, $v_2 = 30$ V, $v_3 = 10$ V, $v_4 = 20$ V.

$$40 \ \mu F \qquad 60 \ \mu F \\ + \ v_1 - + \ v_3 - + \\ + \ v_2 - 20 \ \mu F \qquad - \\ 0 \ V \qquad - \qquad 30 \ \mu F$$

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Asst., Lecturer : Wisam N. AL-Obaidi

Inductors

An inductor is a passive element designed to store energy in its magnetic field. Inductors find numerous applications in electronic and power systems. They are used in power supplies, transformers, radios, TVs, radars, and

electric motors.

Any conductor of electric current has inductive properties and may be regarded as an inductor. But in order to enhance the inductive effect, a practical inductor is usually formed into a cylindrical coil with many turns of conducting wire, as shown in Figure (5.7).

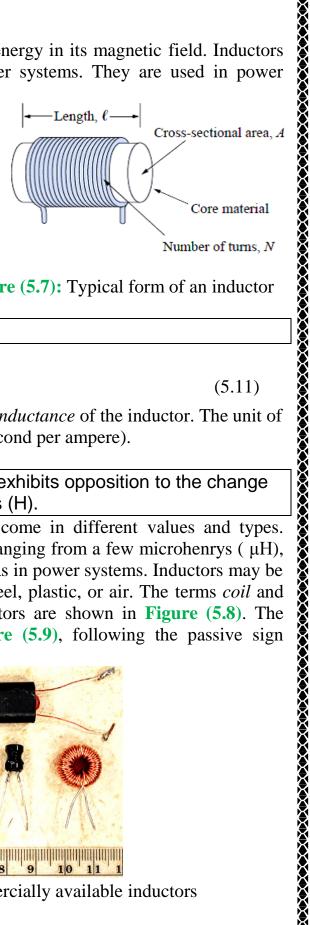


Figure (5.7): Typical form of an inductor

An inductor consists of a coil of conducting wire.

 $v = L \frac{di}{dt}$

(5.11)

where L is the constant of proportionality called the *inductance* of the inductor. The unit of inductance is the henry (H),(1 henry equals 1 volt-second per ampere).

Inductance is the property whereby an inductor exhibits opposition to the change of current flowing through it, measured in henrys (H).

Like capacitors, commercially available inductors come in different values and types. Typical practical inductors have inductance values ranging from a few microhenrys (µH), as in communication systems, to tens of henrys (H) as in power systems. Inductors may be fixed or variable. The core may be made of iron, steel, plastic, or air. The terms *coil* and choke are also used for inductors. Common inductors are shown in Figure (5.8). The circuit symbols for inductors are shown in Figure (5.9), following the passive sign convention.

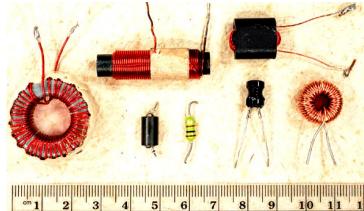


Figure (5.8): Several examples of commercially available inductors

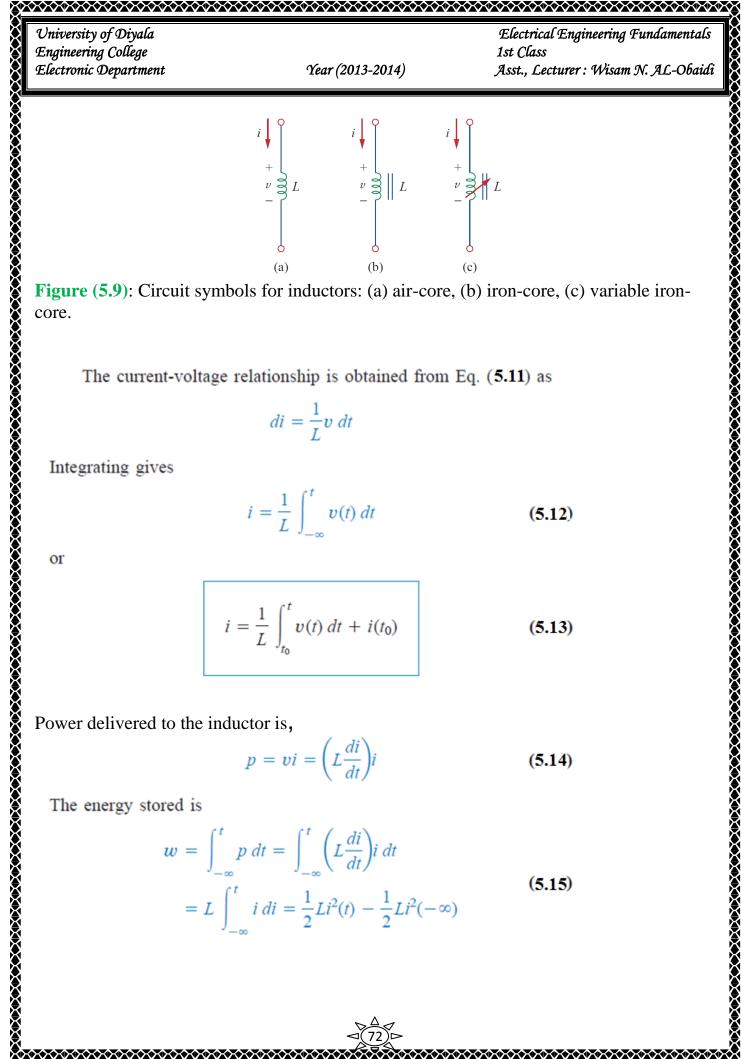


Figure (5.9): Circuit symbols for inductors: (a) air-core, (b) iron-core, (c) variable ironcore.

The current-voltage relationship is obtained from Eq. (5.11) as

 $di = \frac{1}{L}v dt$

Integrating gives

$$i = \frac{1}{L} \int_{-\infty}^{t} v(t) dt$$
(5.12)

or

 $i = \frac{1}{L} \int_{t_0}^t v(t) dt + i(t_0)$ (5.13)

Power delivered to the inductor is,

 $p = vi = \left(L\frac{di}{dt}\right)i$ (5.14)

The energy stored is

$$w = \int_{-\infty}^{t} p \, dt = \int_{-\infty}^{t} \left(L \frac{di}{dt} \right) i \, dt$$

= $L \int_{-\infty}^{t} i \, di = \frac{1}{2} L i^{2}(t) - \frac{1}{2} L i^{2}(-\infty)$ (5.15)

University of Diyala Engineering College		Electrical Engineering Fundamentals 1st Class	
Electronic Department	Year (2013-2014)	Asst., Lecturer : Wisam N. AL-Obaidi	
Since $i(-\infty) = 0$,			
	$w = \frac{1}{2}Li^2$	(6.24)	
	2		
- · ·) that the voltage across an in	ductor is zero when the current is	
constant. Thus, An inductor acts like a sho	rt circuit to de		
		sition to the change in current	
flowing through it.			
The current through an inductor cannot change instantaneously.			
Example 8:			
		$10te^{-5t}$ A. Find the volt-	
age across the induct	or and the energy stored	1n 1t.	
Solution:			
Since $v = L di/dt$ and	L = 0.1 H,		
$=$ 0.1^d (10)	e^{-5t}) = $e^{-5t} + t(-5)e^{-5t}$	5t = -5t(1 - 50)T	
$v = 0.1 - \frac{1}{dt} (10t)$	e = e + I(-5)e	= e (1 - 5t) V	
1 1			
$w = \frac{1}{2}Li^2 = \frac{1}{2}($	$(0.1)100t^2e^{-10t} = 5t$	e^{-10t} J	
2 2			
H W •			

H.W.: If the current through the terminal voltage Answer: -2 sin 100 If the current through a 1-mH inductor is $i(t) = 20 \cos 100t$ mA, find the terminal voltage and the energy stored.

Answer: $-2 \sin 100t \, \text{mV}$, $0.2 \cos^2 100t \, \mu \text{J}$.

University of Diyala Engineering College Electronic Department	Year (2013-2014)	Electrical Engineering Fundamentals 1st Class Asst., Lecturer : Wisam N. AL-Obaids			
Example 9: Find the current through	h a 5-H inductor if the vo	ltage across it is			
	$v(t) = \begin{cases} 30t^2, & t > 0\\ 0, & t < 0 \end{cases}$				
Also, find the energy st	fored at $t = 5$ s. Assume i	(v) > 0.			
Solution: Since $i = \frac{1}{L} \int_{t_0}^t v(t) dt$	$+ i(t_0)$ and $L = 5$ H,				
$i = \frac{1}{5}$	$\int_{0}^{t} 30t^{2} dt + 0 = 6 \times \frac{t^{3}}{3} =$	$= 2t^3 \mathbf{A}$			
The power $p = vi = 0$	$50t^5$, and the energy store	d is then			
$w = \int p dt$	$t = \int_0^5 60t^5 dt = 60 \left. \frac{t^6}{6} \right _0^5 =$	= 156.25 kJ			
	$\frac{1}{2}Li(0) = \frac{1}{2}(5)(2 \times 5^3)^2$	-0 = 156.25 kJ			
as obtained before.					
H.W.: The terminal voltage of a 2-H inductor is $v = 10(1 - t)$ V. I current flowing through it at $t = 4$ s and the energy stored in it at Assume $i(0) = 2$ A. Answer: -18 A, 320 J.					
Answer: -18 A, 32	0 J.				

University of Diyala Engineering College Electronic Department

Year (2013-2014)

Electrical Engineering Fundamentals 1st Class Asst., Lecturer : Wisam N. AL-Obaidi

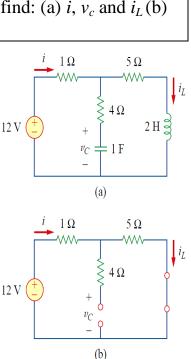
Example 10: Consider the circuit in Fig. (a). Under dc conditions, find: (a) *i*, v_c and i_L (b) the energy stored in the capacitor and inductor.

Solution:

(a) Under dc conditions, we replace the capacitor with an open circuit and the inductor with a short circuit, as in Fig. (b). It is evident from Fig.(b) that

$$i = i_L = \frac{12}{1+5} = 2$$
 A

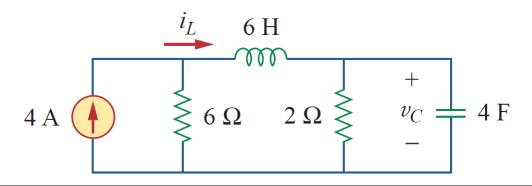
The voltage v_C is the same as the voltage across the 5- Ω resistor. Hence,


 $v_{C} = 5i = 10 \text{ V}$

(b) The energy in the capacitor is

$$w_C = \frac{1}{2}Cv_C^2 = \frac{1}{2}(1)(10^2) = 50$$
 J

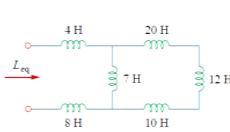
and that in the inductor is


$$w_L = \frac{1}{2}Li_L^2 = \frac{1}{2}(2)(2^2) = 4$$
 J

ante de la compete La compete de **H.W.:**

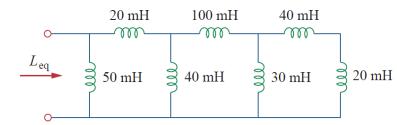
Determine v_C , i_L , and the energy stored in the capacitor and inductor in the circuit of Fig. under dc conditions.

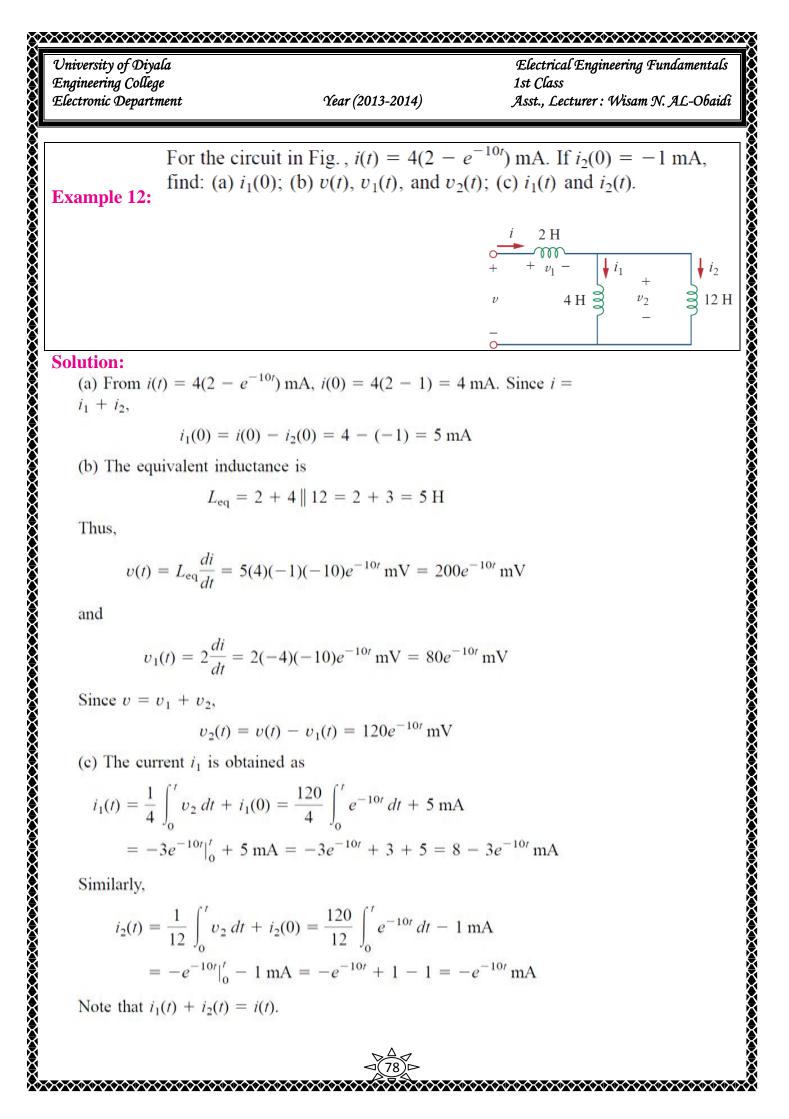
Answer: 6 V, 3 A, 72 J, 27 J.

