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Chapter 1

Introduction

Suggested Reading:

Anderson, Chapter 1: pp. 1-31

1.1 Definitions
The topic of this course is the aerodynamics of compressible and viscous flow.
Where does aerodynamics rest in the taxonomy of mechanics?

Aerodynamics—a branch of dynamics that deals with the motion of air and other
gaseous fluids and with the forces acting on bodies in motion relative to such fluids (e.g.
airplanes)

We can say that aerodynamics is a subset of (<)
- fluid dynamics since air is but one type of fluid,

- fluid mechanics since dynamics is part of mechanics, c

- mechanics since fluid mechanics is one class of mechanics.

Mechanics—a branch of physical science that deals with forces and the motion of bodies
traditionally broken into:

- kinematics—study of motion without regard to causality

- dynamics (kinetics)-study of forces which give rise to motion

Examples of other subsets of mechanics:
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- solid mechanics

- quantum mechanics

- celestial mechanics

- relativistic mechanics

- quantum-electrodynamics (QED)

- magneto-hydrodynamics (MHD)
Recall the definition of a fluid:

Fluid—a material which moves when a shear force is applied.

Recall that solids can, after a small displacement, relax to an equilibrium configuration
when a shear force is applied.

Recall also that both liquids and gases are fluids

The motion of both liquids and gases can be affected by compressibility and shear forces.
While shear forces are important for both types of fluids, the influence of compressibility in
gases is generally more significant.

The thrust of this class will be to understand how to model the effects of compressibility
and shear forces and how this impacts the design of aerospace vehicles.
1.2 Motivating examples

The following two examples serve to illustrate why knowledge of compressibility and shear
effects is critical.

1.2.1  Re-entry flows

A range of phenomena are present in the re-entry of a vehicle into the atmosphere. This is
an example of an external flow. See Figure 1.1.

1.211 bow shock wave

. SLIJrc]jfi‘I&QIaY gzlarises density, temperature and pressure of shocked air; consider normal shock

— po = 1.16 kg/m3 — ps = 6.64 kg/ms (over five times as dense!!)
—To=300K - Ts = 6, 100 K (hot as the sun’s surface !)



1.2. MOTIVATING EXAMPLES

far-field
acoustic
wave

rarefaction
waves

viscous

and thermal
boundary
layers

Oblique
Shock

Wave . .
Ambient Air

Normal Shock Wave
Figure 1.1: Fluid mechanics phenomena in re-entry

—Po = 1.0 atm — Ps = 116.5 atm (tremendous force change!!)
— sudden transfer of energy from kinetic (ordered) to thermal (random)

-introduces inviscid entropy/vorticity layer into post-shocked flow

- normal shock standing off leading edge
- conical oblique shock away from leading edge

- acoustic wave in far field

1212 rarefaction (expansion) wave

- lowers density, temperature, and pressure of air continuously and significantly

- interactions with bow shock weaken bow shock

1.21.3  momentum boundary layer

-occurs in thin Iag/er near surface where velocity relaxes from freestream to zero to
safisty the no-slip condition

- necessary to predict viscous drag forces on body
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1214  thermal boundary layer

: aseﬂtejirgflecelerates in momentum boundary layer kinetic energy is converted to thermal

- temperature rises can be significant (> 1, 000 K)

1.215 vibrational relaxation effects

- energy partitioned into vibrational modes in addition to translational
- lowers temperature that would otherwise be realized

- important for air above 800 K

- unimportant for monatomic gases

1.216 dissociation effects

- effect which happens when multi-atomic molecules split into constituent atoms
- O2 totally dissociated into O near 4, 000 K
- N2 totally dissociated into N near 9, 000 K

-For T >9, 000 K, ionized plasmas begin to form

Vibrational relaxation, dissociation, and ionization can be accounted for to some extent by
introducing a temperature-dependent specific heat c¢v (T )

1.2.2 Rocket Nozzle Flows

The same essential ingredients are present in flows through rocket nozzles. This is an example
of an internal flow, see Figure 1.2

viscous and thermal
boundary layers

burning solid rocket fuel

burning solid rocket fuel

possible
normal
shock

Figure 1.2: Fluid mechanics phenomena in rocket nozzles

Some features:
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- well-modelled as one-dimensional flow
- large thrust relies on subsonic to supersonic transition in a converging-diverging nozzle
- away from design conditions normal shocks can exist in nozzle
- viscous and thermal boundary layers must be accounted for in design
1.2.3 Jet Engine Inlets

The same applies for the internal flow inside a jet engine, see Figure 1.3

viscous
and thermal
boundary layers

T~

compressor

oblique
shock

turbine exhaust

combustor

L

Figure 1.3: Fluid mechanics phenomena in jet engine inlet
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Chapter 2

Governing Equations

Suggested Reading:

Hughes and Brighton, Chapter 3: pp. 44-64
Liepmann and Roshko, Chapter 7: pp. 178-190, Chapter 13: pp. 305-313, 332-338
Anderson, Chapter 2: pp. 32-44; Chapter 6: pp. 186-205

The equations which govern a wide variety of these flows are the compressible Navier-
Stokes equations. In general they are quite complicated and require numerical solution. We

will only consider small subsets of these equations in practice, but it is instructive to see
them in full glory at the outset.

2.1 Mathematical Preliminaries

A few concepts which may be new or need re-emphasis are introduced here.

211 Vectors and Tensors

One way to think of vectors and tensors is as follows:

. ﬁFrSwta?rfger tensor: vector, associates a scalar with any direction in space, column

. s%pond arder ten%or: tensor-associates a vector with any direction in space, two-
imensional matrix

. tPH'rd order tqnsor—associates a second order tensor with any direction in space, three-
Imensional matrix

- fourth order tensor-...

15
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Here a vector, denoted by boldface, denotes a quantity which can be decomposed as a
sum of scalars multiplying orthogonal basis vectors, i.e.:

vV =ui +Vvj + wk (2.1

2.1.2  Gradient, Divergence, and Material Derivatives

The “del” operator, , is as follows:
0 0 0
o4 —tk 2.2
ST dy 0z (2.2)
Recall the definition of the material derivative also known as the substantial or total
derivative:
{ i
N — 2.3
t = ot +v- 23)
where
\
Example 2.1
= v
Doesv - V= ) i + 3 y
= — ¢t — -—
v e oy Yoz (24)
il W ow 55
v= oy 0z (2:5)
EYR
ox ox [
R T 2.6)
ER VI
vV = 0z 0z [
So, no.
Here the quantity v is an example of a second order tensor. Also
v- =vdiv @7
. (2.8)
-v=divv
(2.9)
v =gradv
(2.10)

@=grad @
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2.1.3 Conservative and Non-Conservative Forms

If hiis a column vector of N variables, e.g. hi = [h, hz, h3, ..hn ]1, and fi(hi) gi(hi) are a
column vectors of N functions of the variables hi, and all variables are functions of x and
t, hi = hi(x, t), fi(hi(x, t)), gi(hi(x, t)) then a system of partial differential equations is in
conservative form iff the system can be written as follows:

ﬂ d
axfhi + aT(fi(hi)) = gi(hi) (2.11)

A system not in this form is in non-conservative form

2131 Conservative Form

Advantages

- naturally arises from control volume derivation of governing equations
- clearly exposes groups of terms which are conserved
- easily integrated in certain special cases
- most natural form for deriving normal shock jump equations
- the method of choice for numerical simulations
Disadvantages
- lengthy
- not commonly used
- difficult to see how individual variables change

2132 Non-Conservative Form

Advantages

- compact
- commonly used
- can see how individual variables change

Disadvantages

- often difficult to use to get solutions to problems
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- gives rise to artificial instabilities if used in numerical simulation

|
Example 2.2

Kinematic wave equation

The kinematic wave equation in non-conservative form is

il du
i U 0)( =0 (2.12)

This equation has the same mathematical form as inviscid equations of gas dynamics which give rise to
discontinuous shock waves. Thus understanding the solution of this simple equation is very useful
in understanding equations with more physical significance.

Since uag = 6‘37 %~ the kinematic wave equation in conservative form is as follows:
il 0
i w2 =0 (2.13)
Here hi=u, fi = %gi = 0.

Consider the special case of a steady state

be integrated! t = 0. Then the conservative form of the equation can

d e, 214
dx 2 (2.14)
uz2 uz2
S =om 2.15)
. 2.16)

Now u = uo satisfies the equation and so does u = —uo . These are both smooth solutions. In

dition, ¢ mb| ations also satisfy, e.g. U = Uo x > 0. This is a discontinuous solution.
Z SO notet e solution’is not unique. "Pms isa consequence ofothe U au norj,fﬁnearlty [Hus is an example

of a type of shock wave. Which solution is achieved generally depends on terms we have neglected,
especially unsteady terms.

\
Example 2.3

Burger's equation

Burger's equation in non-conservative form is

o=V LT (2.17)
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This equation has the same mathematical form as viscous equations of gas dynamics which give rise
to spatially smeared shock waves.

Place this in conservative form:

il d 0.0u -0
B N v axox
du 0 u2 0 ou
~ 2 — v =0
i ox 2 i [0)4
il d du 0
S U R, VA

Here, this equation is not strictly in conservative form as it still involves derivatives inside the
operator.

Consider the special case of a steady state :
be integrated!

Let u — uo as x — —oo (consequently a —0asx— —oco)and u(0) =0so

0 du w2
TV odx T2
\)d—u . l 2 2
d 2 U-Uo
du dx
T v
U2 — U2o
1
=- 2V
1 UuZo - U2
y tanh-1 _ +C
Uo Uo Uo
u(x) = up tanh - yX* Cuo
u(0) = 0 = uo tanh (Cuo) Cc=0
u(x) = uo tanh - \ X
lim u(x) = uo

X——00

lim
x—c U(X) = —Uo

Note

- same behavior in far field as kinematic wave equation
2v

- continuous adjustment from uo to —uo in a zone of thickness uo
- zone thickness - 0asv — 0

- inviscid shock is limiting case of viscously resolved shock
Figure 2.1 gives a plot of the solution to both the kinematic wave equation and Burger’s equation.

19

(2.18)

(2.19)

= 0. Then the conservative form of the equation can

.21)

2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)
(2.28)
(2.29)
(2.30)
(2.31)
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uo ﬁ uo

-uo

-uo

Kinematic Wave Equation Solution

. - Burger’'s Equation Solution
Discontinuous Shock Wave g N

Smeared Shock Wave
Shock Thickness ~ 21 / uo

Figure 2.1: Solutions to the kinematic wave equation and Burger's equation
2.2 Summary of Full Set of Compressible Viscous Equa-
tions

A complete set of equations is given below. These are the compressible Navier-Stokes equa-
tions for an isotropic Newtonian fluid with variable properties

b 1 2.32
s P, W 232)

dv
Py =P+ tipg D (2.33)

de

pdt =- -q-P ~-v+T:V [ (2.34)
T=y V+  vi+A( W1 [6] (2.35)
q=-kT [3] (2.36)
M=u(p T) [1] (2.37)
A=A T) [1] (2.38)
k=k(p T) [1] (2.39)
P=P(,T) [1] (2.40)
e=e(pT) [1] (2.41)

The numbers in brackets indicate the number of equations. Here the unknowns are

- p—density kg/ms (scalar-1 variable)
- v—velocity m/s (vector- 3 variables)
- P —pressure N/m2 (scalar- 1 variable)

- e—internal energy J/kg (scalar- 1 variable)
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- T —-temperature K (scalar - 1 variable)
T —viscous stress N/m2 (symmetric tensor - 6 variables)
- g—heat flux vector-W/m: (vector - 3 variables)
p—first coefficient of viscosity N s/m2 (scalar - 1 variable)
- A-second coefficient of viscosity N s/mz (scalar - 1 variable)

- k—thermal conductivity W/(m2K') (scalar - 1 variable)
Here g is the constant gravitational acceleration and I is the identity matrix. Total-19
variables

Points of the exercise

- 19 equations; 19 unknowns
- conservation axioms—postulates (first three equations)
- constitutive relations—material dependent (remaining equations)

- review of vector notation and operations

Exercise: Determine the three Cartesian components of

Newtonian fluid, and b) an incompressible Newtonian fluid, in which Tfora) a compressible

-v=0.
This system of equations must be consistent with the second law of thermodynamics.
Defining the entropy s by the Gibbs relation:

1
Tds=de+Pd ; (242)
T$ : t p el 243
& @ T dt P (243)
the second law states:
. d (2.44)
pdt >- - T |

In practice, this places some simple restrictions on the constitutive relations. It will be

LRt P s SRR PV Gl I ERAGIVEL S i Hfeehd's can be

2.3 Conservation Axioms

Conservation principles are axioms of mechanics and represent statements that cannot be
proved. In that they provide predictions which are consistent with empirical observations,
they are useful.
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2.3.1 Conservation of Mass

This principle states that in a material volume (a volume which always encompasses the
same fluid particles), the mass is constant.

2311 Nonconservative form

[}
i TPy =0 (2.45)
This can be expanded using the definition of the material derivative to form
R S S hoon o ow
e My M w TP ow Ty ez O (2.46)
2312 Conservative Form
Using the product rule gives
b deu v | Olw) (247)

ot 0x oy 0z

The equation essentially says that the net accumulation of mass within a control volume is
attributable to the net flux of mass in and out of the control volume. In Gibbs notation this

is
i)

i + (ov) = 0 (2.48)
23.1.3  Incompressible Form
Iff the fluid is defined to be incompressible, dp/dt = 0, the consequence is
_ 0o or (2.49)
u Hoow (2.50)
Ox dy 0z ’
As this course is mainly concerned with compressible flow, this will not be often used.
2.3.2 Conservation of Linear Momenta
This is really Newton’'s Second Law of Motion ma = F
23.21 Nonconservative form
i 2.51
pdt =-P+ T + pg (2.51)

- p: mass/volume
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——: acceleration

- - P, - T : surface forces/volume

- pg: body force/volume

|
Example 2.4

Expand the term
2 ;9
Txx Ty Txz o Txx + dy Tyx 0z Tzx
3 a a J o ol .
.T= ox oy oz . Ty Tyz . T ay Tyy > Tzy T (2.52)
Tzx Tzy Tz isz + aQ T + BQ T
© Ty Y. &t y Tyz 2 Tz

This is a vector equation as there are three components of momenta. Let's consider the
X momentum equation for example.

du P O O 0T
P == o " ox ay+ oz TP (2:53)

Now expand the material derivative:

0_u a_u a_U du oP m m 0 Tx
Pa P o TPy T o =- aT ax T ey | ez TPY (2>4)
Equivalent equations exist for y and z linear momentum:
il v i} v P dw | dw |
p@t +pU Y + v y +pw o= by : I : dy t 37 + pgy (2.55)
ow ow ow w P 0w  dw |
Pae P oo T ey TP e - e T oax ey | oz TPY (2:36)

23.2.2 Conservative Form

Multiply the mass conservation principle by u so that it has the same units as the momentum
equation and add to the x momentum equation:

i d(pu) d(pv) d(pw)

u i +U ox +U dy +U 3z =0 (2.57)
du du du du P Ot 0w OIn
Toa M oa ey T ao o T e T ey ooz TPY (258)
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Using the product rule, this yields:

d (pu) d (puu) 0 (pvu) 0 (pwu) ol 0 T 0 Tw 0 T
t t ; ) : ; t + Pgx (2.59)
ot ox oy 0z =- 0x 0x dy 0z
The extension to y and z momenta is straightforward:
d (pv) d (puv) d (owv) 9 (pwv) aP 0Ty 0ty Oty
t t 4 ) 4 4 t + pQy (2.60)
ot ox oy 0z =- 0y ox dy 0z
d (ow) d (puw) d(ovw) 0 (pww) P 0w Jw O
+ 4 4 _ 4 4 t + pg:z (2.61)
ot ox 6)% 0z =- 0z 0x oy 0z
In vector form this is written as follows:
0 (pv)
at T pw)=-P+ -T+pg (2:62)

As with the mass equation, the time derivative can be interpreted as the accumulation of
linear momenta within a control volume and the divergence term can be interpreted as
the flux of linear momenta into the control volume. The accumulation and flux terms are
balanced by forces, both surface and body.

2.3.3  Conservation of Energy

This principle really is the first law of thermodynamics, which states the the change in

internal energy of a body is equal to the heat added to the body minus the work done by
the body;

. . (2.63)
E2 - E'1=Q12 - W
The E" here includes both internal energy and kinetic energy and is written for an extensive

system:

E" =pV 1 (2.64)
e+2v-v

2.3.3.1 Nonconservative Form

The equation we started with (which is in non-conservative form)

ge

t =- -q-P -v+TiV (2.65)

ksoﬂ\rpe%%gnglanggl expression of the simple idea de = dg — dw with attention paid to sign

- pad change in internal energy /volume
- - - g: net heat transfer into fluid/volume
-P -v: net work done by fluid due to pressure force/volume (force x deformation)

S =T v: net work done by fluid due to viscous force/volume (force x deformation)
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2332 Mechanical Energy

Taking the dot product of the velocity v with the linear momentum principle yields the
mechanical energy equation (here expressed in conservative form):

01l 1

at 2 p(v-v)+ - 2pv(v-v) = —v- P+v-( “T)+pv-g (2.66)

This can be interpreted as saying the kinetic energy (or mechanical energy) changes due to

- motion in the direction of a force imbalance

- motion in the direction of a body force
Exercise: Add the product of the mass equation and uz/2 to the product of u and the one
dimensional linear momentum equation:

ill ou oP 0 T

UP s TP ok =u- x| ax PO (267

to form the conservative form of the one-dimensional mechanical energy equation:

0 l 6_1 @ 0 Tx
+

at ZDUZ Ix 2 pus —__, o tu ox T Pu9K (2.68)

2333 Conservative Form

When we multiply the mass equation by e, we get

il d(pu) d(pv) d(pw) 0 569
¢ + + = .
8 oo Y oay Y oz (2.69)

Adding this to the nonconservative energy equation gives

eT(pe)"L - (pve) = - q-P -v+T:iv (2.70)
Adding to this the mechanical energy equation gives the conservative form of the energy
equation:
0 1 1
ot pe+2v-v " ‘pve+2v-v =- q- -Pv+ -(t-v)(271)
which is often written as
d 1 1 P
(2.72)

ot pe+2v-v T o pve+2vov+ p == q+ -(t'v
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2.3.34  Energy Equation in terms of Entropy

Recall the Gibbs relation which defines entropy s:

(& &, d 1 & Pdo

¢ @ T dt p &t —p2dt 273)
so
& & Pdp
pdt =pl i t o dt (2.74)
also from the conservation of mass
1dp
2.7
Ve- ot (275)
Substitute into nonconservative energy equation:
s Pdp Pdp
- : 2.7
pdt+pdt=— g+ pdt +T Vv (2.76)
Solve for entropy change:
s 1 1
§oe- T q+ TT. \Y; 2.77)

Two effects change entropy:

- heat transfer

- viscous work
Note the work of the pressure force does not change entropy; it is reversible work.

If there are no viscous and heat transfer effects, there is no mechanism for entropy change;
ds/dt = 0; the flow is isentropic.

2.34  Entropy Inequality

The first law can be used to reduce the second law to a very simple form. Starting with

o] 1 q
- - a- T, - T (2.78)
o) )
L q q
T og-- ;oo T (2.79)
Substitute into the first law:
s q q 1

pg _ C— T+ TV (2.80)



2.3. CONSERVATION AXIOMS

Recall the second law of thermodynamics:

t q

T, - TT: v>0

Our constitutive theory for g and T must be constructed to be constructed so as not to
violate the second law.

27

(2.81)

(2.82)
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Exercise: Beginning with the unsteady, two-dimensional, compressible Navier-Stokes
equations with no body force in conservative form (below), show all steps necessary to
reduce these to the following non-conservative form.

Conservative Form

i i t 0
i t dr(pU)+ ayf(pV)—

ﬂ ﬁ

aT(p““ b (puu+P-T)+ § (puv-Tw) =0
ﬂ ﬁ
ﬂ—(pv)+ bo(pvu-Ty)+ § (PW+P-Ty)=0
0 1
at pe+ ) uz + v2
0 1 P
ox pue+ 2 uzrvat P — (UTx + VIxy ) + Ox
0 1 P
dy pve+ 2U2+V2+ 0 (T + VT ) + Gy =0
Non-Conservative Form
d d o) du ov
§+u§+vg§%+p6x+6y=0
du du du apP 0 Tx 0 Ty
Proa Mo Moy - T oax | ay
v il ov dP 0 Tny 0 Ty
Poa M ow oy = oy ax T oy
& de de
Pra ™ a7 oy
0g: | Oqy
=- 0 dy
Ov
P & dy
du il du ov
+Txx i + Ty 3 + Tyx ay + Ty ay
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2.4 Constitutive Relations

These are determined from experiments and provide sometimes good and sometimes crude
models for microstructurally based phenomena.

24.1  Stress-strain rate relationship for Newtonian fluids

Perform the experiment described in Figure 2.2.