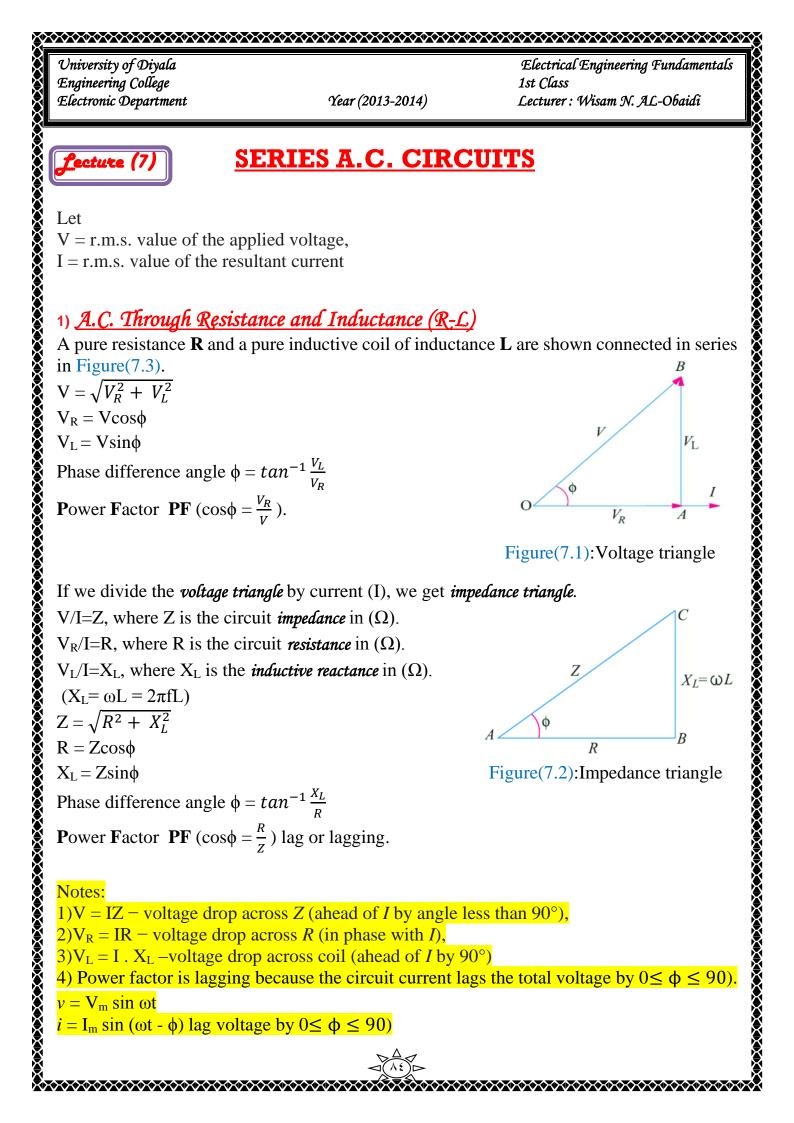

Engine	rsity of Diyala eering College mic Department Year (2013-201	Electrical Engineering Fundamentals 1st Class 4) Asst., Lecturer : Wisam N. AL-Obaidi	
<u>Serie</u>	es and Parallel Inductors		
	Table (5	5.2)	
NO	Series Circuit	Parallel Circuit	
1	The connection is as shown	The connection is as shown	
	$i \qquad L_1 \qquad L_2 \qquad L_3 \qquad L_N$ $+ \qquad + \qquad v_1 - \qquad + \qquad v_2 - \qquad + \qquad v_3 - \qquad \cdots \qquad + \qquad v_N - \qquad $	i $+ i_{1}$ i_{2} i_{3} i_{N} i_{N} i_{N} L_{1} L_{2} L_{3} L_{N}	
2	The same current flows through each inductor. $I = I_1 = I_2 = = I_n$	The same voltage exists across all the inductor in parallel. $V = V_1 = V_2 = = V_n$	
3	The voltage across each inductor is different.	The current through each inductor is different.	
4	The sum of the voltages across all the inductor is the supply voltage. $V = V_1 + V_2 + \dots + V_n$ $v = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + \dots + L_N \frac{di}{dt}$ $= (L_1 + L_2 + L_3 + \dots + L_N) \frac{di}{dt}$ $= \left(\sum_{k=1}^N L_k\right) \frac{di}{dt} = L_{eq} \frac{di}{dt}$	The sum of the currents through all the inductor is the supply current. $I = I_{1} + I_{2} + \dots + I_{n}$ $i = \frac{1}{L_{1}} \int_{t_{0}}^{t} v dt + i_{1}(t_{0}) + \frac{1}{L_{2}} \int_{t_{0}}^{t} v dt + i_{2}(t_{0})$ $+ \dots + \frac{1}{L_{N}} \int_{t_{0}}^{t} v dt + i_{N}(t_{0})$ $= \left(\frac{1}{L_{1}} + \frac{1}{L_{2}} + \dots + \frac{1}{L_{N}}\right) \int_{t_{0}}^{t} v dt + i_{1}(t_{0}) + i_{2}(t_{0})$ $+ \dots + i_{N}(t_{0})$ $= \left(\sum_{k=1}^{N} \frac{1}{L_{k}}\right) \int_{t_{0}}^{t} v dt + \sum_{k=1}^{N} i_{k}(t_{0}) = \frac{1}{L_{eq}} \int_{t_{0}}^{t} v dt + i(t_{0})$	
5	The equivalent inductor is, $L_{eq} = L_1 + L_2 + \ldots + L_n$	The equivalent inductor is, $\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_n}$	
6	The equivalent inductor is the smaller than the smallest of all the inductor in parallel.	The equivalent inductor is the largest than each of the inductor in series. $L_{eq} > L_1, L_{eq} > L_2 \dots, L_{eq} > L_n$	
		· , >	

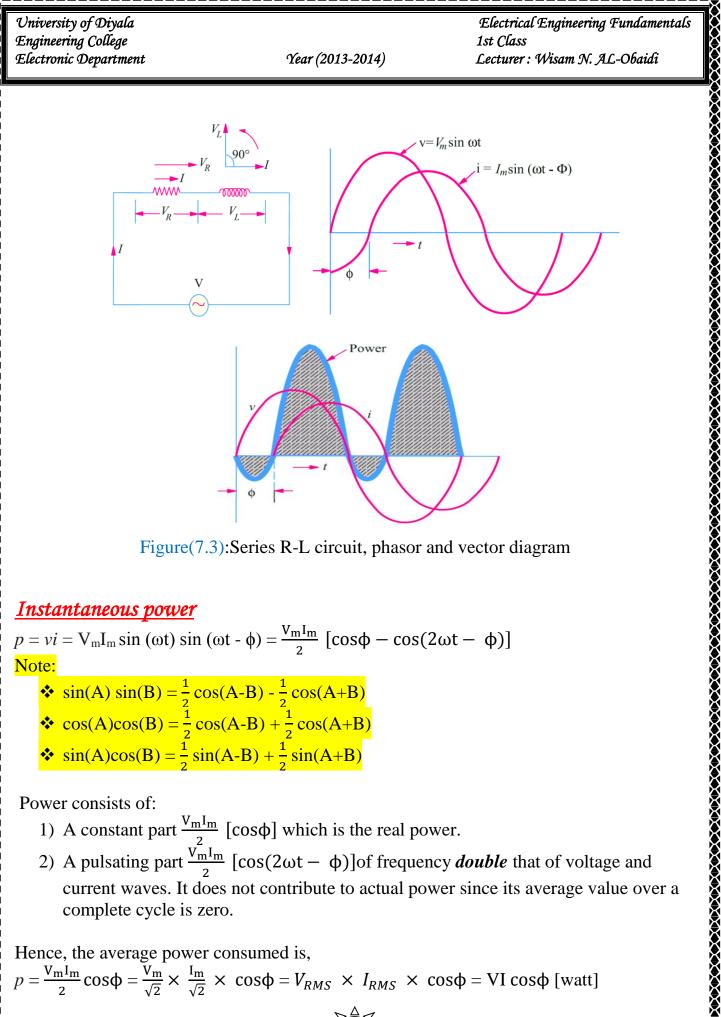
University of Diyala Engineering College Electronic Department	Year (201		Electrical Engineering Fundamentals 1st Class Asst., Lecturer : Wisam N. AL-Obaid		
Important o	characteristics	of the basic e	elements.†		
Relation	Resistor (R)	Capacitor (C	() Inductor (L)		
<i>v-i</i> :	v = iR	$v = \frac{1}{C} \int_{t_0}^t i dt + v$	$v(t_0) v = L \frac{di}{dt}$		
<i>i-v</i> :	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v dt + i(t_0)$		
<i>p</i> or <i>w</i> :	$p = i^2 R = \frac{v^2}{R}$	-	$w = \frac{1}{2}Li^2$		
Series:	$R_{\rm eq} = R_1 + R_2$	$C_{\rm eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{\rm eq} = L_1 + L_2$		
Parallel:	$R_{\rm eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{\rm eq} = C_1 + C_2$	$L_{\rm eq} = \frac{L_1 L_2}{L_1 + L_2}$		
At dc:	Same	Open circuit	Short circuit		
The 10-H, 12-H, and 20-I them gives a 42-H inducta the 7-H inductor so that th	nce. This 42-H inductor	r is in parallel with	4 H 20 H 		
This 6-H inductor is in ser		H inductors. Hence.	0		
	= 4 + 6 + 8 = 18 H				
H.W.: Calculate the equivalent inductance for the inductive ladder network in Fig. 6.32.					
L _{eq}	20 mH 100 mH	40 mH			
	50 mH 3 40 mH	ਡ੍ਰੇ 30 mH ਤ੍ਰੋ 20 mH			
Answer: 25 mH.					