Force=F
Velocity=U

Figure 2.2: Schematic of experiment to determine stress-strain-rate relationship

The following results are obtained, Figure 2.3:

h1
h2 A3

h4
Al

h4>h3>h2>h1 A4>A3>A2>A1
Figure 2.3: Force (N ) vs. velocity (m/s)

Note for constant plate velocity U

- small gap width h gives large force F

- large cross-sectional area A gives large force F

When scaled by h and A, for a single fluid, the curve collapses to a single curve, Figure
2.4:

The viscosity is defined as the ratio of the applied stress tyx = F/A to the strain rate
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F/A Y

U/h

Figure 2.4: Stress (N/m2) vs. strain rate (1/s)

Tyx
T (2.83)
oy
Here the first subscript indicates the face on which the force is acting, here the y face.
The second subscript indicates the direction in which the force takes, here the x direction.
In general viscous stress is a tensor quantity. In full detail it is as follows:
u du__av o
o T ayu T o or  ox T oW
ov ov ov ov -
cox & oy toy oz oy
ow F ) 2
T=y o T&Tayw Py e o,
x +afv afw 0 0
du v .0
au 0 ox *ayv 5 0 . (2.84)
u_. 3 i
+)\ R 0 0 0: 6)\// ' d_vzv
This is simply an expanded form of that written originally:
= + )\ .
T= V+ VT ( W1 (2.85)

Here A is the second coefficient of viscosity. It is irrelevant in incompressible flows and
notoriously difficult to measure in compressible flows. It has been the source of controversy
for over 150 years. Commonly, and only for convenience, people take Stokes’ Assumption:

2 (2.86)
=-3u ’

It can be shown that this results in the mean mechanical stress being equivalent to the

thermodynamic pressure.
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It can also be shown that the second law is satisfied if
d 2 (2.87)
an .
p=0 A>-3u
\
Example 2.5
Couette Flow
Use the linear momentum principle and the constitutive theory to show the velocity profile between
two plates is linear. The lower plate at y = 0 is stationary; the upper plate at y = h is moving at
velocity U . Assume v = u(y)i + 0j + Ok. Assume there is no imposed pressure gradient or body force.
Assume constant viscosity . Since u = u(y), v = 0, w = 0, there is no fluid acceleration.
Ll Ll [} u
i U i v B +W i =0+0+0+0=0 (2.88)
Since no pressure gradient or body force the linear momentum principle is simply
d Tyx
0= (2.839)
oy
With the Newtonian fluid
0 du
0= 3y u oy (2.90)
With constant p and u = u(y) we have:
du
M o =0 (2.91)
Integrating we find
u=Ay+B (2.92)
Use the boundary conditionsaty = 0andy = h to give Aand B :
U
A=0, B = o (2.93)
so
u
uy) = Ly (2.94)
\
Example 2.6

Poiseuille Flow

Consider flow between a slot separated by two plates, the lower aty = 0, the upper aty = h, both
plates stationary. The flow is driven by a pressure difference. Atx = 0,P = Po;atx =L, P = P1.
The fluid has constant viscosity p. Assuming the flow is steady, there is no body force, pressure varies
only with x, and that the velocity is only in the x direction and only a function of y; i.e. v = u(y) i,
find the velocity profile u(y) parameterized by Po, P1, h, and p.
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As before there is no acceleration and the x momentum equation reduces to:

P d2u
0=- o '* dy2

First let's find the pressure field; take d/0x:

02P . 0 Q2u

0=- ox2 ' ox dy2

hanai der of diff L d2P 02 Ou

changing order of differentiation: 0= - ox2 +y E o
%P d2P
O= - aXZ == dxz
P A

dx
P=Ax+B
apply boundary conditions : P (0) = Po P(L) =P

substitute into momentum: 0= (P1=Po) +y iz
= L y.

u(y) = 021;2@942 + Cly +C2
2uL
boundary conditions: u@0)=0=0Cz

uhy=0= (P1=PsYh>+Cith+0
2uL

= h
Ci=- 2uL

: 2_uL ) y2 = yh

du
wall shear: =

dy : 2_L1|- 2y - h)

du
Twall = 4 h (Pr="Po)

dy y=0  —~

Exercise: Consider flow between a slot separated by two plates, the lower aty = 0, the
upper at y = h, with the bottom plate stationary and the upper plate moving at velocity

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)
(2.101)

(2.102)

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)

(2.108)
(2.109)

(2.110)

(2.111)

(2.112)

(2.113)
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U . The flow is driven by a pressure difference and the motion of the upper plate. At x = 0,
P = Po; at x = L, P = P1. The fluid has constant viscosity y. Assuming the flow is

steady, there is no body force, pressure varies only with x, and that the velocity is only in
the x direction and only a function of y; i.e. v = u(y) i, a) find the velocity profile u(y)

parameterized by Po, P1, h, U and p; b) Find U such that there is no net mass flux between
the plates.

2.4.2 Fourier's Law for heat conduction

It is observed in experiment that heat moves from regions of high temperature to low tem-
perature Perform the experiment described in Figure 2.5.

T>To
Figure 2.5: Schematic of experiment to determine thermal conductivity

The following results are obtained, Figure 2.6:

Q Q Q
3 A3 L1
t2 A2 L2
t1 Al L3
T T T

B 2>t A3 > A2 > Al L3>L2>1L1

Figure 2.6: Heat transferred (J ) vs. temperature (K)

Note for constant temperature of the high temperature reservoir T

- large time of heat transfer t gives large heat transfer Q
- large cross-sectional area A gives large heat transfer Q

- small length L gives large heat transfer Q

When scaled by L, t, and A, for a single fluid, the curve collapses to a single curve, Figure
2.7
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QI(A 1)

T/L
Figure 2.7: heat flux vs. temperature gradient
The thermal conductivity is defined as the ratio of the flux of heat transfer gx ~ Q/(At)

to the temperature gradient — ot & T /L.
Qx

(2.114)
k = _@X‘;
> oT
- 2.115
gx = —k Ox ( )
or in vector notation:
q=-kT (2.116)
Note with this form, the contribution from heat transfer to the entropy production is
guaranteed positive if k > 0.
I 1
‘ 1
kJiTZ fT V>0 (2.117)

2.4.3  Variable first coefficient of viscosity, p

In general the first coefficient of viscosity p is a thermodynamic property which is a strong
function of temperature and a weak function of pressure.

2431  Typical values of y for air and water
-airat 300 K, 1 atm : 18.46 x 10-6 (N s)/mz2
-airat400 K, 1 atm : 23.01 x 10-6 (N s)/mz2

- liquid water at 300 K, 1 atm : 855 x 10-6 (N s)/m2
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- liquid water at 400 K, 1 atm : 217 x 10-6 (N s)/m2
Note

- viscosity of air an order of magnitude less than water

QH . .
o > 0forair, and gases in general

% <0 for water, and liquids in general

2432 Common models for u

- constant property: g = Ho

3‘\—"

- kinetic theory estimate for high temperature gas: p (T ) = Ho

- empirical data

244  Variable second coefficient of viscosity, A

Very little data for any material exists for the second coefficient of viscosity. It only plays a
role in compressible viscous flows, which are typically very high speed. Some estimates:

- Stokes' hypothesis: A = —23 y, may be correct for monatomic gases
- may be inferred from attenuation rates of sound waves

- perhaps may be inferred from shock wave thicknesses

24.5 Variable thermal conductivity, k

In general thermal conductivity k is a thermodynamic property which is a strong function
of temperature and a weak function of pressure.

2451  Typical values of k for air and water

-airat 300 K, 1 atm : 26.3 x 10-3 W/(mK)
-airat400 K, 1 atm : 33.8 x 10-3 W/(mK)
- liquid water at 300 K, 1 atm : 613 x 10-3 W/(mK)

- liquid water at 400 K, 1 atm : 688 x 10-3 W/(mK) (the liquid here is supersaturated)
Note

- conductivity of air is one order of magnitude less than water
£ > 0 for air, and gases in general

.+ > 0 for water in this range, generalization difficult

35
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2452 Common Models for k

- constant property: k = ko

=

- kinetic theory estimate for high temperature gas: k (T ) = ko To

- empirical data

Exercise: Consider one-dimensional steady heat conduction in a fluid at rest. At x =
0 m at constant heat flux is applied gx = 10 W/m2. At x = 1 m, the temperature is held
constant at 300 K. Find T (y), T (0) and gx(1) for

- liquid water with k = 613 x 10-3 W/(mK)

- air with k = 26.3 x 10-3 W/(mK)

-
- air with k = 26.3 x 10-3 w0 W/(mK)

24.6  Thermal Equation of State
246.1 Description

- determined in static experiments

- gives P as a functionof pand T

246.2  Typical Models

-ideal gas: P = pRT

- first virial: P = pRT (1 + bip)

- general virial: P = pRT (1 + b1p + b2p2 + ...)
-van der Waals: P = RT (1/p - b)-1 — ap2

247  Caloric Equation of State
2471 Description

- determined in experiments
- gives e as function of p and T in general
- arbitrary constant appears

- must also be thermodynamically consistent via relation to be discussed later:
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1 I oP q
de=c (T)dT- @ or -P P

With knowledge of ¢v (T ) and P (p, T), the above can be integrated to find e.

24.7.2  Typical Models

- consistent with ideal gas:

— constant specific heat: (T ) = cvo (T = To) + €0

— temperature dependent specific heat: e(T ) = !

T A A
- consistent with first virial: e(T) = y o (TdT” + e

.
- consistent with van der Waals: e(p, T) =

2.5 Special Cases of Governing Equations

o (THAT” + eo

o (THdT™ + —a(p — po) + €o

37

(2.118)

The governing equations are often expressed in more simple forms in common limits. Some

are listed here.

2.5.1 One-Dimensional Equations

Most of the mystery of vector notation is removed in the one-dimensional limit where v =

w = 0,ay0 = 0z0 = O; additionally we adopt Stokes assumption A = —(2/3)u:

il dp il

i e o O
du au ol 0 40du
P i " ox =- 0x + x 3%x * P
B de o oI h 4 Qu ’
Py Y T Nax P w TH O ax
M=u(p T)
k=k(pT)
P=P(p,T)
e=e(pT)

note: 7 equations, 7 unknowns: (p, u, P, e, T, y, k)

(2.119)

(2.120)

(2.121)

(2.122)
(2.123)
(2.124)
(2.125)
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2.5.2  Euler Equations

When viscous stresses and heat conduction neglected, the Euler equations are obtained.

i P, 0 (2.126)
dv

= 2.127
Py = p (2127)

de dil
= 2.128
t =-P dtp ( )
e=e (P, p) (2.129)

Note:

- 6 equations, 6 unknowns (p, u, v, w, P, )
- body force neglected-usually unimportant in this limit

- easy to show this is isentropic flow; energy change is all due to reversible P dv work

Exercise: Write the one-dimensional Euler equations in a) non-conservative form, b)
conservative form. Show all steps which lead from one form to the other.