Important characteristics of the basic elements. ^T			
Relation	Resistor (R)	Capacitor (C)	Inductor (L
<i>v-i</i> :	v = iR	$v = \frac{1}{C} \int_{t_0}^t i dt + v(t_0)$	$v = L \frac{di}{dt}$


Solution:


$$\frac{7 \times 42}{7 + 42} = 6 \text{ H}$$


$$L_{\rm eq} = 4 + 6 + 8 = 18 \,\mathrm{H}$$


H.W.:

University of Diyala Engineering College Electronic Department	Year (2013-2014)	Electrical Engineering Fundamentals 1st Class Asst., Lecturer : Wisam N. AL-Obaid
H.W.:		
In the circuit of Fig., $i_1(t) = 0$ (a) $i_2(0)$; (b) $i_2(t)$ and $i(t)$; (c) i	$0.6e^{-2t}$ A. If $i(0) = 1.4$ A, find: $v_1(t), v_2(t)$, and $v(t)$.	<i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>
Answer: (a) 0.8 A, (b) (-0) (c) $-36e^{-2t}$ V, $-7.2e^{-2t}$ V, $-7.$	$A + 1.2e^{-2t}$ A, $(-0.4 + 1.8e^{-2t})$ A, $28.8e^{-2t}$ V.	v i_1 GH v_2 gs_1 $-$
		- o

 $\mathbf{\mathcal{W}}$

Figure(7.3):Series R-L circuit, phasor and vector diagram

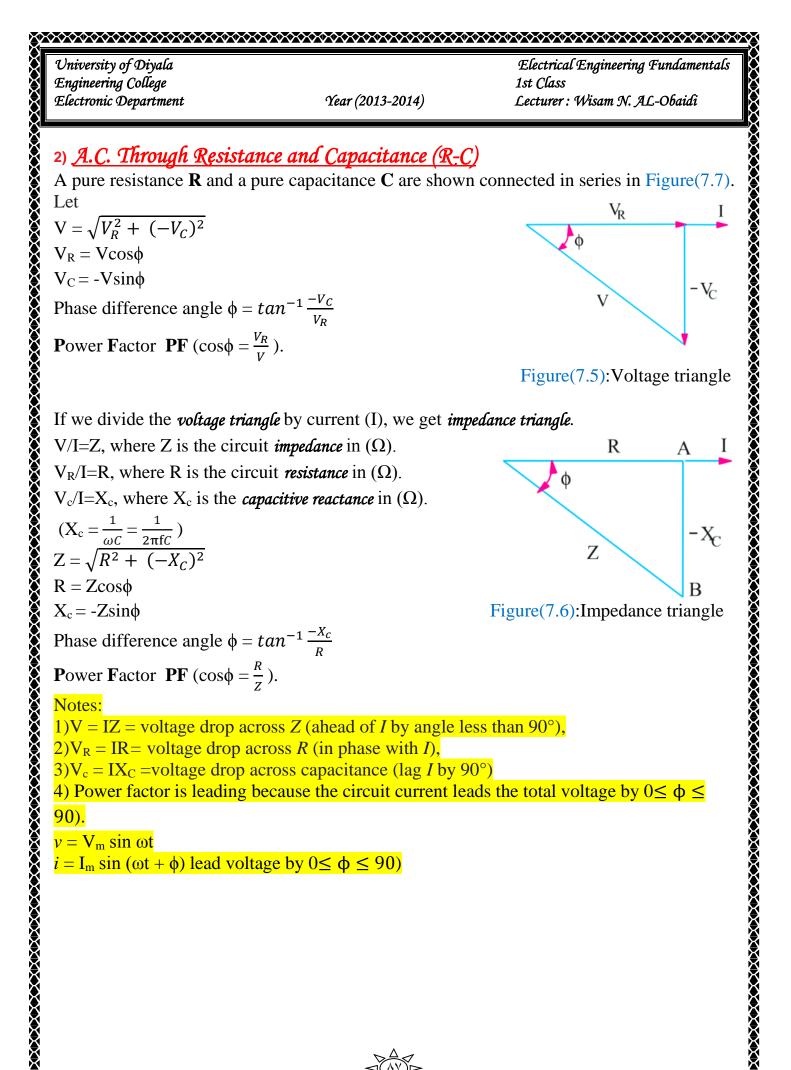
<u>Instantaneous power</u>

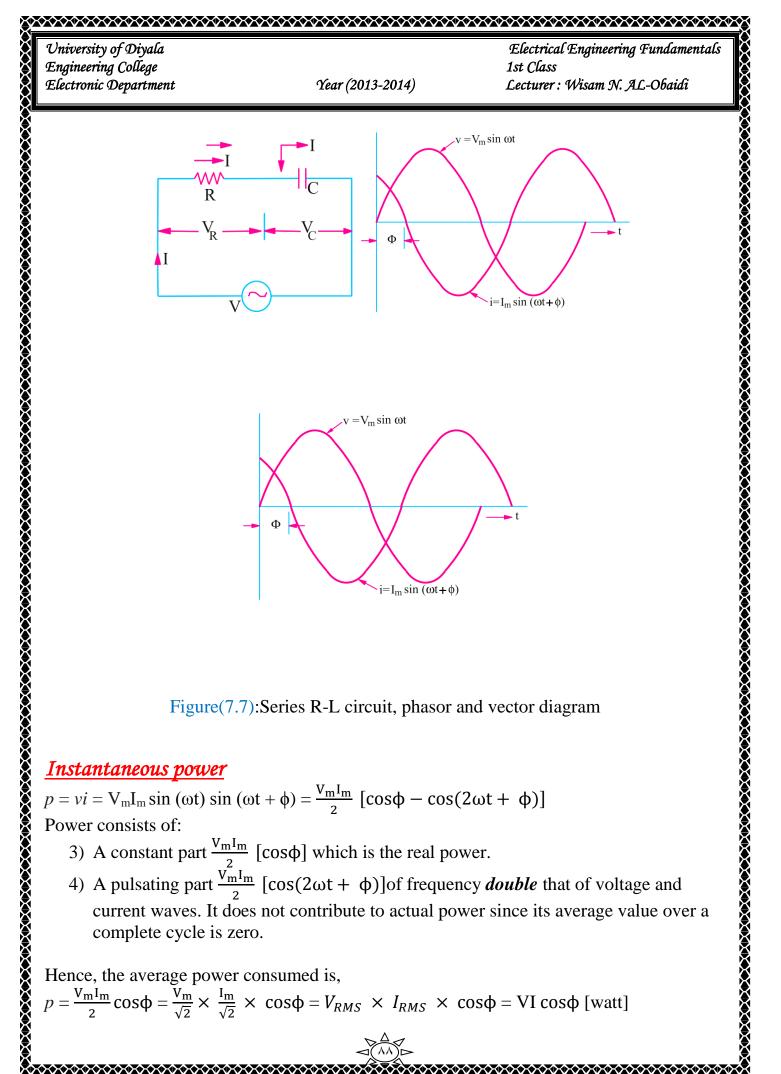
 $p = vi = V_m I_m \sin(\omega t) \sin(\omega t - \phi) = \frac{V_m I_m}{2} [\cos\phi - \cos(2\omega t - \phi)]$ Note:

• $\sin(A) \sin(B) = \frac{1}{2} \cos(A-B) - \frac{1}{2} \cos(A+B)$

ᢣ᠔᠋ᢕᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐᡐ

$$\bigstar \cos(A)\cos(B) = \frac{1}{2}\cos(A-B) + \frac{1}{2}\cos(A+B)$$


$$\dot{\bullet}$$
 sin(A)cos(B) = $\frac{1}{2}$ sin(A-B) + $\frac{1}{2}$ sin(A+B)

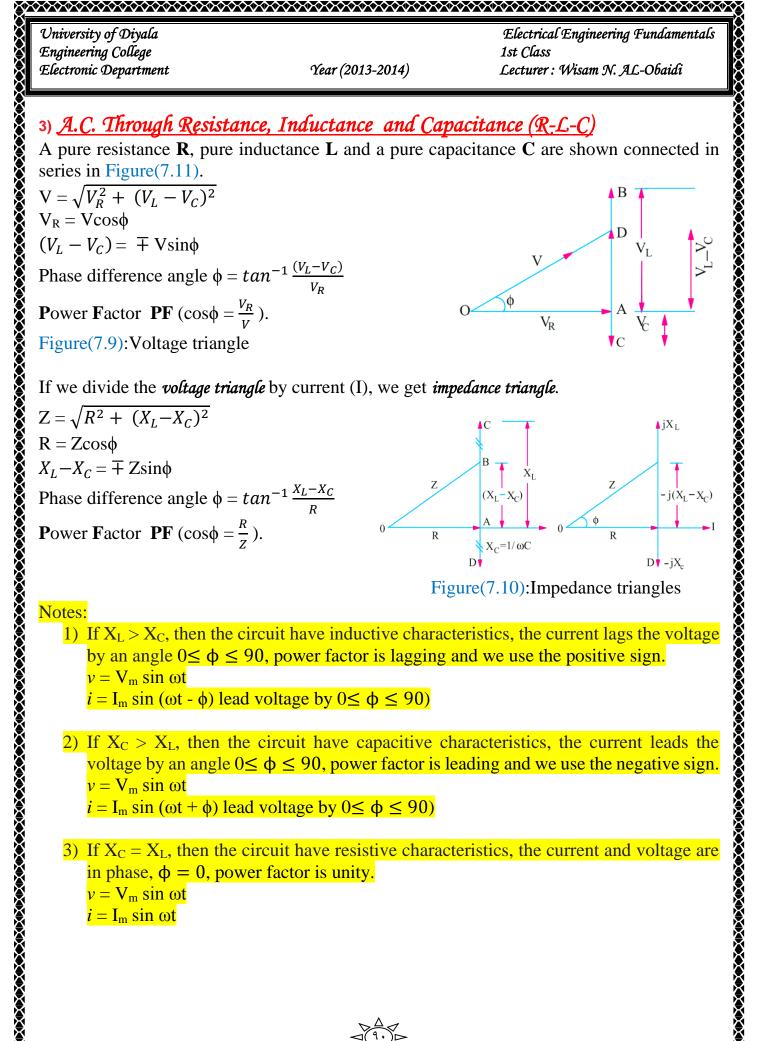

Power consists of:

- 1) A constant part $\frac{V_m I_m}{2}$ [cos ϕ] which is the real power.
- 2) A pulsating part $\frac{V_m I_m}{2}$ [cos(2 ω t ϕ)] of frequency *double* that of voltage and current waves. It does not contribute to actual power since its average value over a complete cycle is zero.

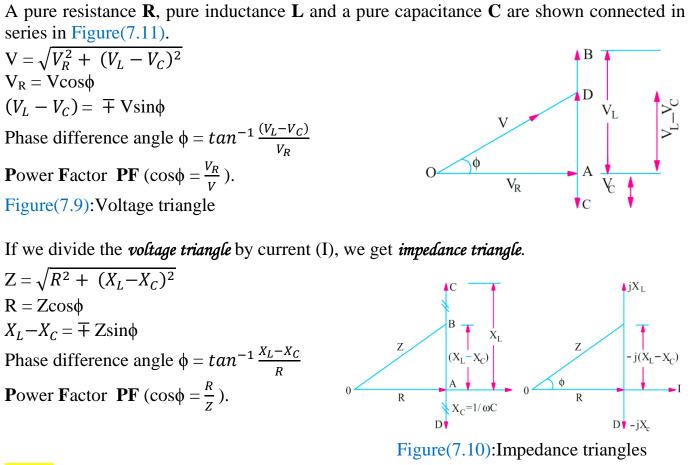
Hence, the average power consumed is, $p = \frac{V_{m}I_{m}}{2}\cos\varphi = \frac{V_{m}}{\sqrt{2}} \times \frac{I_{m}}{\sqrt{2}} \times \cos\varphi = V_{RMS} \times I_{RMS} \times \cos\varphi = VI\cos\varphi \text{ [watt]}$

University of Diyala		Electrical Engineering Fundamental
Engineering College Electronic Department	Year (2013-2014)	1st Class Lecturer : Wisam N. AL-Obaidi
Power Triangle:		
	age triangle by current I (or 1	multiply impedance triangle by I ²),
	of r.m.s. values of applied very old the of the off of the observation	oltage and circuit current.
(<i>ii</i>) active power (<i>P</i> or <i>W</i>	- · · ·	
It is the power which is as $P = V_R I = VI \cos \varphi = I^2 R$	ctually dissipated in the circu watts	iit resistance.
(iii) reactive power (QL)		
	in the inductive reactance of v_L volt-amperes-reactive	
$Q_L = V_L = VI \sin \psi = IX$ $S = \sqrt{P^2 + Q_L^2}$		(VAR)
	SEIL	
	5 [#] *	$Q = I^2 X_L$
	•	
	Φ $P = I^2 R$	
	Figure (7.4) :Power tria	angle
Representation of AC	Quantities in Complex N	umbers Forms
$V = V_R + j V_L$ or $V = V \perp$	- \$	
$I = I + j 0 \text{ or } I = I \sqcup 0$ $Z = R + j X_L \text{ or } Z = Z \sqcup \phi$)	
$S = P + j Q_L$ or $S = S \sqcup \phi$)	
$Z = \frac{V}{I} = \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = R + \frac{VR + j VL}{I + j 0} = $		
$S = VI = (V_R + j V_L)(I + j$	$0) = P + j Q_L$	
<u>Power Factor</u>		
P ower Factor PF ($\cos\phi$ =	$=\frac{v_R}{V}=\frac{\kappa}{Z}=\frac{P}{S}$) lagging	

Instantaneous power

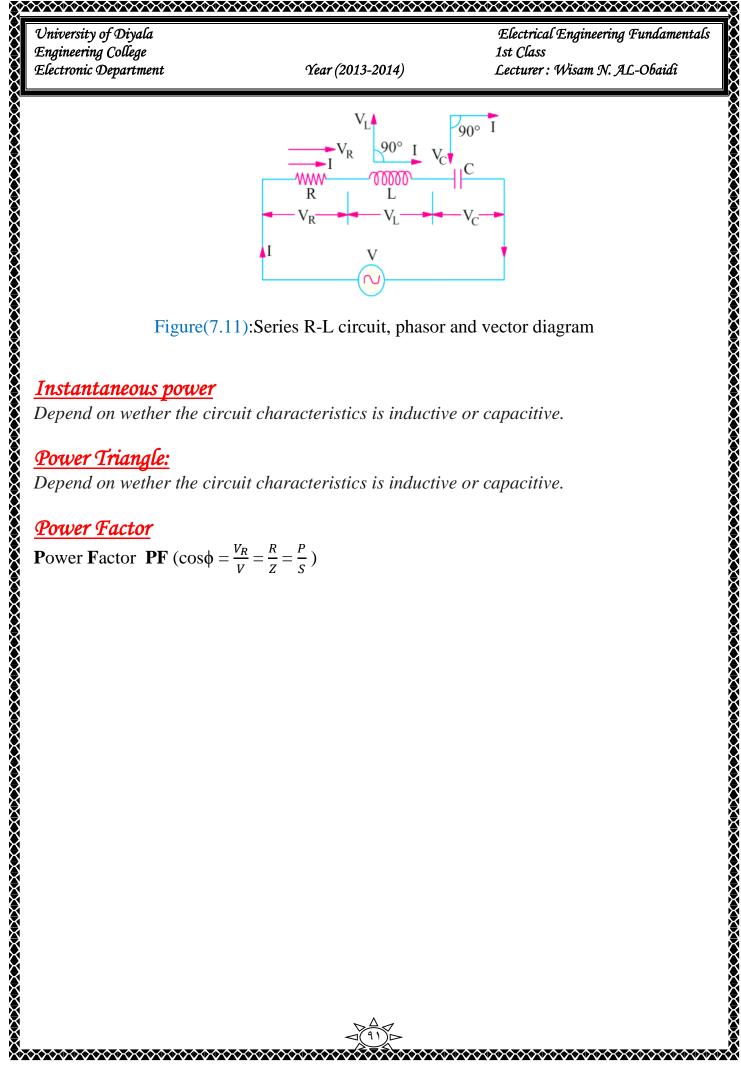

 $p = vi = V_m I_m \sin(\omega t) \sin(\omega t + \phi) = \frac{V_m I_m}{2} [\cos\phi - \cos(2\omega t + \phi)]$ Power consists of:

- 3) A constant part $\frac{V_m I_m}{V_m^2 I_m}$ [cos ϕ] which is the real power. 4) A pulsating part $\frac{V_m^2 I_m}{2}$ [cos(2 ω t + ϕ)]of frequency *double* that of voltage and current waves. It does not contribute to actual power since its average value over a complete cycle is zero.