2.5.3 Incompressible Navier-Stokes Equations

If we take, p, k, p, cp to be constant for an ideal gas and neglect viscous dissipation which is
usually small in such cases:

Y =0 (2.130)
dv
O =Py (2.131)
dr
o =k (2.132)

Note:

-5 equations, 5 unknowns: (u, v, w, P, T')
- mass and momentum uncoupled from energy
- energy coupled to mass and momentum

- detailed explanation required for use of cp



Chapter 3

Thermodynamics Review

Suggested Reading:

Liepmann and Roshko, Chapter 1: pp. 1-24, 34-38
Shapiro, Chapter 2: pp. 23-44
Anderson, Chapter 1: pp. 12-25

As we have seen from the previous chapter, the subject of thermodynamics is a subset of
the topic of viscous compressible flows. It is almost always necessary to consider the thermo-

dynamics as part of a larger coupled system in design. This is in contrast to incompressible

aerodynamics which can determine forces independent of the thermodynamics.

3.1 Preliminary Mathematical Concepts

If
z=2z(X,y)
then
0z 0z
dz = ix dx + By dy

y X

which is of the form
dz = Mdx + N dy

Now
oM 00z
oy ] dy Ox
N o0z
ox  Oxdy
oM  ON
thus ay y

so the implication is that if we are given dz, M, N, we can form z only if the above holds.

39

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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3.2 Summary of Thermodynamic Concepts

- property: characterizes the thermodynamics state of the system
— extensive: proportional to system'’s mass, upper case variable E, S, H

— intensive: independent of system'’s mass, lower case variable e, s, h, (exceptions
T,P)

- equations of state: relate properties

- Any intensive.thermodynamic property can expressed as a function of at most two
o%/her intensive therm%d%manﬁc ropgr%les tzf%r S mpﬁe systemslf

— P = pRT : thermal equation of state for ideal gas

—Cc=  y:sound speed for calorically perfect ideal gas

- first law: dE” = dQ - dW
- second law: dS > dQ/T

' process: moving from one state to another, in general with accompanying heat transfer

- cycle: process which returns to initial state

2
. P dv
- reversible work: wiz = 1

2
- reversible heat transfer: qi2 = y Tds

Figure 3.1 gives an example of thermodynamic process going from state 1 to state 2.
Figure 3.2 gives a sketch of a thermodynamic cycle.

|
Example 3.1
Consider the following process for air, modelled as a calorically perfect ideal gas, from state 1 to
state 2. P1 = 100 kP a, T1 = 300 K, T2 = 400 K .

Since the process is isobaric P = 100 kP a describes a straight line in P - vand P - T planes and
P2 = P1 = 100 kP a. Since ideal gas, v — T plane:

V= E T straight lines! (3.7)

(287 J/kg/K) (300 K)
vi = RT1/P1 = 100, 000 P = 0.861 ms /kg (3.8)

(87)/kg/K)(A00K) o 39
v2 = RT2/P2 = 100, 000 P a - Hasma /g >
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v2
P T
P1
P2 T2 vl
” n
vl v2 v sl s2 s
w12 = INT(P dv) e2-el=ql2-wi2 ql2 = INT(T ds)
P vl Y
b1 P2
v2 v2
P2
P1
vl
T1 T2 TL T2 T
Figure 3.1: Sketch of thermodynamic process
p T
\
e2-el=0;wl2=ql2
Figure 3.2: Sketch of thermodynamic cycle
Since calorically perfect:
de = cvdT
el T1
de = ¢ dT
e2 T2
e2—e1=cv (T2-T)
= (716.5 J/kg/K) (400 K — 300 K )
= 71, 650 J/kg
also
Tds=de+Pdv
Tds=cdT +Pdv
from ideal gas : V= R : dv= R l dP

P pdT-

41

(3.10)
(3.11)

(3.12)
(3.13)
(3.14)

(3.15)
(3.16)

(3.17)
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Tds =cvdT + RdT - P
ar
7 -R
dr
ds=(cv+c-cv) T -R
dr
7T -R
s2 T h
dr
ds =cp T -R

s1 T1

ds = (cv + R)

ds = cp

Iz
s2-s1=¢cpln T1 -Rin

T
s—-So=c¢cpln To -RiIn

since P = constant:
T2

s2-s1=¢pln T1
400K
300 K
= 288.7 J/kg/K

= (1003.5 J/kg/K ) In

V2 V2
w12 = Pdv="P dv

, =P (v2-wv1)
= (100, 000 P a)(1.148 m /kg - 0.861 ms3 /kQ)
= 29, 600 J/kg

Now
de =dq - dw
dg = de + dw

qz=(e2—-e1) + w2
@ =71,650J/kg + 29, 600 J/kg

qi2 = 101, 250 J/kg

Now in this process the gas is heated from 300 K to 400 K . We would expect at a minimum that the

surroundings were at 400 K . Let's check for second law satisfaction.

12
d ?
S2 —S12 Tsurr

101,250)/kg
288.7 J/kg/K > 400 K '

288.7 J/kg/K > 253.1 J/kg/K yes

(3.18)
(3.19)
(3.20)
(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
(3.31)
(3.32)

(3.33
(3.34
(3.35
(3.36
(3.37

—_ D D

(3.38)

(3.39)
(3.40)
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v2

p T
P1= P2 = 100 kPa
T2 vl
T2 T1
T1=300K
vl V2 v sl s2 s
w12 = INT(P dv) e2-el=ql2-wi2 ql2 = iNT(T ds)
P vl v
P2=P1
v2 v2
P1= P2 = 100 kPa
vl
T1 T2 T1 T

Figure 3.3: Sketch for example problem

3.3 Maxwell Relations and Secondary Properties

Recall

Since v = 1/p we get

de=Tds - Pdv
Now we assume e = e(s, V),
de= de ds + oe d
65 v aVs
Thus
e de
©0s , P=- o
and
aT  Oze aP 02e
v "~ 0v0s 0s  =- 0sdv
Thus we get a Maxwell relation:
a1 oP
ov =T 0s .

Define the following properties:

43

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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-enthalpy: h = e + pv
- Helmholtz free energy:a=e - Ts

- Gibbs free energy:g=h - Ts

Now with these definitions it is easy to form differential relations using the Gibbs relation
as a root.

h=e+Pv (3.47)
dh = de + P dv + vdP (3.48)

de = dh - Pdv - vdP (3.49)

substitute into Gibbs: de = Tds P dy (3.50)
(3.51)

dh-Pdv-vdP=Tds - Pdv
dh =Tds + vdP (3.52)

So s and P are natural variables for h. Through a very similar process we get the following
relationships:

b g oh _ (3.53)
dos k. '
da da (3.54)
avr =-P aTy =-s '
a 2
@ -y o (3.55)
oPr 0T =S
a & o o os 556
o b ar v . o  =- 0P | '

The following thermodynamic properties are also useful and have formal definitions:

- specific heat at constant volume: ¢cv = aTv
- specific heat at constant pressure: ¢p = TP

- ratio of specific heats: y = cp/cv

P

- sound speed: ¢ = 9
av
- adiabatic compressibility: Bs = —v1 P's
P
- adiabatic bulk modulus: Bs = -v ovs

Generic problem: given P = P (T, v), find other properties
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3.3.1 Internal Energy from Thermal Equation of State

Find the internal energy e(T, v) for a general material.

e =¢e(T, V) (3.57)
de de
de= dT + dv (3.58)
oTv ovrt
de
de=cdT + dv (3.59)
ovr
Now from Gibbs,
d%: Tds - Pdv (3.60)
it =T -P (3.61)
de =T 0s p (3.62)
ovr ovt
Substitute from Maxwell relation,
de T ® 3.63
o T ot P (3.63)
SO
% d 3.64
de=cdT+T aTV—P v (3.64)
ed ) T (THdT” ' I o dv” (3.65)
e = Cv + ~ \'% .
To Vo aTA ~ - P
T T (THdT” ' I oF dv” (3.66)
= €o Cv + N \% .
e(T,v) = eo + ) . ot - P
\
Example 3.2
Ideal Gas
Find a general expression for e(T, v) if
RT
P v)= (3.67)
v
Proceed as follows:
@ —
o ) =R/ (3.68)
ol RT
| - 3.69
I R ©o
RT R =0 (3.70)
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Thus e is
T
e(T)=eo+ cv (THdT” 3.71)
To
We also find
T
h=e+Pv=eo+ o (THYdT" + Pv (3.72)
To
T
h(T, V) = eo + Cv (TA)dTA + RT (3.73)
To
& =cow(T)+R=c¢cp(T) (3.74)
(T, v)== 47 - TP :
R=cp(T)-cv(T) (3.75)
Iff cv is a constant then
eT)=eo+cv(T-To) (3.76)
h(T) = ( Povo) (T-To) G.77)
= (€o + FoVo ) + C = lo
’ (3.78)
R=cp-cv
\
Example 3.3
van der Waals gas
Find a general expression for e(T, v) if
RT
PTv= — 2 (3.79)
- V2
v-b
Proceed as before:
oP R
aT v—b
: P RT
a -
i v-b
RT b
— _ =2
v-b W= ha v v
a
Thus e is
T v
e, v)=eo+ o (THdT™ + av” (3.83)
To
T R 1
=eo + c(T)dT" +a - (3.84)
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We also find
! 1
h=e+Pv=eo+ o (THdT™ + a . ; + Pv
T [
L. 1 Rv a
h(T, V) = eo + o (T )dT + a |
. BV veb %

3.3.2 Sound Speed from Thermal Equation of State

Find the sound speed c(T, v) for a general material.

2=

Use Gibbs relation

Tds =de +Pdv

Substitute earlier relation for de

Tds=cdT+T o dv + P dv
or -P
Tds=cdT+ T o dv
o |
TP

Tds:cvdT—pﬁT

SinceP=P(T,v),P=P(T, p)

47

(3.85)

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)
(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)



48 CHAPTER 3. THERMODYNAMICS REVIEW

Thus substituting for dT

dp - @
ap ! p20T dp
aTp
Tds=cv * - -ToP
so grouping terms in dP and dp we get
ap
Cv op
T dS = ? . ﬂi-r t E m . dp
aT p aT p
dP - Cv ToP
SO if ds = 0 we obtain
ap
0P 10P %
oP L
ap Cv an Ep
Cv TOP
oP T opP
= +
o cp OT
So
c(T, p) = i 4 T ab
P = o . wp2 OT

Exercises: Liepmann and Roshko, 1.3 and 1.4, p. 383.

\
Example 3.4
Ideal Gas

Find the sound speed if

P(T, p) = pRT
The necessary partials are
oP P
o . RT o, PR
so
T 2
cTp)= RT+ (oR)
Cvp2
RaT
= RT+

(3.97)

(3.98)

P2 an *

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)
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YRT

Sound speed depends on temperature alone for the calorically perfect ideal gas.

Example 3.5
Virial Gas

Find the sound speed if
P(T,p) = pRT (1 + b1p)

The necessary partials are

49

(3.106)

(3.107)

(3.108)

(3.109)

E _RT+ 2b1 pRT E L R@+b
gp T RTTbre an—p(+1p)
so
Ti
T, p) = RT + 2b1 pRT + (PR (1 + b1 p))

&P
R
= RT 1+2bip+ (1 + b1 p)2

Sound speed depends on both temperature and density.