Hence, the average power consumed is,

 $p = \frac{V_{m}I_{m}}{2}\cos\varphi = \frac{V_{m}}{\sqrt{2}} \times \frac{I_{m}}{\sqrt{2}} \times \cos\varphi = V_{RMS} \times I_{RMS} \times \cos\varphi = VI\cos\varphi \text{ [watt]}$

University of Diyala		Electrical Engineering Fundamentals
Engineering College Electronic Department	Year (2013-2014)	1st Class Lecturer : Wisam N. AL-Obaidi
<u>Power Triangle:</u>		1 · 1 · 1 · · · · · · · · · · · · · · ·
1) If we multiply the voltaging we get power triangle,	ge triangle by current I (or	multiply impedance triangle by I ²),
(<i>i</i>) apparent power (<i>S</i>)		
	of r.m.s. values of applied v	voltage and circuit current.
(ii) active power (P or W)	olt-amperes (VA)	
It is the power which is act	tually dissipated in the circ	uit resistance.
$P = V_R I = VI \cos \varphi = I^2 R$ (<i>iii</i>) reactive power (Q _C)	watts	
It is the power developed i	n the inductive reactance of	
	$2X_C$ volt-amperes-react	ive (VAR)
$S = \sqrt{P^2 + (-Q_C)^2}$	$\mathbf{P} = \mathbf{I}^2 \mathbf{R}$	
~	φ	V
		o ² 2
	$S = I^2 Z$	$Q = -l^2 X_c$
		J
	Figure(7.8):Power tr	iangle
	<u>Quantities in Complex N</u>	<u>fumbers Forms</u>
$V = V_R - j V_C \text{ or } V = V \sqcup$ $I = I + j 0 \text{ or } I = I \sqcup 0$	- φ	
$Z = R - j X_C \text{ or } Z = Z \sqcup -\phi$		
$S = P - j Q_C \text{ or } S = S \sqcup -\phi$)	
$Z = \frac{V}{I} = \frac{VR - jVC}{I + j0} = R - j$		
$\mathbf{S} = \mathbf{VI} = (\mathbf{V}_{\mathbf{R}} - \mathbf{j} \mathbf{V}_{\mathbf{C}})(\mathbf{I} + \mathbf{j} 0)$	$J = P - J Q_C$	
<u>Power Factor</u>	$V_R R P_{1}$	
P ower F actor PF ($\cos\phi =$	$\frac{1}{v} = \frac{1}{z} = \frac{1}{s}$) leading	



3) A.C. Through Resistance, Inductance and Capacitance (R-L-C)

Notes:

- 1) If $X_L > X_C$, then the circuit have inductive characteristics, the current lags the voltage by an angle $0 \le \phi \le 90$, power factor is lagging and we use the positive sign. $v = V_m \sin \omega t$ $i = I_m \sin (\omega t - \phi)$ lead voltage by $0 \le \phi \le 90$)
- 2) If $X_{\rm C} > X_{\rm L}$, then the circuit have capacitive characteristics, the current leads the voltage by an angle $0 \le \phi \le 90$, power factor is leading and we use the negative sign. $v = V_m \sin \omega t$ $i = I_m \sin(\omega t + \phi)$ lead voltage by $0 \le \phi \le 90$)
- 3) If $X_C = X_L$, then the circuit have resistive characteristics, the current and voltage are in phase, $\phi = 0$, power factor is unity. $v = V_m \sin \omega t$ i = I_m sin ωt

Figure(7.11):Series R-L circuit, phasor and vector diagram

Depend on wether the circuit characteristics is inductive or capacitive.

Depend on wether the circuit characteristics is inductive or capacitive.

 $\mathbf{\hat{}}$

University of Diyala Engineering College Electronic Department

Year (2013-2014)

Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi

<u>SERIES A.C. CIRCUITS</u>

Example 1: In a series circuit containing pure resistance and a pure inductance, the current and the voltage are expressed as:

 $i(t) = 5\sin(314t + 2\pi/3)$ and $v(t) = 15\sin(314t + 5\pi/6)$

(a) What is the impedance of the circuit.(b) What is the value of the resistance? (c) What is the inductance in henrys? (d) What is the average power drawn by the circuit? (e) What is the power factor?

Solution: $\omega = 314 \ rad/s$ $i(t) = 5\sin\left(314t + \frac{2\pi}{3}\right) = 5 \angle \frac{2\pi}{3} = -2.5 + j 4.33$ $v(t) = 15\sin\left(314t + \frac{5\pi}{6}\right) = 15 \angle \frac{5\pi}{6} = -13 + j7.5$ $Z = \frac{v(t)}{i(t)} = \frac{-13 + j7.5}{-2.5 + j4.33} = 2.6 + j1.5 = 3 \angle 30^{\circ} \Omega$ $\therefore Z = R + j X_I = Z \angle \emptyset$ $\therefore Z = 3 \Omega, R = 2.6, \qquad X_L = 1.5 \Rightarrow L = \frac{X_L}{\omega} = \frac{1.5}{314} = 4.78 \, mH$ (d) $P = I^2 R = \left(\frac{5}{\sqrt{2}}\right)^2 2.6 = 32.5 W$ (e) $PF = cos \phi = COS \ 30^{\circ} = 0.866 \ lagging \ (PF = cos \phi = \frac{R}{7} = \frac{2.6}{3} \ 0.866 \ lagging)$ $\frac{\text{Alternative solution}}{Z = \frac{V_m}{I_m} = \frac{15}{5} = 3 \ \Omega}$ Hence, current lags behind voltage by 30°. It means that it is an R-L circuit. $\phi = \frac{5\pi}{6} - \frac{2\pi}{3} = \frac{\pi}{6} = 30^{\circ}$ $R = Z\cos \phi = 3COS \ 30^\circ = 2.6 \ \Omega$ $X_L = Zsin\phi = 3sin \ 30^\circ = 1.5 \ \Omega \ \Rightarrow L = \frac{X_L}{\omega} = \frac{1.5}{314} = 4.78 \ mH$ $P = v i \cos \phi = \left(\frac{15}{\sqrt{2}}\right) \left(\frac{5}{\sqrt{2}}\right) \cos 30^{\circ} = 32.5 W$ $PF = cos \emptyset = COS \ 30^0 = 0.866 \ lagging$

Example 2: The potential difference measured across a coil is 4.5 V, when it carries a direct current of 9 A. The same coil when carries an alternating current of 9 A at 25 Hz, the potential difference is 24 V. Find the current, the power and the power factor when it is supplied by 50 V, 50 Hz supply.

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi

Solution:

At 9A dc

There is no inductive reactance (because for dc sources f = 0) only resistance found,

$$R = \frac{V}{I} = \frac{4.5}{9} = 0.5\Omega$$

At 9A ac

There is resistance (same as previous) as well as inductive reactance,

At 25 Hz

$$Z_{(25Hz)} = \frac{V}{I} = \frac{24}{9} = 2.67\Omega$$

$$X_{L(25Hz)} = \sqrt{Z_{(25Hz)}^2 - R^2} = \sqrt{2.67^2 - 0.5^2} = 2.623\Omega \implies L = \frac{X_L}{\omega} = \frac{2.623}{2\pi \times 25}$$

$$= 0.0167H$$

$$X_{L(50Hz)} = 2X_{L(25Hz)} = 2 \times 2.623 = 5.246\Omega$$

$$Z_{(50Hz)} = \sqrt{R^2 + X_{L(50Hz)}^2} = \sqrt{0.5^2 + 5.246^2} = 5.27\Omega$$

$$I_{(50Hz)} = \frac{V_{(50Hz)}}{Z_{(50Hz)}} = \frac{50}{5.27} = 9.49A$$

$$P_{(50Hz)} = (I_{(50Hz)})^2 R = 9.49^2 \times 0.5 = 45W$$

H.W.1: In a particular R-L series circuit a voltage of 10 V at 50 Hz produces a current of 700 mA while the same voltage at 75 Hz produces 500 mA. What are the values of R andL in the circuit.

Answer: 40 mH., 6.9 Ω.

H.W.2: A series circuit consists of a resistance of Ω and an inductive reactance of 8Ω A potential difference of 141.4 V(rm. s) is applied to it. At a certain instant the applied voltage is+ 100 V and is increasing Calculate at this current, (i) the current (ii) the voltage drop across the resistance and (iii) voltage drop across inductive reactance.

Answer: = -7.847A, -47V, 147.2V.

University of Diyala		Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi

Example 3:In an alternating circuit, the impressed voltage is given by V = (100 - j50) volts and the current in the circuit is I = (3 - j4) A. Determine the real and reactive power in the circuit

Solution:

Power will be found by the conjugate method. Using current conjugate, we have

$$S_{VA} = (100 - j50)(3 + j4) = 300 + j400 - j150 + 200 = 500 + j250 = 559 \angle 26.56^{0}$$

$$= P + j Q_L$$

Alternative solution

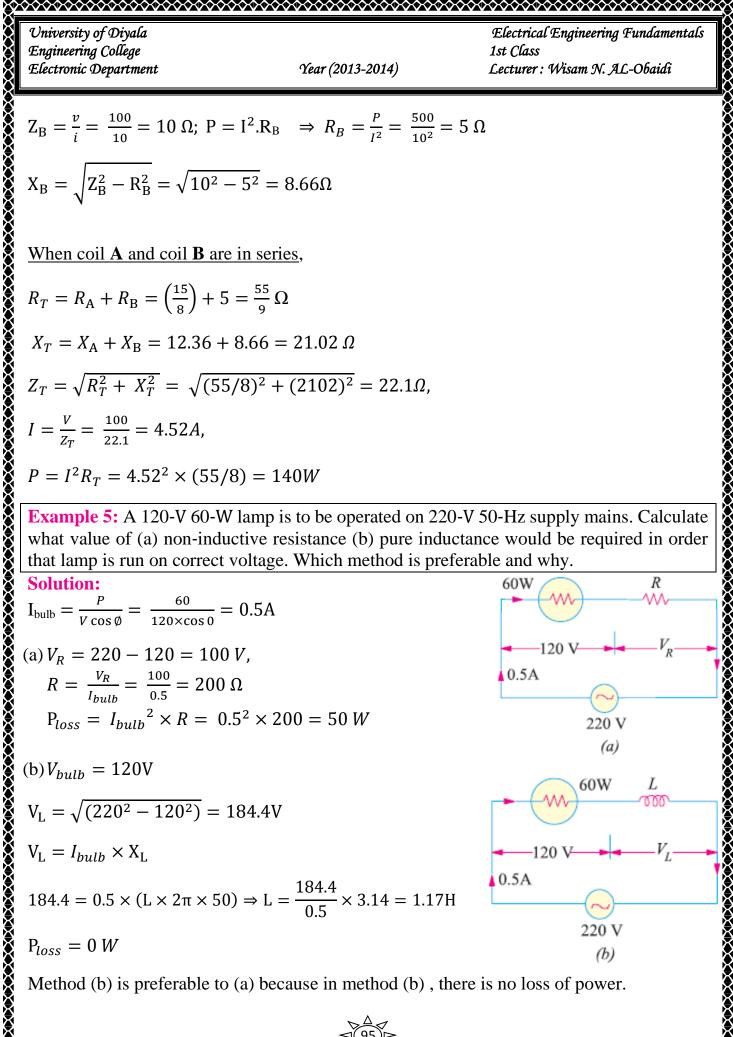
 $\overline{V} = (100 - j50) = 111.8 \angle -26.56^{\circ} V, \& I = (3 - j4) = 5 \angle -53.13^{\circ} A$ $\emptyset = -26.56^{\circ} + 53.13^{\circ} = 26.57^{\circ}$

$$Z = \frac{v}{i} = \frac{100 - j50}{3 - j4} = 20 + j10$$

 $= R + JX_L$ $P = I^2 R = 5^2 \times 20 = 500 W (P = vi \cos \emptyset = 111.8 \times 5 \times COS26.57^0 = 500 W)$ $Q_L = I^2 X_L = 5^2 \times 10 = 250 VAR(Q_L = vi \sin \emptyset = 111.8 \times 5 \times sin26.57^0 = 250 VAR)$ $S = VI = 111.8 \times 5 = 559 VA$

H.W.3: A choke coil takes a current of 2 A lagging 60° behind the applied voltage of 200 V at 50 Hz. Calculate the inductance, resistance and impedance of the coil. Also, determine the power consumed when it is connected across 100-V 25-Hz supply

Answer: L = 0.275H, $R = 50\Omega$, $Z_{coil} = 100\Omega$, P = 112.5 W


Example 4: When a voltage of 100 V at 50 Hz is applied to a choking coil **A**, the current taken is 8A and the power is 120 W. When applied to a coil **B**, the current is 10A and the power is 500 W What current and power will be taken when 100 V is applied to the two coils connected in series.

Solution: For coil A

$$Z_{A} = \frac{v}{i} = \frac{100}{8} = 12.5\Omega; P = I^{2}.R_{A} \implies R_{A} = \frac{P}{I^{2}} = \frac{120}{8^{2}} = \frac{15}{8}\Omega$$

$$X_A = \sqrt{Z_A^2 - R_A^2} = \sqrt{125^2 - (\frac{15}{8})^2} = 12.36\Omega$$

For coil **B**

Method (b) is preferable to (a) because in method (b), there is no loss of power.

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi

Example 6: A current of 5 A flows through a non-inductive resistance in series with a choking coil when supplied at 250-V 50-Hz. If the voltage across the resistance is 125 V and across the coil 200 V calculate (a) impedance, reactance and resistance of the coil (b) the power absorbed by the coil and (c) the total power. Draw the vector diagram.

(1)

(2)

Coil

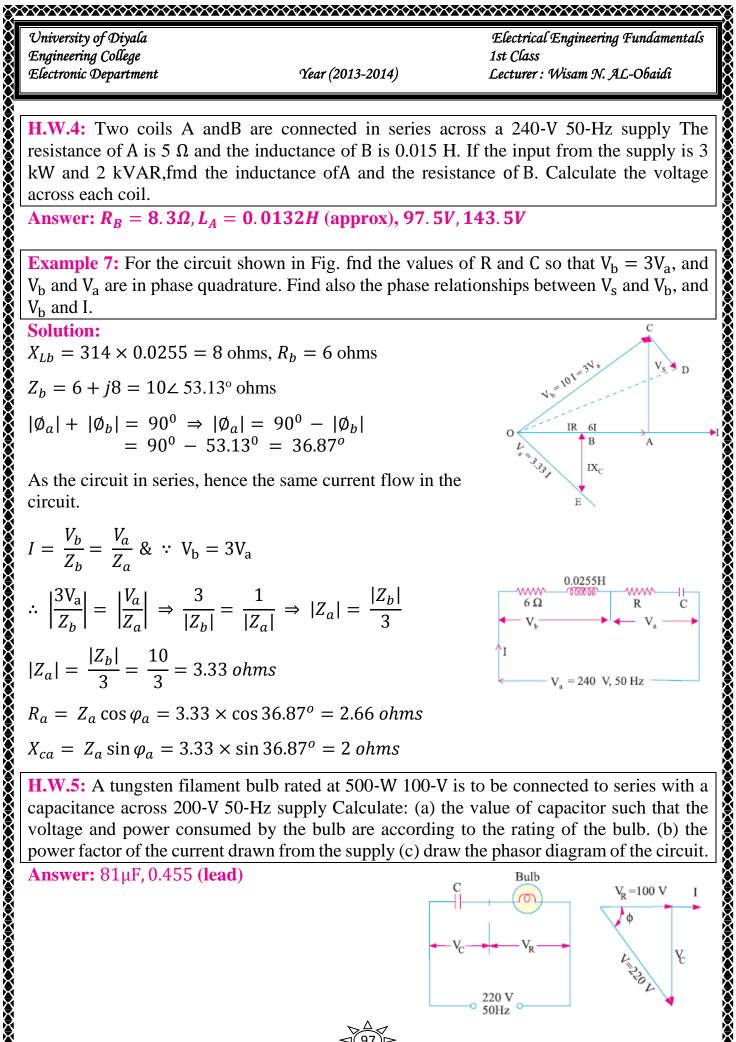
200 V

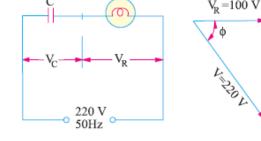
250V, 50Hz

(a)

(Ъ)

25 Ω


Φ


125 V

Solution:

From vector diagram,

 $V_R^2 + V_L^2 = V_{coil}^2$ $V_R^2 + V_L^2 = 200^2$ $(125 + V_R)^2 + V_L^2 = 250^2$ Subtracting Eq. (1) from (2), we get, $(125 + V_R)^2 - V_R^2 = 250^2 - 200^2$ $V_R = 27.5 V$ $V_L = \sqrt{200^2 - 275^2} = 198.1 \, V$ (*i*) Coil impedance $=\frac{V_{coil}}{I} = \frac{200}{5} = 40\Omega$ $V_R = IR \Rightarrow \therefore R = \frac{27.5}{5} = 5.5\Omega$ $V_L = I. X_L \Rightarrow \therefore X_L = \frac{198.1}{5} = 39.62\Omega$ or $X_L = \sqrt{40^2 - 55^2} = 39.62\Omega$ (*ii*) $P_{coil} = I^2 R = 5^2 \times 5.5 = 137.5W$ Also $P = 200 \times 5 \times 27.5/200 = 137.5W$ (*iii*) $\cos \varphi_{total} = \frac{AC}{AD} = \frac{152.5}{250} = 0.61 \ lagging$ Total power = $VI \cos \varphi = 250 \times 5 \times 0.61 = 762.5W$ The power may also be calculated by using I^2R formula. Series resistance = $125/5 = 25\Omega$ Total *circuit* resistance = $25 + 5.5 = 30.5\Omega$ $\therefore \text{ Total power} = 5^2 \times 30.5 = 762.5W$

University of Diyala		Electrical Engineering Fundamentals
Engineering College		
Electronic Department	Year (2013-2014)	1st Class Lecturer : Wisam N. AL-Obaidi

Example 8: It is desired to operate a 100-W 120-Velectric lamp at its current rating from a 240-V 50-Hz supply Give details of the simplest manner in which this could be done using (a) a resistor (b) a capacitor and (c) an indicator having resistance of 10 Ω . What power factor would be presented to the supply in each case and which method is the most economical of power.

Solution:

 $I_{bulb} = \frac{P}{V \cos \emptyset} = \frac{100}{120 \times \cos 0} = 0.83 \text{ A}, R_{bulb} = \frac{p}{I_{bulb}^2} = \frac{100}{0.83^2} = 145 \text{ ohms}$

(a) Using a resistor alone

 $V_R = 240 - 120 = 120V$

 $R = \frac{V_R}{I_{bulb}} = \frac{120}{0.83} = 145 \ \Omega$

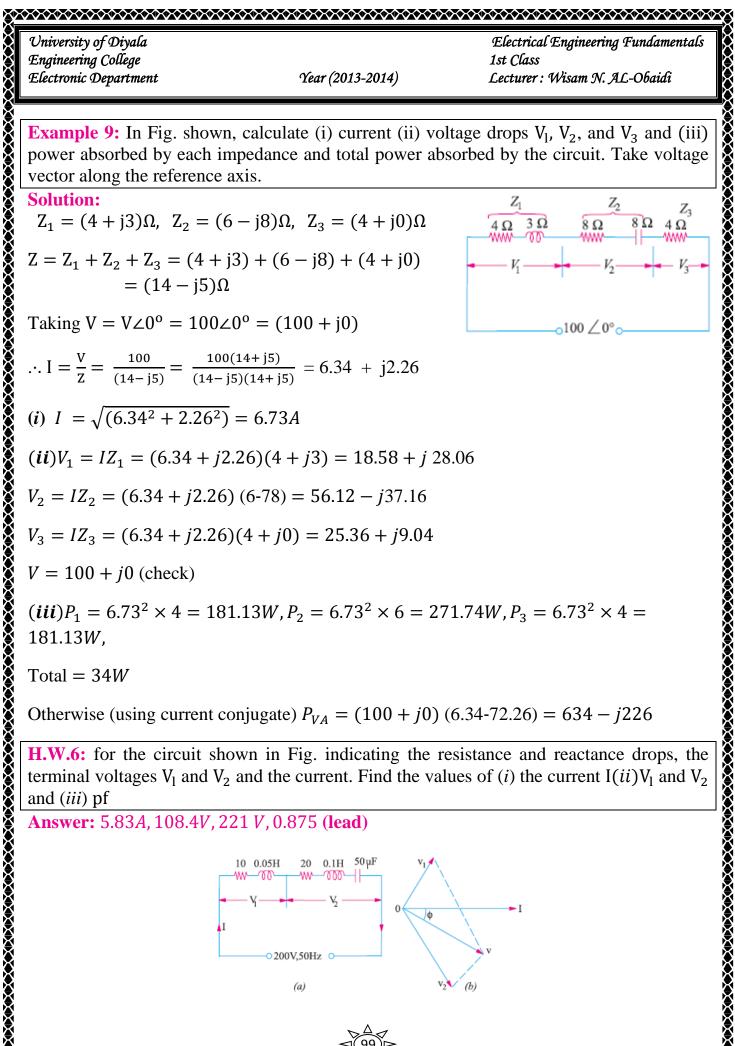
 $\cos \phi = unity$

 $P_{loss total} = I_{bulb}^{2} \times R_{total} = 0.83^{2} \times (145 + 145) = 200 W$ (b)Using capacitor alone

$$V_{c} = \sqrt{V^{2} - V_{bulb}^{2}} = \sqrt{240^{2} - 120^{2}} = 207.9 V$$

$$X_{C} = \frac{V_{C}}{I_{bulb}} = \frac{207.9}{0.83} = 250.5 \Omega \Rightarrow C = \frac{1}{2\pi f X_{C}} = \frac{1}{2\pi \times 50 \times 250.5} = 12.7 \mu F$$

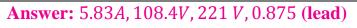
$$\cos \phi = \frac{V_{R}}{V} = \frac{120}{240} = 0.5 \text{ lead}$$

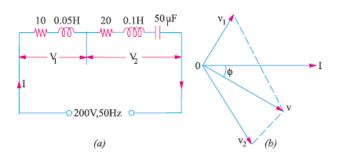

$$P_{loss \ total} = I_{bulb}^{2} \times R_{total} = 0.83^{2} \times (145) = 100 W$$
(c)Using an inductor
$$V_{R} = 0.83 \times 10 = 8.3 V$$