\
Example 3.6

Thermodynamic process with a van der Waals Gas

A van der Waals gas with

R =200 J/kg/K
a =150 P a ms /kg2
b = 0.001 ms/kg

cv = [350 + 0.2(T - 300K )] J/kg/K

(3.110)

(3.111)

(3.112)

(3.113)

(3.114
(3.115
(3.116
(3.117

—_— =
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begin at T1 =300K, P1 =1 x 105 P a. It is isothermally compressed to state 2 where P2 =1 x 106 P a.
%tulr 'ﬁa r|c IQ/ Bsatﬁd ko gtate 3 where T3 = 1,000 K. Find w13, 13, and s3 — s1. Assume the
RT a
P= —— (3.118)
-2
v-b
so at state 1
150
100,000 = 200300 (3.119)
v-0001 V¥
or expanding
~0.15 + 150v — 60, 100v2 + 100, 000vs = 0 (3.120)
Cubic equation-three solutions:
vi = 0.598 ms/kg (3.121)
} hysical 122
vi = 0.00125 - 0.0097i m /kg not physica (3.122)
vi = 0.00125 + 0.0097i m3 /kg not physical (3.123)
Now at state 2 we know P2 and T2 so we can determine v2
150
1,000,000 = 200x300 (3.124)
v-0001 V%
The physical solution is v2 = 0.0585 m3/kg. Now at state 3 we know v3 = v2 and T3. Determine P3:
" 150
Ps= . 00585 = 3,478,261 - 43,831 = 3,434,430 P a (3125)
0.0585 - 0.001
N = = JPdv+ ,Pdv=
OWWI3 = Wiz + W23 = 1 P 2 "= 1 pdvsince 2 - 3is at constant volume. So
wis = RT 2 (3.126)
V1 v-b \
V2 dV V2 dV
=RT1 — (3.127)
Vi —vaV2
v-b
1 1
=RTiIn v=-b 43 (3.128)
V2 Tvi
vi-b 1
0.0585-0.001- + 150 — (3.129)
=200 x 300 In -
0.598 — 0.001 0.0585 - 0.598
= -140, 408 + 2, 313 (3.130)
(3.131)
= -138, 095 J/kg = -138 ki/kg
The gas is compressed, so the work is negative. Since e is a state property:
T)dT | . 3.132
es-e1= oMdi+a o, (3132
Now
1
(3.133)

cw=350+02(T-300)=290+5T
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SO
r 1 1
es-er= 290 + T5 dr +a I V3
1 L 1
=290 (T3 -T1)+ 10 T2-Tiz+a o3
1 1 1

290 (1, 000 - 300) + 10 1, 0002 - 3002 + 150 0598 - 0.0585

= 203, 000 + 91, 000 - 2, 313
= 291, 687 J/kg = 292 kJ/kg

Now from the first law

€3 - e1= (3 - wi

g3 = e3 - e1+ wi3

qu3 =292 - 138
g3 = 154 kl/kg

The heat transfer is positive as heat was added to the system.

Now find the entropy change. Manipulate the Gibbs equation:
Tds=de+Pdv

ds = ld Ed
s = - e+ T v
1 a P
ds = T o (T)dT +2¢v + Tdv
1 a 1 RT a
ds= o (T)dT +2¢v + T H_z VdV
o (T)
ds= . dT+ dv
T
T3 V_b
o (T)
Gos —dT+RIn w—b
3-S1= .
1000 2T9o T1 oo
= -/ X dT + RInva=b-
300 T 5 Vi b
200 | 1,000 1
= n 0.0585-=0.001-
+5(1, 000 - 300) + 200 In
300 ( ) 0.598 - 0.001

= 349 + 140 - 468

=21 J7=O.021 Y
kg K kg K

Is the second law satisfied for each portion of the process?

First look at1 — 2
€2 — e1= Q12 - Wi2
qu2=e2 —e1+ wi2

| 1 1 1
qz = o (M)dT+a = +RT1In w=b_  4+3
T wooov2 V2 — V1
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(3.134)

(3.135)

(3.136)

(3.137)
(3.138)

(3.139)
(3.140)
(3.141)
(3.142)

(3.143)

(3.144)

(3.145)

(3.146)

(3.147)

(3.148)

(3.149)

(3.150)
(3.151)

(3.152)

(3.153)
(3.154)

(3.155)

(3.156)
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Since T1 = T2 and canceling the terms in a we get

J

_ vi-b 0.0585 - 0,001 S

G2 = RTaIn = 200 x 300 In - -140,408 kg
vi-b 0.598 - 0.001

Since isothermal

s2-s1=RlIn
vi-b
=200In 0:0585—0.001—
0.598 - 0.001J
= -468.0 kg K

Entropy drops because heat was transferred out of the system.

Check the second law. Note that in this portion of the process in which the heat is transferred out

of ths? systegraotkkat the surroundings must have Tsur < 300 K . For this portion of the process let us

take surr =
¥ ?
S2 —S12> ]

J

) 140,408k
-4680 kgK 2 300 K
J J

ok

4680 kgK > -4680 kgK

Next look at 2 — 3

23 = e3 — ez + w23

: 1 V3
gz = o (T)T + a i — + P dv
T2 s V2

since isochoric gz = cv (T)dT
T2
1000

T
= 290+ . dT =294,000
300 5

Now look at the entropy change for the isochoric process:

o
<

v = 2

dT

T2

T3 m
dT

1,000 1 J

=2901In -
300 +5(1,000-300) =489 kgKkK

Entropy rises because heat transferred into system.

In order to transfer heat into the system we must have a different thermal reservoir. This one must

have Tsurr > 1000 K . Assume here that the heat transfer was from a reservoir held at 1, 000 K to

(3.157)

(3.158)

(3.159)

(3.160)

(3.161)

(3.162)

(3.163)

(3.164)

(3.165)

(3.166)

(3.167)

(3.168)

(3.169)

(3.170)
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assess the influence of the second law.

oo (3.171)
S3 — S22 |
J 294, 000 kg
4 172
¥ 9K = 1000k (.172)
B ) ok (3.173)

kgK 229 KkgK

3.4 Canonical Equations of State

If we have a single equation of state in a special canonical form, we can form both thermal
and caloric equations. Since

de=Tds - Pdv (3.174)
dh =Tds + vdP (3.175)
it is suggested that the form
e =e(s, V) (3.176)
h=h(,P) (3.177)
is useful.
\
Example 3.7
Canonical Form
If
s
h(s, P) = Kcp P r/cy €XP & +(ho-cpTo) (3.178)
derive both thermal and caloric state equations P (v, T) and e(v, T).
Now for our material
. = KP s 3.179
s : = KP r/co €XP . (3.179)
D RP Rt exp s (3.180)
oP s Cp
Now since
oh
=T (3.181)
dsp
oh
—v (3.182)

oPs
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we have

T = KP r/co eXp c
P

v = KRP Rr/co-1 €Xp
Cp

Dividing one by the other gives

— 2 o

P=R—
v

Substituting our expression for T into our canonical equation for h we also get

h=CpT+(ho—CpTo)
h=Cp(T—To)+ho

which is useful in itself. Substituting in for T and To

Pv Po v
h=c o °R° + ho
Using h = e + P v we get
P_V Po Vo
e+Pv=cp R R + €0 + Povo
so
Cp Cp
e =
R -1Pv- R-1Powoter
_ O
€% R -1(PVv-Povo) +eo
e @
" R -1(RT-RTo)+eo

e=(p-R)(T-To)+eo
e=[cp-(cp—cv)](T-To) + eo
e=c(T-To)+eo

So one canonical equation gives us all the information we need! Oftentimes, it is difficult to do a
single experiment to get the canonical form.

(3.183)

(3.184)

(3.185)

(3.186)

(3.187)
(3.188)

(3.189)

(3.190)

(3.191)
(3.192)

(3.193)

(3.194)
(3.195)
(3.196)

Exercise: For a calorically perfect ideal gas, write the Helmholtz free energy and Gibbs
free energy in canonical form, i.e. what is a(T, v), g(P, T )?



3.5. ISENTROPIC RELATIONS 55

3.5 Isentropic Relations

Of particular importance in thermodynamics in general and compressible flow in particular
are relations that describe an isentropic process, s = constant. Recall the second law.

dg
dss T (3.197)
If the process is reversible,
d
ds= (3.198)
T
If the process is adiabatic
e} ds=0 (3.199)

dg=0

So an isentropic process is both adiabatic and reversible. We know from the first law written
in terms of entropy that this implies that

q=0 (3.200)
(3.201)
=0
In this case the Gibbs relation and the first law reduce to the same expression:
(3.202)

de = =P dv

That is the energy change is all due to reversible pressure volume work.

We would like to develop an expression between two variables for an isentropic process.

With knowledge of P (T, v)

- form e(T, v)
- eliminate T to form e(P, v)

- take derivative and substitute into Gibbs/First Law

e dpP de 3.203
P ¥ gvp dv=-Pdv (3.203)
de de
. dP+ T +P dv=0 (3.204)
opP v ove

Integration of this equation gives a relationship between P and v.
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\
Example 3.8

Calorically Perfect Ideal Gas

Find the relationship for a calorically perfect ideal gas which undergoes an isentropic process.

Ideal Gas:
Pv=RT (3.205)
Calorically Perfect:
e=cwT+eo (3.206)
Thus
P v
e=cV_V+eo= € Pv+eo= Pv+eo (3.207)
P —Cv y-1
Thus the necessary derivatives are
o) 1
«€ . v (3.208)
oPv 1
de 1
: —FP (3.209)
ove
y-1

so substituting into our developed relationship gives

1
vdP+ ——P+P dv=0 (3.210)
y-1 y-1
vdP + yPdv =0 (3.211)
@ av 3.212
P o=-y v (3.212)
P v
— - (3.213)
P =-Y In Vo
R (3.214)
Py \%
Plo ey (3.215)
Py \%
P vy = Po voy = constant (3.216)
also using the thermal state equation
P BT Tvo Vo VY
R T, = 3.217
Py % Tov \% ( )
T vo VI 2] ‘;vl
_ = = (3.218)
Ty \ Po

Find the work in a process from vi to v2

w12 = P dv (3.219)

= Po Voy = (3.220)
A28 Vv
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Also

Figure 3.4 gives a sketch for the calorically perfect ideal gas undergoing an isentropic

Vi-
:PoVoy !
l_v %8
PoVoy
V21-y — Vi1-
]_—v 1-y 11-y
= P>vo—Prvi—
1-vy
SO
de=dq-dw=0-dw
Pavo = Payi
e2—e1=
y-1

expansion in various planes.
v2
P 1 T
P1
1
T1 vl
T1 T2
P2
2 T2 2
vl v2 \ s1,s2 s
w12 =INT(P dv) e2-el=ql2-wi2 q12 = INT(T ds) = 0
P vi v
1 P2
P1 V2
2
v2
P1
P2
2 vl 1
T2T1 T T2 11T

\
Example 3.9
Virial Gas

Find the relationship between P and v for a virial gas with constant cv which undergoes an isentropic

process.