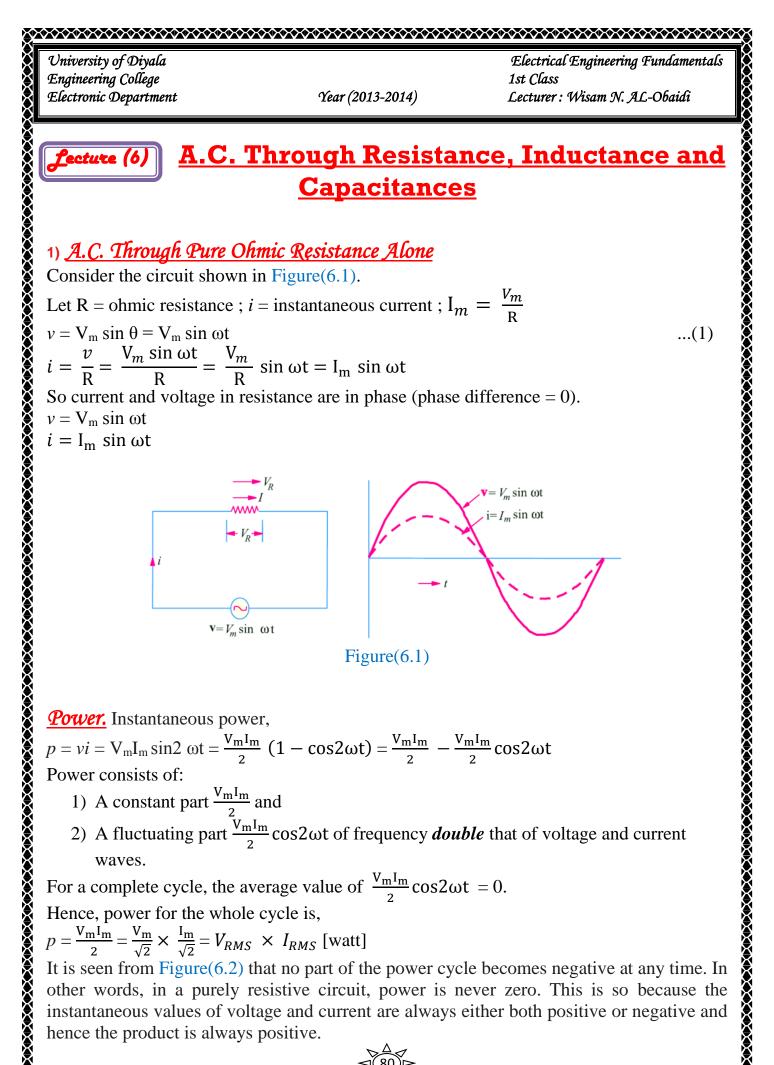
$$V_{L} = \sqrt{V^{2} - (V_{bulb} + V_{R})^{2}} = \sqrt{240^{2} - (120 + 8.3)^{2}} = 202.8 V$$

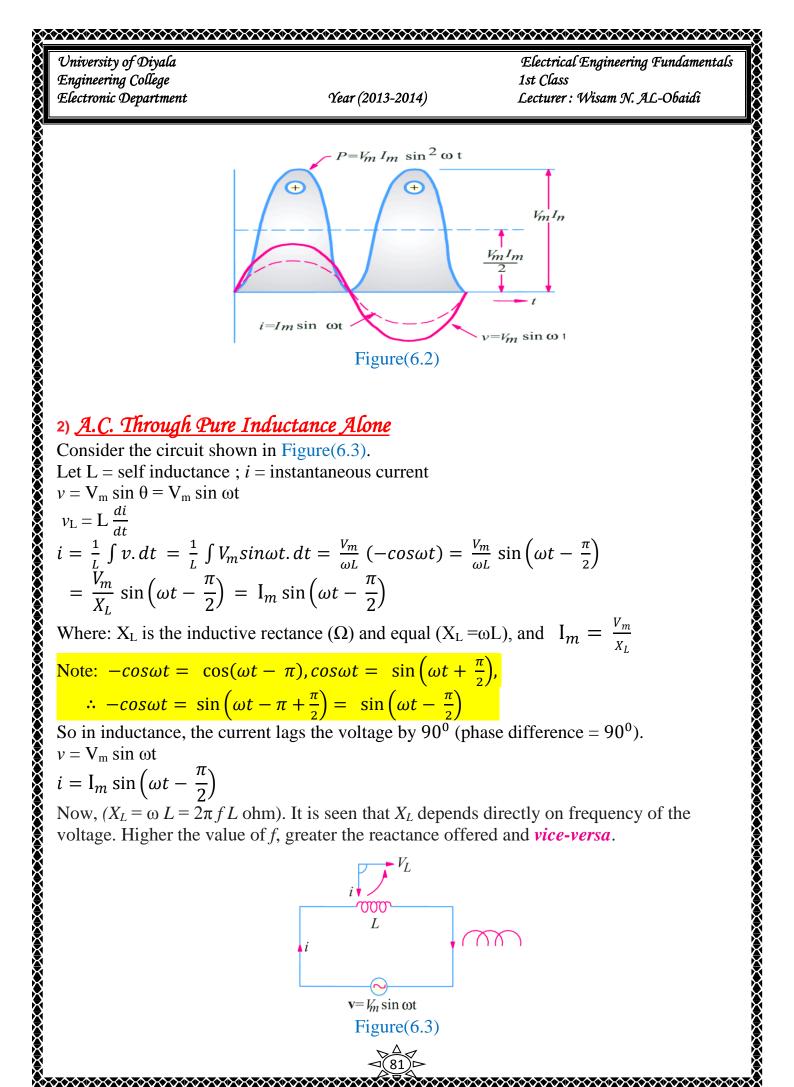
$$X_{L} = \frac{V_{L}}{I_{bulb}} = \frac{202.8}{0.83} = 244.3 \Omega \Rightarrow L = \frac{X_{L}}{2\pi f} = \frac{244.3}{2\pi \times 50} = 0.778 H$$

$$\cos \phi = \frac{V_{R \ total}}{V} = \frac{120 + 8.3}{240} = 0.535 \text{ (lag)}$$


$$P_{loss \ total} = I_{bulb}^{2} \times R_{total} = 0.83^{2} \times (145 + 10) = 107 W$$
Method (b) is most economical because it involves least consumption of power.



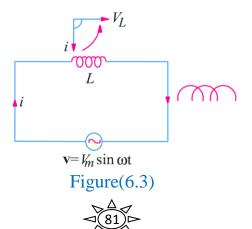

Total = 34W


Otherwise (using current conjugate) $P_{VA} = (100 + j0) (6.34-72.26) = 634 - j226$

H.W.6: for the circuit shown in Fig. indicating the resistance and reactance drops, the terminal voltages V_1 and V_2 and the current. Find the values of (i) the current $I(ii)V_1$ and V_2 and (*iii*) pf

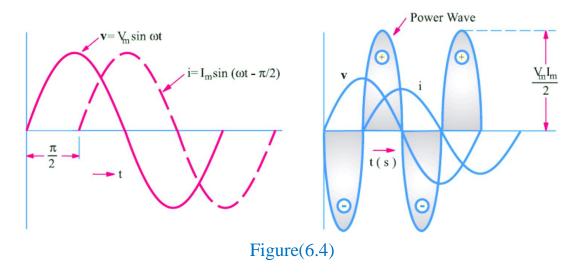
Figure(6.2)

2) A.C. Through Pure Inductance Alone


Consider the circuit shown in Figure(6.3). Let L = self inductance ; i = instantaneous current $v = V_m \sin \theta = V_m \sin \omega t$ $v_{\rm L} = {\rm L} \, \frac{di}{dt}$ $i = \frac{1}{L} \int v dt = \frac{1}{L} \int V_m sin\omega t dt = \frac{V_m}{\omega L} (-cos\omega t) = \frac{V_m}{\omega L} sin \left(\omega t - \frac{\pi}{2}\right)$ $=\frac{V_m}{X_L}\sin\left(\omega t-\frac{\pi}{2}\right) = I_m\sin\left(\omega t-\frac{\pi}{2}\right)$ Where: X_L is the inductive rectance (Ω) and equal (X_L = ω L), and I_m = $\frac{V_m}{Y_L}$ Note: $-\cos\omega t = \cos(\omega t - \pi), \cos\omega t = \sin(\omega t + \frac{\pi}{2}),$

 $\therefore -\cos\omega t = \sin\left(\omega t - \pi + \frac{\pi}{2}\right) = \sin\left(\omega t - \frac{\pi}{2}\right)$ So in inductance, the current lags the voltage by 90° (phase difference = 90°). $v = V_m \sin \omega t$

 $i = I_m \sin\left(\omega t - \frac{\pi}{2}\right)$


 $\mathbf{\mathcal{T}}$

Now, $(X_L = \omega L = 2\pi f L \text{ ohm})$. It is seen that X_L depends directly on frequency of the voltage. Higher the value of f, greater the reactance offered and *vice-versa*.

Somplete cycle is zero. Here again it is see souble that of the voltage and current ways over is $\frac{V_m I_m}{2}$. $\int \frac{\sqrt{v-V_m \sin \omega t}}{1-\pi} \frac{1-1}{2} \int \frac{1-1}{2$	
Tote: $\sin\left(\omega t - \frac{\pi}{2}\right) = \sin\omega t\cos\frac{\pi}{2} - \cos\frac{\pi}{2} - \cos\frac{\pi}{2} - \cos\frac{\pi}{2} + \sin\frac{\pi}{2} + \cos\frac{\pi}{2} + \sin\frac{\pi}{2} + \cos\frac{\pi}{2} + \sin\frac{\pi}{2} + \frac{\pi}{2} + \pi$	we set $\frac{\pi}{2} = -\cos\omega t$, we rage demand of power from the supply for a sen that power wave is a sine wave of frequency res. The maximum value of the instantaneous
is also clear from Figure(6.4) that the avoid purplete cycle is zero. Here again it is see ouble that of the voltage and current wave over is $\frac{V_m I_m}{2}$. $\int \frac{\sqrt{m} V_m I_m}{2} = \frac{V_m \sin \omega t}{1 - m} \int \frac{1}{2} \int \frac{V_m I_m}{2} \int V_m$	en that power wave is a sine wave of frequency res. The maximum value of the instantaneous
Fi $\frac{\pi}{2} + \frac{\pi}{2} + $	Power Wave
Fi $\frac{\pi}{2} + \frac{\pi}{2} + $	
Complex Voltage Applied to Pure Ind it is applied voltage has a complex form $V_{1m}\sin\omega t + V_{3m}\sin 3\omega t + V_{5m}\sin 5\omega t$ then the reactances offered to the fundament ifferent. For the fundamental wave, $X_1 = \omega L$. For $3^{-5}\omega L$. So the current would be given by the $V_{1m} = \frac{V_{1m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) + \frac{V_{3m}}{3\omega L} \sin\left(3\omega t\right)$	$\frac{1}{2}$
Fit is applied voltage has a complex form $V_{1m}\sin\omega t + V_{3m}\sin3\omega t + V_{5m}\sin5\omega t$ then the reactances offered to the fundament ifferent. For the fundamental wave, $X_1 = \omega L$. For 3 $5\omega L$. Thence, the current would be given by the $V_{1m} = \frac{V_{1m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) + \frac{V_{3m}}{3\omega L} \sin\left(3\omega t\right)$	gure(6.4)
Fit is applied voltage has a complex form $V_{1m}\sin\omega t + V_{3m}\sin3\omega t + V_{5m}\sin5\omega t$ then the reactances offered to the fundament ifferent. For the fundamental wave, $X_1 = \omega L$. For 3 $5\omega L$. Thence, the current would be given by the $V_{1m} = \frac{V_{1m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) + \frac{V_{3m}}{3\omega L} \sin\left(3\omega t\right)$	luctance
then the reactances offered to the fundamental afferent. For the fundamental wave, $X_1 = \omega L$. For $35\omega L$. Soull be given by the function of the function o	
or the fundamental wave, $X_1 = \omega L$. For 3 5 ωL . Tence, the current would be given by the $= \frac{V_{1m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) + \frac{V_{3m}}{3\omega L} \sin\left(3\omega t\right)$	ental voltage wave and the harmonics would be
$= \frac{V_{1m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) + \frac{V_{3m}}{3\omega L} \sin\left(3\omega t\right)$	ard harmonic ; $X_3 = 3\omega L$. For 5th harmonic ; X_5
d C Alexande Dave Conseilance de	
A.C. Through Pure Capacitance Al	
et	$\left(-\frac{\pi}{2}\right) + \frac{V_{5m}}{5\omega L}\sin\left(5\omega t - \frac{\pi}{2}\right)$
$v = V_m \sin \theta = V_m \sin \omega t$ q = Charge on plates at that instant.	$\left(-\frac{\pi}{2}\right) + \frac{V_{5m}}{5\omega L}\sin\left(5\omega t - \frac{\pi}{2}\right)$
	$\left(-\frac{\pi}{2}\right) + \frac{V_{5m}}{5\omega L}\sin\left(5\omega t - \frac{\pi}{2}\right)$

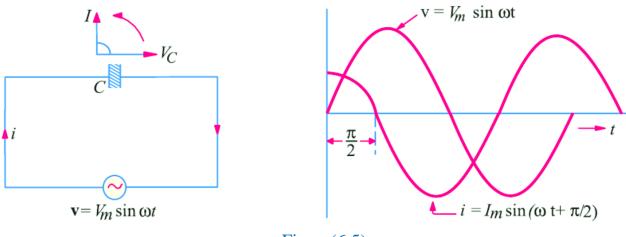
$$p = vi = V_m I_m \sin(\omega t) \sin\left(\omega t - \frac{\pi}{2}\right) = -V_m I_m \sin(\omega t) \cos(\omega t) = -\frac{V_m I_m}{2} \sin 2\omega t$$

Note: $\sin\left(\omega t - \frac{\pi}{2}\right) = -\sin\omega t \cos\frac{\pi}{2} - \cos\omega t \sin\frac{\pi}{2} = -\cos\omega t$,
 $\sin 2\omega t = 2\sin(\omega t)\cos(\omega t)$

Complex Voltage Applied to Pure Inductance

$$i = \frac{V_{1m}}{\omega L} \sin\left(\omega t - \frac{\pi}{2}\right) + \frac{V_{3m}}{3\omega L} \sin\left(3\omega t - \frac{\pi}{2}\right) + \frac{V_{5m}}{5\omega L} \sin\left(5\omega t - \frac{\pi}{2}\right)$$

3) A.C. Through Pure Capacitance Alone


$$q =$$
 Charge on plates at that instant.

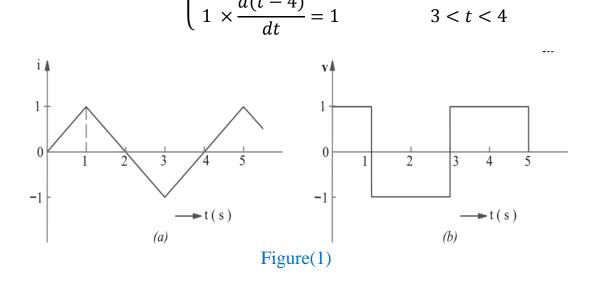
University of Diyala		Electrical Engineering Fundamentals
Engineering College		Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi
4		

Then
$$q = Cv = C V_m \sin \omega t$$
 ...where C is the capacitance, q is Charge on plates
 $i = \frac{dq}{dt} = \frac{d}{dt} (C V_m \sin \omega t) = \omega C V_m \cos \omega t = \frac{V_m}{\left(\frac{1}{\omega C}\right)} \cos \omega t = \frac{V_m}{\left(\frac{1}{\omega C}\right)} \sin \left(\omega t + \frac{\pi}{2}\right)$
 $= \frac{V_m}{X_c} \sin \left(\omega t + \frac{\pi}{2}\right) = I_m \sin \left(\omega t + \frac{\pi}{2}\right)$

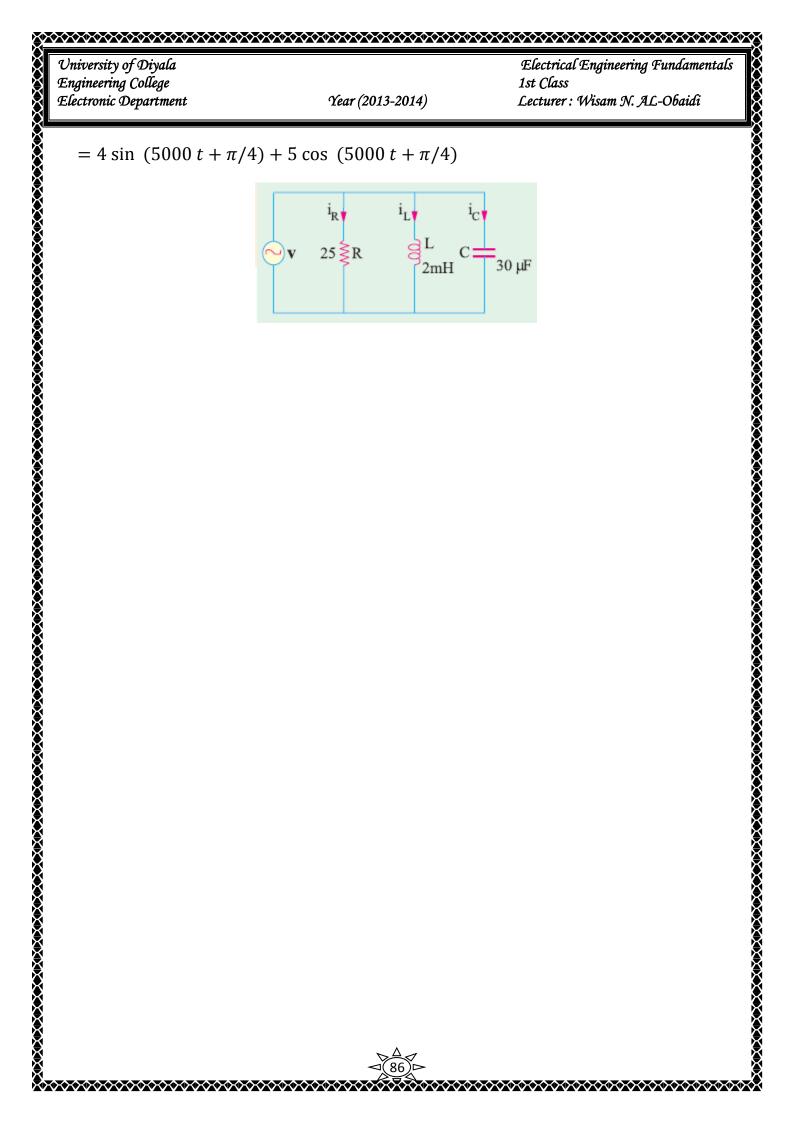
Where

Where: X_c is the capacitive rectance (Ω) and equal ($X_c = \frac{1}{\omega c}$), and $I_m = \frac{V_m}{X_c}$ So in capacitance, the current leads the voltage by 90° (phase difference = 90°). $v = V_m \sin \omega t$ $i = I_m \sin \left(\omega t + \frac{\pi}{2}\right)$ Now, ($X_c = \frac{1}{\omega c} = \frac{1}{2\pi f c}$ ohm). It is seen that X_c depends inversity on frequency of the voltage. Higher the value of *f*, lower the reactance offered and *vice-versa*.

Power. Instantaneous power,


 $p = vi = V_m I_m \sin(\omega t) \sin\left(\omega t + \frac{\pi}{2}\right) = V_m I_m \sin(\omega t) \cos(\omega t) = \frac{V_m I_m}{2} \sin 2\omega t$ Power for whole cycle is : $p = \frac{V_m I_m}{2} \int_0^{2\pi} \sin 2\omega t \, dt = 0$

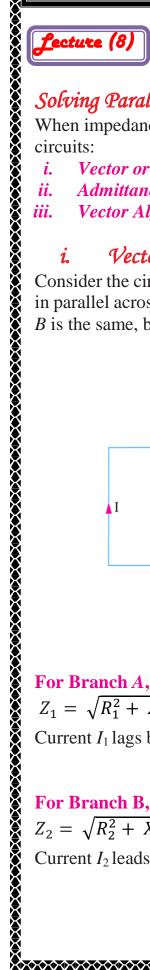
In a purely capacitive circuit, the average demand of power from supply is zero (as in a purely inductive circuit). The power wave is a sine wave of frequency *double* that of the voltage and current waves. The maximum value of the instantaneous power is $\frac{V_m I_m}{2}$.


University of Diyala Engineering College		Electrical Engineering Fundamentals 1st Class
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi
Write the time equations for voltage wave be at $t = 0$ (ii the voltage and current on a	the voltage and the resulting) Show the voltage and cur	ressed on a 100 ohm resistance: (i ng current. Let the zero point of th rent on a time diagram. (iii) Shov
Solution: (<i>i</i>) $V_{\text{max}} = \sqrt{2}v = \sqrt{2} \times 11$	5 = 163V	
$I_{\max} = \frac{V_{\max}}{R} = \frac{163}{100} = 1.63R$	A; $\varphi = 0$; $\omega = 2\pi f = 2\pi \times$	60 = 377 rad/s
The required equations are: $v(t) = 1.63 \sin 377t$ and $i(t) = 1.63 \sin 377t$		
(<i>ii</i>) and (<i>iii</i>) These are similar to those shown in Figure(6.1) (a) and (b)		
_	etch the waveform of the	current of the wave-form shown i voltage across the inductance an
Solution:		
The instantaneous current $i($	t) is given by	
	(t 0 <	< <i>t</i> < 1
	$i = \begin{cases} t & 0 < \\ 2 - t & 1 < \\ 1 < 1 < 1 \end{cases}$	< <i>t</i> < 3
	(t-4) = 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3	t < 4
	$\int 1 \times \frac{dt}{dt} = 1$	0 < t < 1
_ di	dt d(2-t)	
$v = L \frac{1}{dt} =$	$\int 1 \times \frac{dt}{dt} = -1$	1 < t < 3
	$\begin{pmatrix} t-4 & 3 < \\ 1 \times \frac{dt}{dt} = 1 \\ 1 \times \frac{d(2-t)}{dt} = -1 \\ 1 \times \frac{d(t-4)}{dt} = 1 \end{cases}$	3 < t < 4
i 🛦	vÅ	
0 1 2 3		2 3 4 5
-1	_1	
I I	$\rightarrow t(s)$	→ t(s)
(<i>a</i>)	Figure(1)	(b)
	1 igui((1)	

Solution:

$$i = \begin{cases} t & 0 < t < 1\\ 2 - t & 1 < t < 3\\ t - 4 & 3 < t < 4 \end{cases}$$
$$v = L \frac{di}{dt} = \begin{cases} 1 \times \frac{dt}{dt} = 1 & 0 < t < 1\\ 1 \times \frac{d(2 - t)}{dt} = -1 & 1 < t < 3\\ d(t - 4) \end{cases}$$

University of Diyala Engineering College Electronic Department	Year (2013-2014)	Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi
	100sin314t + 75sin942t	e coil of self-inductance 15.9 mH is t + 50sin1570t. Find the equation
Solution: Here $\omega = 314 rad/s$,		
$X_1 = \omega L = (15.9 \times 10^{-3}) >$	$314 = 5\Omega$	
$X_3 = 3\omega L = 3 \times 5 = 15\Omega.$		
$X_5 = 5\omega L = 5 \times 5 = 25\Omega$		
Hence, the current equation	is	
$i = (100/5) \sin (314t - \pi/2)$	$) + (75/15) \sin (942t - \pi/100)$	$(2) + (50/25) \sin(1570t - \pi/2)$
or		
$i = 20 \sin (314t - \pi/2) +$	$5 \sin(942t - \pi/2) + 2 s$	$\sin (1570 t - \pi/2)$
Example 3: The voltage ap $100 \sin(5000t + \pi/4)$. Calcul Solution:	-	circuit of Fig. 11.65 is given by v = ad total current.
The total instantaneous curre	ent is the vector sum o fthe	three branch currents.
$i_r = i_R + i_L + i_C.$		
Now $i_R = v/R = 100 \sin ($	$5000 t + \pi/4)/25 = 4 \sin^2 t$	n (5000 $t + \pi/4$)
$i_L = \frac{1}{L} \int v dt$		
$=\frac{10^3}{2}\int 100\sin(5000t+$	$\frac{\pi}{4}dt = \frac{10^3 \times 100}{2} \left[\frac{-\cos(50000)}{5000}\right]$	$\frac{t+\pi/4}{2}$] = -10 cos (5000 t + $\pi/4$)
$i_C = C \frac{dv}{dt}$		
$= C \frac{d}{dt} \Big[100 \sin \Big(5000 t + \frac{\pi}{4} \Big) \Big]$	$\Big)\Big] = 30 \times 10^{-6} \times 100 \times 5$	$5000 \times \cos\left(5000 t + \frac{\pi}{4}\right)$
$= 15 \cos (5000 t + \pi/4)$		
$i_r = 4 \sin (5000 t + \pi/4)$	$-10\cos(5000t + \pi/4)$	$+ 15 \cos (5000t + \pi/4)$



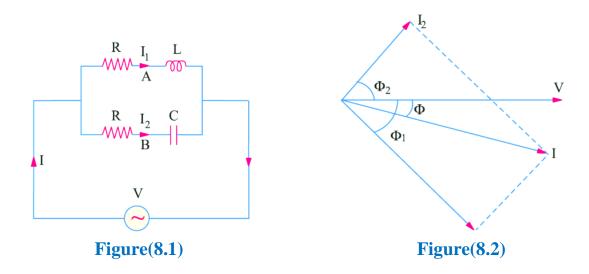
$\mathbf{\mathcal{W}} = \mathbf{\mathcal{W}} = \mathbf{\mathcal{$

University of Diyala Engineering College Electronic Department

Year (2013-2014)

Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi

PARALLEL A.C. CIRCUITS

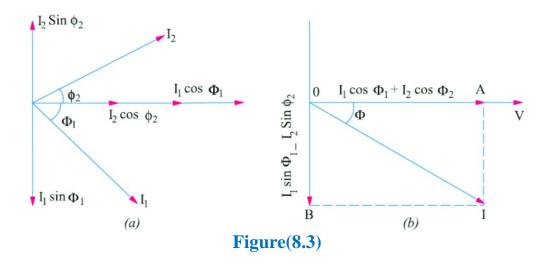

Solving Parallel Circuits

When impedances are joined in parallel, there are three methods available to solve such circuits:

- i. Vector or phasor Method
- ii. Admittance Method and
- iii. Vector Algebra

Vector or Phasor Method i.

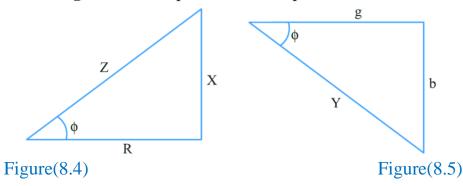
Consider the circuits shown in Figure(8.1). Here, two impedances A and B have been joined in parallel across an r.m.s. supply of V volts. The voltage across two parallel branches A and *B* is the same, but currents through them are different.