Virial Gas:

Figure 3.4: Sketch of isentropic process
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(3.221)

(3.222)

(3.223)

(3.224)

(3.225)

(3.226)
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This is van der Waals with a = 0 and cv constant so:

e=cT+eo

Thus
e=c P—GVR;b% + eo
Thus the necessary derivatives are
de 1
o i v-b
de
ove R
so substituting into our developed relationship gives

0

| (v-b)dP+ RP+Pdv=0
R _
V-bydP+1+ o TI=O
. R
with Vel+ o
A Adv v-b
¥ I
exp ] L & — —_—
v-b P=0 v-b v-b
vt -
exp In (v - b) dv +expln(v-Db) v-h
- e vy
dv i V_Ab
dv (v-b)P
(v-Db)P = (vo - b)Po
L
h
v-b

(3.227)

(3.228)

(3.229)

(3.230)

(3.231)

(3.232)

(3.233)

Exercise: Find the relationship between T and v for a virial gas in an isentropic process.

Exercise: Find an expression for the work done by a van der Waals gas in an isentropic
process.

Exercise: A virial gas, m = 3 kg with R = 290 kg« , b —0.002 mkg With constant specific
heat cv = 0.700 kgirisinitially at P = 1.2 bar and T = 320 K . It undergoes a two step

BB0 RS Trind the Tor WONRTR ISR B9 P2 Ko heattiaithr 0 oR Gieapyion to

and the change in entropy Sz — S1 in units of J/K . Include a sketch, roughly to scale, of the

total process inthe P - vand T - s planes.



Chapter 4

One-Dimensional Compressible Flow

White, Chapter 9: pp. 511-559,

Liepmann and Roshko, Chapter 2: pp. 39-65,
Hughes and Brighton, Chapter 7: pp. 178-185,
Shapiro, Vol. 1, Chapters 4-8: pp. 73-262,

This chapter will discuss one-dimensional flow of a compressible fluid. Notation can pose
problems, and many common ones are in use. Here a new convention will be adopted. In

this chapter

- velocity in the x-direction will be denoted as u,

- specific internal energy, denoted in previous chapters by u, will here be e,
- total internal energy, denoted in previous chapters by U, will here be E.
The following topics will be covered:

- development of generalized one-dimensional flow equations,

- isentropic flow with area change,

- flow with normal shock waves,

- flow with friction (Fanno flow),

- flow with heat transfer (Rayleigh flow),

- flow in a shock tube.
Assume for this chapter:

- The flow is uni-directional in the x— direction with u = 0 and with the y— and z-
components of the velocity vector both zero:v =0, w =0

59
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-0 i i
=0 =0, * =0.

Friction and heat transfer will not be modelled rigorously. Instead, they will be modelled
in a fashion which captures the relevant physics and retains analytic tractability.

9
- Spatial gradients are admitted in x, but not iny or z o

4.1 Generalized One-Dimensional Equations

Flow with area change is illustrated by the following sketch of a control volume:. See Figure
4.1.

u1 >2
A —_— —_— > w2
Pl A2
! P2
e1 | -

X1 w

\

q
X2
X2-X1=01X Perimeter =1

Figure 4.1: Control volume sketch

For this problem adopt the following conventions

-surface 1 and 2 are open and allow fluxes of mass, momentum, and energy

- surface w is a closed wall; no mass flux through the wall

. eétaerranrﬁletc]eerat flux gw (Energy/Area/Time:

- diffusive, longitudinal heat transfer ignored, g« = 0

wall shear Tw (Force/Area: W_‘—) allowed-tw known, fixed parameter
* w . ‘

- diffusive viscous stress not allowed T« = 0

- cross-sectional area a known fixed function: A(x)

) through the wall allowed-gw known fixed
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411 Mass

Take the overbar notation to indicate a volume averaged quantity.

The amount of mass in a control volume after a time increment At is equal to the original
amount of mass plus that which came in minus that which left:

PADC e = p A At + prAr (UAY) — p2As (U2At) (4.1)
Rearrange and divide by AxAt:
p-A- t+At - p_A_ t 4 pZQZ 12 = QJQJ”J :O (42)
At Ax
4.3)
Taking the limit as At —» 0, Ax — 0:
ﬂ
ﬂ[—(pA) + ax—(pAu) =0 4.4)
If steady
i
0 (PAu) =0 (4.5)
Au j‘i +pU Z—i +pA j—i =0 (4.6)
lo , 1dA | 1du _, 4.7)
p dx A dx u dx
Integrate from x1 to x:
n d i
W (PAu)dx = 0dx (4.8)
X1 5 X1
d (pAu) =0 (4.9)
1
p2u2A2 — p1utA1 = 0 (4.10)
(4.11)

p2u2A2 = puiAt =m = C1

412 Momentum

Newton's Second Law says the time rate of change of linear momentum of a body equals the
sum of the forces acting on the body. In the x direction this is roughly as follows:

d
(mu) = Fx (4.12)
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In discrete form this would be

mult+at — mult - F (4.13)
At

mule+at = mule + FxAt

(4.14)

For a control volume containing fluid, one must also account for the momentum which
enters and leaves the control volume. The amount of momentum in a control volume after
a time increment At is equal to the original amount of momentum plus that which came in
minus that which left plus that introduced by the forces acting on the control volume.

- pressure force at surface 1 pushes fluid
- pressure force at surface 2 restrains fluid

. foprccjgig\tljg to the reaction of the wall to the pressure force pushes fluid if area change

- force due to the reaction of the wall to the shear force restrains fluid

pAAxU on pAAxU
+ (p1A1 (u1At)) u1
— (p2A2 (U2AAt)) uz
+ (P1A1) At - (P2A2) At
+ P7 (A2 - A1) At
- Twl Ax At
Rearrange and divide by AxAt:

p'A'u' t+At - p_A_u_ t, p2A2u22 = p1Aiu2

At AX
o PA=PiAL P A=A -
= Ax Ax — Tw
In the limit Ax — 0, At — 0 one gets
A 9 | PA) +P o 4.15
PR e pAw = - i PAEP G (4.15)
In steady state:
d A paasp 2 416
o PRz PARP (4.16)
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] i dA dp dA
A Y Al =P w <A T -l
du dP
dx = - dx - Tw

t
pudu + dP = —twdx A

1
S L
11 dP = —tw - du+ dx

uz

- L
pd 2 +dP=-twdx A

Wall shear lowers the combination of pressure and dynamic head.

If no wall shear:

uz
dP=-pd 2

Increase in velocity magnitude decreases the pressure.

If no area change dA = 0 and no friction tw = 0:

du dP 0
+ =
pudx dx
add u mass udd (pu) =0
k
a4 puz + P =0
dx

puz + P = pouzo + Po = C2

413 Energy

>
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4.17)

4.21)

(4.22)

(4.23)

(4.24)

(4.25)
(4.26)

The first law of thermodynamics states that the change of total energy of a body equals the

heat transferred to the body minus the work done by the body:

E2-E2=Q-W
E2=E1+Q-W

(4.27)
(4.28)

So for the control volume this becomes the following when one also accounts for the energy

flux in and out of the control volume in addition to the work and heat transfer:
pAA Lk BAA Lk
g+ — = [ —

t+At t

+p1A1 (U1At) e1 +

A TAX At + (P1AL) (U1AD) - (P2A2) (U2AAt)

uz2
2 - p2A2 (WAt) ez + 2
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Note:

: maerzimln pressure times area difference does no work because acting on stationary bound-

1
- work done by shear force not included
Rearrange and divide by AtAx:

pAET wae “PA e+ 2
At
L P2 L P1
p2A2u2 €2 + b ~ p1Atur er + f
Ax =qw|__
In differential form as Ax — 0, At - 0
A uz 0 A . W P
— + — + _— ue —
o PRET x I p =l
In steady state:
A W P
gy PAue+ - 0 - qul
w O v, B : (oA
— e+ o+ +e+ ot —
Mo ST 1 TET T g PAY
d Iz P
b Yo o - qXL
& @ 1db  Pdp gl
PUg ™ a T pdx —padx A
subtract product of momentum and velocity
pu2 i U dp Twlu
d dx =- A
e Pudp
= guk—t Twlu-
ok - pdx A A
de Pdp
= (Qu+Twu) L
& - p2dx m’

In neglecting work done by the wall shear force, I have taken an approach which is nearly universal, but
fundamentally difficult to defend. At this stage of the development of these notes, I am not ready to enter
into a grand battle with all established authors and probably confuse the student; consequently, results for
flow with friction will be consistent with those of other sources. The argument typically used to justify this
is that the real fluid satisfies no-slip at the boundary; thus, the wall shear actually does no work. However,
one can easily argue that within the context of the one-dimensional model which has been posed that the
shear force behaves as an external force which reduces the fluid’s mechanical energy. Moreover, it is possible
to show that neglect of this term results in the loss of frame invariance, a serious defect indeed. To model

At) in the energy equation.
the work of the wall shear, one would include the term tw L Ax (uhy|i rgy equati

(4.29)

(4.30)

(4.31)

(4.32)
(4.33)
(4.34)

(4.35)

(4.36)



4.1. GENERALIZED ONE-DIMENSIONAL EQUATIONS

Since e = e(P, p)

de de
de= _~ dp+ .. dP
o oP .
de & @ 0 dp
dx P dx
SO
de [ . de dP P dp - 1
O pdx P, dx — p2dx m’
dP b P —Pp
* - - OO0
dx de + dx mape
P p

Now it can be shown that

C2

SO

o |

-Q

I

& -@

. ‘ -0 ! "
alloafé%ﬁl?l case ffl?gvomg%ergg heat transfer qw = 0. Area change allowed!, wall friction

- dp=(qw+ Twu) L

dp
dx
dp
dx

oPp

.
(qw +oewtr) £—

mlaPp

(GIVT"'*@_V;U‘HT
puA oPp

see earlier
d 7 P
i & e+ T+ 0 =0
I P uz P
et T+ 0 =eo + OT R =Cs
u2 u2
h+ 7 = ho + o‘?_CE’;

|
Example 4.1

Adiabatic Flow of Argon 2

2adopted from White's 9.1, p. 583
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(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)
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Given: Argon, y = 35, flows adiabatically through a duct. At section 1, P1 = 200 psia, T1 =
500- F, ur = 2501t . At section 2 P2 = 40 psia, u2 = 1, 100 st .