For Branch A, $Z_1 = \sqrt{R_1^2 + X_L^2}, \ I_1 = \frac{V}{Z_1}, \ cos \phi_1 = \frac{R_1}{Z_1}$ Current I_1 lags behind the applied voltage by ϕ_1 (Figure(8.2)).

For Branch B, $Z_2 = \sqrt{R_2^2 + X_C^2}, \ I_2 = \frac{V}{Z_2}, \ \cos \phi_2 = \frac{R_2}{Z_2}$ Current I_2 leads the applied voltage by \emptyset_2 (Figure(8.2)).

University of Diyala Engineering College		Electrical Engineering Fundament 1st Class
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi
found by (<i>i</i>) using parallelogram law	of vectors, as shown in Figure and <i>Y</i> -components (or active problem) of these components, it is quick and convenient. $I_2 \cos \varphi_2$	e and reactive components
$I_{resultant} = \sqrt{Q}$ $= \sqrt{Q}$	$X - comonent)^{2} + (Y - co)^{2}$ $\sqrt{(I_{1}cos\phi_{1} + I_{2}cos\phi_{2})^{2} + C}$	$\overline{(I_2 sin \emptyset_2 - I_1 sin \emptyset_1)^2}$
tanØ = cosØ =	$= \frac{Y - component}{X - component} = \frac{I_2 sin}{I_1 cos}$ $= \frac{X - component}{I_r component} = \frac{I_1 cos}{I_1 cos}$	
If tan φ is positive, then currapplied voltage <i>V</i> .	rent leads and if tan ϕ is neg	ative, then current lags behind th
$I_2 \sin \phi_2$ ϕ_2 Φ_1 $I_2 \cos \phi_1$ $I_1 \sin \Phi_1$ (a)		$\frac{\cos \Phi_1 + I_2 \cos \Phi_2}{\Phi} \qquad V$
	rigure(8.3)	
$\therefore Y = \frac{1}{Z} = \frac{I}{V}$	efined as the reciprocal of its rcuit having an impedance o	s impedance . Its symbol is Y. of one ohm has an admittance ckwards).
	^	

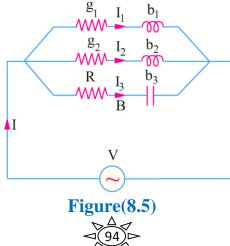
Resultant Current I


$$\begin{split} I_{resultant} &= \sqrt{(X - comonent)^2 + (Y - component)^2} \\ &= \sqrt{(I_1 cos \phi_1 + I_2 cos \phi_2)^2 + (I_2 sin \phi_2 - I_1 sin \phi_1)^2} \\ tan \phi &= \frac{Y - component}{X - component} = \frac{I_2 sin \phi_2 - I_1 sin \phi_1}{I_1 cos \phi_1 + I_2 cos \phi_2} \\ cos \phi &= \frac{X - component}{I_{resultant}} = \frac{I_1 cos \phi_1 + I_2 cos \phi_2}{I_{resultant}} \end{split}$$

Admittance Method (Y) ü.

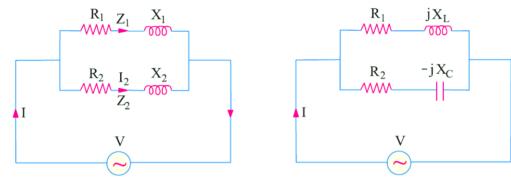
University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi

As the impedance **Z** of a circuit has two components (**X**) and (**R**) (Figure(8.4)), similarly, admittance **Y** also has two components as shown in Figure(8.5). The Xcomponent is known as conductance (**g**) and Y-component as susceptance (**b**).


 $g = Y \cos \varphi = \frac{1}{Z} \times \frac{R}{Z} = \frac{R}{Z^2} = \frac{R}{R^2 + X^2}$ $b = Y \sin \varphi = \frac{1}{Z} \times \frac{X}{Z} = \frac{X}{Z^2} = \frac{X}{R^2 + X^2}$ $Y = \sqrt{g^2 + b^2}$

The unit of g, b and Y is Siemens. We will regard the *capacitive susceptance as positive* and inductive susceptance as negative.

Application of Admittance Method


Consider the 3-branched circuit of Figure(8.5). Total conductance is the sum of the three branches conductances. Similarly, total susceptance is the sum of the three branches susceptances of different branches.

Total conductance $G = g_1 + g_2 + g_3$ Total susceptance $B = (-b_1) + (-b_2) + b_3$ Total admitance $Y = \sqrt{G^2 + B^2}$ Total current I = VYPower factor $\cos\varphi = \frac{G}{Y}$ $g_1 \qquad I_1 \qquad b_1$ $g_2 \qquad I_2 \qquad b_2$ $g_2 \qquad I_2 \qquad b_2$

University of Diyala Engineering College Electronic Department	Year (2013-2014)	Electrical Engineering Fundamenta 1st Class Lecturer : Wisam N. AL-Obaidi
<i>iii. Complex or Phas</i> Consider the parallel circuit in parallel, have the same p.c	shown in Figure(8.6). The	e two impedances, Z_1 and Z_2 , being
$ \begin{array}{c} R_1 & Z_1 \\ R_2 & I_2 \\ R_2 & Z_2 \\ I & V \end{array} $		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Figure	(8.6)	Figure(8.7)
in series, it is the impedance	<i>ttances</i> are <i>added</i> for part s which are <i>added</i> . <i>Howe</i> <i>impedances are complex</i> netic additions must not b	callel branches, whereas for branche wer, it is important to remember the c quantities, all additions must be in the attempted.
	$= \frac{(R_1 - jX_L)}{(R_1 + jX_L) \times (R_1 - jX_L)}$	$\frac{R_1}{R_1^2 + X_L^2} - j \frac{X_L}{R_1^2 + X_L^2}$
Where $g_1 = \frac{R_1}{R_1^2 + X_L^2} , \text{ conductant}$ $b_1 = \frac{X_L}{R_1^2 + X_L^2} , \text{ susept}$		

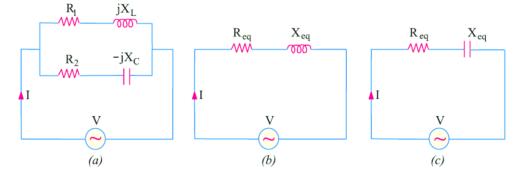
Complex or Phasor Algebra iii.

$$I_{1} = \frac{V}{Z_{1}}, I_{2} = \frac{V}{Z_{2}}$$

$$I = I_{1} + I_{2} = \frac{V}{Z_{1}} + \frac{V}{Z_{2}} = V\left(\frac{1}{Z_{1}} + \frac{1}{Z_{2}}\right) = V(Y_{1} + Y_{2}) = VY$$
where **Y** = total admittance = **Y1** + **Y2**

$$Y_{1} = \frac{1}{Z_{1}} = \frac{1}{R_{1} + jX_{L}} = \frac{(R_{1} - jX_{L})}{(R_{1} + jX_{L}) \times (R_{1} - jX_{L})} = \frac{R_{1}}{R_{1}^{2} + X_{L}^{2}} - j\frac{X_{L}}{R_{1}^{2} + X_{L}^{2}}$$
$$= g_{1} - jb_{1}$$

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Electrical Engineering Fundamentals 1st Class Lecturer : Wisam N. AL-Obaidi


$$Y_2 = \frac{1}{Z_2} = \frac{1}{R_2 - jX_c} = \frac{(R_2 + jX_c)}{(R_2 - jX_c) \times (R_2 + jX_c)} = \frac{R_2}{R_2^2 + X_c^2} + j\frac{X_c}{R_2^2 + X_c^2} = g_2 + jb_2$$

University of Objala
Engineering College
Electronic Department Year (2013-2014)
Similarly

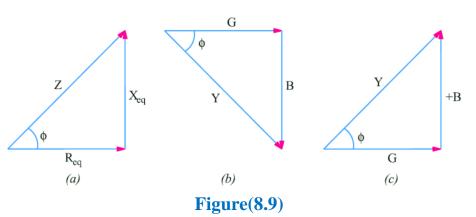
$$Y_2 = \frac{1}{Z_2} = \frac{1}{R_2 - jX_c} = \frac{(R_2 + jX_c)}{(R_2 - jX_c) \times (R_2 + jX_c)} = \frac{R_2}{R_2^2 + X_c^2}$$

Where
 $g_2 = \frac{R_2}{R_2^2 + X_c^2}$, conductance of lower branch
 $b_2 = \frac{X_c}{R_2^2 + X_c^2}$, suseptance of lower branch
 $Y = Y_1 + Y_2 = (g_1 - jb_1) + (g_2 + jb_2) = (g_1 + g_2) - j(b_1 - b_2) = G - jB$
 $Y = \sqrt{(g_1 + g_2)^2 + (b_1 - b_2)^2}$
 $\emptyset = tan^{-1} (\frac{b_1 - b_2}{g_1 + g_2})$
Series Equivalent of a Parallel Circuit
Consider the parallel circuit of Figure(8.8)(a).
 $Figure(8.8)$
 $Y_1 = \frac{R_1}{R_1^2 + X_L^2} - j \frac{X_L}{R_1^2 + X_L^2} = g_1 - jb_1$
 $Y_2 = \frac{R_2}{R_2^2 + X_c^2} + j \frac{X_c}{R_2^2 + X_c^2} = g_2 + jb_2$
 $Y = Y_1 + Y_2 = (g_1 - jb_1) + (g_2 + jb_2) = (g_1 + g_2) + j(b_2 - b_1) = G + jI$
As seen from Figure(8.9)
 $R_{eq} = Zcos \phi = \frac{1}{Y} \times \frac{G}{Y} = \frac{G}{Y^2}$, $X_{eq} = Zsin \phi = \frac{1}{Y} \times \frac{B}{Y} = \frac{B}{Y^2}$

Series Equivalent of a Parallel Circuit

Consider the parallel circuit of Figure(8.8)(a).

Figure(8.8)


$$Y_{1} = \frac{R_{1}}{R_{1}^{2} + X_{L}^{2}} - j \frac{X_{L}}{R_{1}^{2} + X_{L}^{2}} = g_{1} - jb_{1}$$
$$Y_{2} = \frac{R_{2}}{R_{2}^{2} + X_{c}^{2}} + j \frac{X_{c}}{R_{2}^{2} + X_{c}^{2}} = g_{2} + jb_{2}$$

 $Y = Y_1 + Y_2 = (g_1 \text{-} jb_1) + (g_2 \text{+} jb_2) = (g_1 \text{+} g_2) + j(b_2 \text{-} b_1) = G + jB$

 $R_{eq} = Z\cos \phi = \frac{1}{Y} \times \frac{G}{Y} = \frac{G}{Y^2}, \quad X_{eq} = Z\sin \phi = \frac{1}{Y} \times \frac{B}{Y} = \frac{B}{Y^2}$

University of Diyala		Electrical Engineering Fundamentals
Engineering College		1st Class
Electronic Department	Year (2013-2014)	Lecturer : Wisam N. AL-Obaidi
-		

Hence, equivalent series circuit is as shown in Fig. Figure(8.8)(b) or (c) depending on whether net susceptance B is negative (inductive) or positive (capacitive). If B is negative, then it is an R-L circuit of Figure(8.8) (b) and if B is positive, then it is an R-C circuit of Figure(8.8)(c).

Parallel Equivalent of a Series Circuit

The two circuits will be equivalent if Y of Figure(8.9)(a) is equal to the Y of the circuit of

Figure(8.9)(b).

Series Circuit

$$Y_{s} = \frac{1}{R_{s} + jX_{s}} = \frac{R_{s} - jX_{s}}{(R_{s} + jX_{s}) \times (R_{s} - jX_{s})} = \frac{R_{s} - jX_{s}}{(R_{s}^{2} + X_{s}^{2})}$$
$$= \frac{R_{s}}{(R_{s}^{2} + X_{s}^{2})} - j\frac{X_{s}}{(R_{s}^{2} + X_{s}^{2})}$$

Parallel Circuit

$$Y_{p} = \frac{1}{R_{p} + j0} + \frac{1}{0 + jX_{p}} = \frac{1}{R_{p}} + \frac{1}{jX_{p}} = \frac{1}{R_{p}} - j\frac{1}{X_{p}}$$

$$\therefore \frac{R_{s}}{(R_{s}^{2} + X_{s}^{2})} - j\frac{X_{s}}{(R_{s}^{2} + X_{s}^{2})} = \frac{1}{R_{p}} - j\frac{1}{X_{p}}$$

$$\therefore \frac{1}{R_{p}} = \frac{R_{s}}{(R_{s}^{2} + X_{s}^{2})} \text{ or } R_{p} = \frac{(R_{s}^{2} + X_{s}^{2})}{R_{s}}$$

$$\therefore \frac{1}{X_{p}} = \frac{X_{s}}{(R_{s}^{2} + X_{s}^{2})} \text{ or } X_{p} = \frac{(R_{s}^{2} + X_{s}^{2})}{X_{s}}$$