Btu

Find: T2in- F and s2 - s1in lbm- R
Assume: Ar is a calorically perfect ideal gas, tables give R = 38.68 ﬁ{ o - 0.1253 uE%R
Analysis: First get the units into shape:
T1 =500 + 460 = 960R (4.47)
01953 Btu . f t Ibf o1 lbm f t ft 448
= = lom R Btu " lbfso - 3140%pR 1.45)
R 3868 f t Ibf 017 lbm f t ft 449
7% bmR " Ibfs T L2244 4.49)
R 3568 ftlbf 1 Btu 0.0496 Btu 450
- 77 IbmR  779ftlbf = 000 R 4:30)
Now consider an energy balance:
h bz h u 4.51
2+ 5 = 1+ 5 (4.51)
cp T2+ ho + Uz — cp T+ ho + uza (4.52)
2 2
T = Ti+ L (4.53)
2 -t 2, Uz -u2 )
1 1 ft 2 ft 2
T2=960R + ZW 250 < ~1 100 < = 777R (4.54)
T=777-460 = SU°F 439
The flow sped up; temperature went down. Thermal energy was converted into kinetic energy
Calculate the entropy change. For the calorically perfect ideal gas:
T2 P2
- - N o R p (4.56)
Btu 777 R Btu 40 psia
= M3 ™ geor - 004965 bmR " 200 psia @.37)
= Bu (4.58)

-0.0265 - (-.0799) = 0.0534 IbmR

Entropy change positive. Since adiabatic, there must have been irreversible friction which gave rise to
this.

|
Example 4.2

Adiabatic Flow of Steam 3

3adopted from White's 9.2, p. 583




4.1. GENERALIZED ONE-DIMENSIONAL EQUATIONS
Same problem now with steam Given: Steam flows adiabatically through a duct. At section 1,
P1 =200 psia, T1 = 500: F, u1 = 2501t . At section 2 P2 = 40 psia, u2 = 1, 100 st .

Btu
Find: T2in- Fand s2 — s1in lbm- R

Analysis:
Use steam tables for property values.
Energy balance:

ha + % = hi+ %
ha = hi+ 1
] U2 - u22
e B4 1 1 Bw 1 Ibfsz 5 2 ft
ha = bm 2 779 ftlbf 32.17 Ibm f t s -1100 s
ha = 1,246 Ibm
Interpolate steam tables at P2 = 40 psia, h2 = h2 = 1, 246 ﬁ and find
T, = 420-F
s = 1720 B
Ilom R

Tables give s1 = 1.6239 ;% so the entropy change is

Btu
s2 —s1=17720 - 1.6239 = 0.148 lom R

67

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)
(4.64)

(4.65)

|
Example 4.3
Flow of Air with Heat Addition

Given: Air initially at P1 = 100 kP a, T1 = 300 K, u1 = 10-=s flows in a duct of length 100 m.
The duct has a constant circular cross sectional area of A = 0.02 m2 and is isobarically heated with
a constant heat flux qw along the entire surface of the duct. At the end of the duct the flow has
P2 = 100 kP a, T2 = 500 K

Satisfégg:otnhg{ﬂ?gssgg%r Faewm , the wall heat flux qw and the entropy change sz - s1; check for

Assume: Calorically perfect ideal gas, R = 0.287 kng—K cp = 1.0035 kngT

Analysis:
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Geometry:
A =
r =
\/ o =
L=2nr=2mA
Get the mass flux.
P =
o1 = P1 _
RT1
So
kg
m’ = p1uiA1 = 1161
m3
Get the flow variables at state 2:
P2
P2= RT
p2u2 A2
Uy = p1 U1A1
p2 A2
kg m
o161, o
- 06969 ¢
m3
Now consider the energy equation:
d li P
—_— + e =
' dx ¢ | p
d h u2
ax "2 T
L d : u2 g
~ h+ — dx =
o dx 2
2
u u21

DIMENSIONAL COMPRESSIBLE FLOW

Ttr2

A
i
1 (0.02 m2) = 0.501 m

]

p1 RT1
100 kP a
K
0287 o K (300 K)
k
1161 d
m3

m
1 . 0.02 m2 = 0.2322

100 kP a

0281 S (500K)

k
= 0.6969 9
ms3
= p1ui A1
. biu1
P2
-1667
S
Gw-L-
A
Gul
m
L
el dx
0 m
Qull
m
Qull
m
m uz uz

pM2-T)+2-2 2

(4.66)
(4.67)

(4.68)

(4.69)
4.70)

4.71)

@.72)

4.73)

4.74)
(4.75)
(4.76)

@4.77)

4.78)

4.79)

(4.80)

(4.81)

4.82)

(4.83)

(4.84)



4.1. GENERALIZED ONE-DIMENSIONAL EQUATIONS

Substituting the numbers, one finds,

_ 0.2322+gs Logs 1667 ™7 m2
@ = (100 m)(0.501 m) P2 g K (500K - 300K) + 2 -
0.00463 9 200, 700 J me
u = 0004635 ' G -889 52
= 0004635 kg 200, 700 : !
Q== m2s ' g -889 kg
g = @ N
mz2
Heat flux positive, denoting heat into the air.
Now find the entropy change.
_ n 2 P2
S2 —S1 = clin T -RlIn P1
- Lo o 500K J | 100 kP a
so-s1 7 kgK " 300K -287 kgK | 100kPa
J
o-si=5126-0 © 2P oy

Is the second law satisfied? Assume the heat transfer takes place from a reservoir held at 500 K . The

reservoir would have to be at least at 500 K in order to bring the fluid to its final state of 500 K . It

could be greater than 500 K and still satisfy the second law.

Qu
S2-S1 > T
Qu
S2-S1 2 T
Qu
m (s2-s1) 2 T
Qw Atot
m (s2-s1) 2 T
m’ (s2 — s1) > qW.I_LL
s2-s1 > quthl_L
s 0 930 s7m:t100 m) (0.501 m)
kgk = 02322 ¢ (500K)
J J
5126 WK > 4013 oK

69

(4.85)

(4.86)

(4.87)

(4.88)

(4.89)

(4.90)

4.91)

(4.92)

(4.93)

(4.94)

(4.95)

(4.96)

4.97)

(4.98)

(4.99)
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414 Influence Coefficients

Now, uncouple these equations. First, summarize:

i du pudA
udx + dx = - Adx (4.100)
i i t dp Fwhk— (4.101)
d dx =- A
dP d w
o -0 gx © @b (4.102)
puAaprp
In matrix form this is
d7 I p?dxi
e . e (4.103)
O 1 éjﬁ pUA de
“ 09 pul s s = ta P
Use Cramer's Rule to solve for the derivatives. First calculate the determinant of the coef-
ficient matrix;
U ((pu)(D) - (1)) - p O)(1) - (-c)(D) = pus - & (4.104)
Implementing Cramer’s Rule:
do PU — ol — P — AL + P o 4105
dx p(uz ) S (4.105)
du @ — U4 U — AL — U . @I . e
dx p(uz ) S (4.106)
. . (Qw+Twu)l
dpP Uc2 — pX— PC2 — AL + PU2 ge
< - pUC2 ~pfe¥™~ P P purzn | ° (4.107)
p (U2 — c2)
Simplify
d 1 —puzd + Tul o
dp : 1 —puz + TwL + m.,j| .
dx A (w2 c) (4.108)
. (GutTw L)
du  1lcpuds-util - @Ip 4109
dx =~ A p(uz c (4.109)
J— (Qw+twullu
dP 1 —copuzd®+ cotwl + "il .
x - A por (4.110)
(uz2 - €

Note:
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- a system of coupled non-linear ordinary differential equations
o _f

-in standard form for dynamic system analysis: dx W
-valid for general equations of state

- singular when velocity sonic u = ¢

4.2
Flow with Area Change

This section will consider flow with area change with an emphasis on isentropic flow. Some
problems will involve non-isentropic flow but a detailed discussion of such flows will be
delayed.

4.2.1 Isentropic Mach number relations

Take special case of
-tw =20
Qw = 0

- calorically perfect ideal gas (CPIG)

Then
. d; (puA) =0 (4.111)
d puz+P =0 (4.112)
d v @ B g (4.113)
dx / p
Integrate the energy equation with h = e + P/p
— =ho+ o
u2 u2
h+ (4.114)

If one defines the “0" condition to be a COhdZItIOﬂ of rest, then uo = 0. This is a stagnation

condition. So

u2
h+ = ho (4.115)

uz

h-hy+ 2 =0 (4.116)
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Since CPIG,
o 0 4117
e (T-To)+2 B (4.117)
u2
T-To+2 0 (4.118)
L = 0 (4.119)
+ = .
-7 2CpT
Now note that
YR
Cp = Cp C=C_ - OCG=0C_- —— (4120)
Cp — Cv Cve — 1 V—l
SO
Ey-1w o (4.121)
-7 2 yRT
To
=2 14 y-=lu (4.122)
T 2 VRT
Recall the sound speed and Mach number for a CPIG:
c2 = yRT if P =pRT, e=cT+eo (4.123)
o (4.124)
M2 = '
-5¢
thus,
E =1+ y-1 M2 (4.125)
T 2 '
T -1
= 1+ y-1 M2 4126
I, Y 5 ( )
Now if the flow is isentropic one has
— —  y-l
T -1 P v
_ R _ (4.127)
To Po Po
Thus -
v
2o 1oyl oMy (4.128)
Po 2 v
P
= 1+ vl M (4.129)
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For airy =7/5 so

=
+

= e g

l+|§/|2

73

(4.130)

(4.131)

-27

(4.132)

Figures 4.2, 4.3 4.4 show the variation of T, p and P with M 2 for isentropic flow.

Other thermodynamic properties can be determined from these, e.g. sound speed:

1+ Yézl—Mz

C YRT T

Co VRTO To
30Q
25Q
200Q \\
150 \\

—
10Q \\"‘\
5Q
M2

D 7

-1/2

(4.133)

Calorically Perfect

Ideal Gas

R = 0.287 kJ/(kg K)
©=7/5

Stagnation Temp =300 K

Figure 4.2: Static temperature versus Mach number squared

P{bar)

il
0. \\
4N
N
0 AN
e |

M2

2 4

Calorically Perfect

Ideal Gas

R =0.287 kJ/(kg K)

©=17/5

Stagnation Pressure = 1 bar

Figure 4.3: Static pressure versus Mach number squared

|
Example 4.4
Airplane problem
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1; Calorically Perfect

A Ideal Gas
AN R = 0.287 kJ/(kg K)
0.6 \ ©= 7/5

\\ Stagnation Density = 1.16 kg/m3
0.4
0 ) ==
B e M2
0 4 1

Figure 4.4: Static density versus Mach number squared

Given: An airplane is flying into still air at u = 200 m/s. The ambient air is at 288 K and
101.3 kP a.

Find: Temperature, pressure, and density at nose of airplane
Assume: Steady isentropic flow of CPIG

Analysis: In the steady wave frame, the ambient conditions are static while the nose conditions are
stagnation.

200
M = % v ms - 0588 (4.134)

J
¢ 287wk 288K

SO
1
To = T 1+Mz (4.135)
1
= (288K)1+ 05§82, (4.136)
= 3079K 4.137)
1 3
po = pl+ M§ (4.138)
1013 kP a 1
= oy 1+Q588 , (4.139)
0.287 kgk 288 K
= 145kg/ms (4.140)
1 :
Po = P 1+io ) (4.141)
1 ;
= (1013kPa)1+ 0588 4.142)
= 128kPa 4.143)

Note the temperature, pressure, and density all rise in the isentropic process. In this wave frame, the
kinetic energy of the flow is being converted isentropically to thermal energy.
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|
Example 4.5

Pressure measurement in compressible flows

See Figure 4.5.

—= Airat
_ 100 F
S - - g
- . Static
State "1"
Stagnation . 8 inches
State "0" | 1
Mercury

Figure 4.5: Compressible pitot tube sketch

Given: Airat u = 750 f{ Mercury manometer which reads a change in height of 8 inches.

Find: Static pressure of air in psia
Assume: Ideal gas behavior for air

Analysis:

First consider the manometer which is governed by fluid statics. In fluid statics, there is no motion,
thus there are no viscous forces or fluid inertia; one thus has a balance between surface and body forces.
Consider the linear momentum equation:

dv _ 4144
Pagt = -P+prog+ T (4144
0 = (4.145)
- P+ pH

dp PHg g
4z PHg gz (4.146)
P1 - Po - PHg gz (Zl - Zo) (4147)
_ 8459 lbm 1  Ibfs? ft 1ft 148
P1 - Po B fts3 322 ftlbm -322 s2 (Oin-(-8in)) 12in (4.148)
= b 4,149
PL-Po -5639 ft2 (4.149)

_ Ibf
P py = S92 (4.150)
Po = P1+563.9 b (4.151)
ft2

4adopted from White, 9.26, p. 584
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Now calculate the local Mach number

T1=100+460 = 560R 4.152)
M1 = - (4.153)
VYRT1
moE
M1 = s (4.154)
(141,717 15 (560R)
Mi = 0646 (4.155)

Isentropic flow relations relate stagnation to static properties, so for air

35

1

Po = P11+ Mlg (4.156)
1 35

Po = P11+ g(0.646) ! (4.157)

Po = 1324P1 (4.158)

Substituting from the measured pressure difference

P1 + 563.9 %; = 1.324P: (4.159)
= Lof (4.160)
~0.324P: 5639 ft
Ibf
pp = =5639 1% (4.161)
-0.324
P = 1740 f 4.162)
ft2
Ibf Ibf
Po=(1324)1,740 = 2304 | 4.163)
bf  1ft °? ,
Pr= LT o o = 121psia (4.164)
bf  1ft 2 ,
Po= 2304 o o = 160 psia (4.165)

What might one estimate if one did not account for compressibility effects? Assume one had the
same static pressure and calculate what velocity one would predict.

First calculate the static density.

o1 = RF;II (4.166)
LT g y, Hom 4.167)
p1 = . )
1,717 o (560R) Ibf 52
lbm

0.05827 f (4.168)
3

p1
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One would then use an incompressible Bernoulli equation:

2
PO pruz

Po + S, = P1 + 5 (4.169)
u = 2(Po="Px) 4.170)
p1
Ibf
296039 4y y, ftibm @171)
s 005827 Bm *C bfs '

ft
ur = 7894 4.172)

s

So the relative error in using the incompressible approximation would be

Error = 7894-750 - 539 4.173)

750

\
Example 4.6
Adiabatic Duct Flow  °

Given: Air flowing adiabatically through a duct. At section 1, u1 = 400 f—ts . T1 =200-F, P:=

35 psia. Downstream u2 = 1, 100 st , P2 = 18 psia.
Find: M2, umax , PPoont
Assume: Calorically perfect ideal gas, steady, one-dimensional flow
Analysis:

Some preliminaries:

T1=200+460 =660 R (4.174)
Btu f t lbf lom f t ftz

b= 00 o o 2 -6,015: 5 (4.175)
ft Ibf lom f t ftz

R= 833 o wm S17162 g (4.176)

(4.177)

Energy conservation gives stagnation conditions at state 1

hi +

u21
5 7 hot (4.178)

adopted from White's 9.30, p. 585
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T+

u21
2

To1

To1

To1

Note since in adiabatic flow ho is a constant,

Calculate the Mach numbers:

C1=

=

Since for CPIG air one has

= Cp To1
= T+ Y2
2Cp
2
400
= 660R + o
26,015 4
= 673R

ho2 = ho1 and since ideal gas To2 = To1 So

To2 = 673 R
T, = uz2
2 T To2- 2Cp
1,100
T =
673R - 56 015
T = 572R
c
141,716 fz 660 R
o s2R ( )=
ur 400_1’5;
M1 = P
t 1, 259 fst
c2
141,716 fz 572 R
o s2R ( )=
0 L0 "
Mz = Do
e 1t
E =
Po =
1 :
Po1 = (35psia) 1 + 0.31%2 =
1 :
Po2 = (18 psia) 1 + 0.93%2 =
Po2 31.74 psia

Po1

37.54 psia

ft

ft
s2R

= YRT1

1,259

= 0318

= YRT2

1173

= 0938

1 =72
1+¥I2
1
P 1+I}J/I2

37.54 psia

31.74 psia

0.845

(4.179)

(4.180)

(4.181)

(4.182)

(4.183)

(4.184)

(4.185)

(4.186)

(4.187)

(4.188)

(4.189)

(4.190)

(4.191)

(4.192)

(4.193)

(4.194)

(4.195)

(4.196)

(4.197)
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Stagnation pressure drop indicates that friction was present. If one computed an entropy change one
would see an increase in entropy.

The maximum velocity is found by converting all the thermal energy to kinetic energy. Taking
zero thermal energy to correspond to absolute zero (despite the fact that air would not be a gas at this
point) one could estimate

U2max
ho = 5 (4.198)
oTo = 20 (4.199)
Umax = 2¢p To (4.200)
ft
umx= 26,015 ——— (673R)= 2885 (4.201)
4.2.2 Sonic Properties
Let "*" denote a property at the sonic state M2 =1
-1 2
TL = 1+ H—z i) = v i1 (4202)
_v,ll 2 vill
L = 1+ V_LE 12 = y +1 (4203)
pe , , N
—yv-1 y-1
E:" = I+ VLZMZ o= J o1 (4.204)
-1/2 2
= I VL2L12 = e (4.205)
2y
Us = Cx = YRT: = y+1 RTo (4.206)
If airy = 7/5 and
%* - 0.8333 (4.207)
p= =0.6339 (4.208)
Po
J;—* = 0.5283 (4.209)
c- =09123 (4.210)

Co
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4.2.3 Effect of Area Change

Influence of mass equation must be considered. So far only looked at energy has been
examined. In the isentropic limit the mass, momentum, and energy equation for a CPIG
reduce to

L b dA 0 4211
: 4 u 4 A = (4. )
pudu +dP =0 (4.212)
dp dp
P TY (4.213)
Substitute energy then mass into momentum:
pudu +y Ap dp =0 (4.214)
p p
A = 421
pudu +y Cudu- Ad 0 ( 5)
d £ 1 dA 0 4.216
+ JE— —_— = .
Y P -uxdu- WA ( )
yP/p _ P dA

dul- w -y p UA (4.217)

du yP/p yP/p dA
T = (4.218)

u 1-  w uz A
du ! _ lda 4.219
U o1- Mz M:A 4.219)
du _ dA
y Ma-1 = 4 (4.220)
= 1_dA (4.221)
“ L o1a

Figure 4.6 gives show the performance of a fluid in a variable area duct.
It is noted that

- equation singular when M2 =1
-if M2=1, oneneedsdA =0
- area minimum necessary to transition from subsonic to supersonic flow!!

- can be shown area maximum not relevant
Consider A at a sonic state. From the mass equation:

DUA = pUA. (4.222)
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Consideru>0
Subsonic Subsonic
dA >0, M <1 so
du<o, flom dA<O,Mélso
dp >0 du > 0, flow speeds up
dp<0
Supersonic Supersonic
dA>O,M§150\ dA<0,M>1s0
du > 0, flow speeds up du < 0, flow slows down
dp<0 dp >0
Figure 4.6: Behavior of fluid in sub- and supersonic nozzles and diffusers
OUA = psCA. (4.223)
A __ o1 (4.224)
A. pbr
—1
- p; VRT. (4.225)
u
| RT
_ Y (4.226)
p YR
u
= p -1 (4.227)
p TM
= P Tilol (4.228)
Po P ToT M
Substitute from earlier-developed relations and get:
N - _ ly+1
AL 2 i vaawme (4.229)
nM oyl 2 ‘

Figure 4.7 shows the performance of a fluid in a variable area duct.

Note:
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B n
e

\ » Calorically Perfect
\ / Ideal Gas

v R = 0.287 kJ/(kg K)
\ e ©=1/5

N |

0. 1 i 2 2o

Figure 4.7: Area versus Mach number for a calorically perfect ideal gas

A% has a minimum valueof 1l atM =1

A
-Foreach
A

A s 0asM ->0orM - co

> 1, there exist two values of M

424 Choking

Consider mass flow rate variation with pressure difference

- small pressure difference gives small velocity, small mass flow
- as pressure difference grows, velocity and mass flow rate grow
- velocity is limited to sonic at a particular duct location

- this provides fundamental restriction on mass flow rate

- can be proven rigorously that sonic condition gives maximum mass flow rate

M’ max = p*U*A*

. 2 v 2y
if ideal gas: = Po y+1 y+l RToA.
»% 2 2
= po Y +1 VT]_ YRTOA*
TPy YRToA.

(4.230)

(4.231)

(4.232)

(4.233)

A flow which has a maximum mass flow rate is known as choked flow. Flows will choke

at area minima in a duct.
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|
Example 4.7

Isentropic area change problem with choking 6

Given: Air with stagnation conditions Po = 200 kP a To = 500 K flows through a throat to an exit
Mach number of 2.5. The desired mass flow is 3.0 kg/s,

Find: a) throat area, b) exit pressure, c) exit temperature, d) exit velocity, and e) exit area.

Assume: CPIG, isentropic flow, y = 7/5

Analysis:
Po 200 kP a
= H = 1 4 k 8

Po= R, (0287 ki/kg) (500K) 394 kg/ms (4.234)

Since it necessarily flows through a sonic throat:
' = 2 - RTo A 4.235
M max = Po y +1 YR 1o Ax ( . )

M’ max
Ae = o (4.236)

po i 2V YRTo
3 kg/s
_ 9 , (4.237)
13% '¢ (05787) 14287 i— (500K)

= 0.008297 m2 (4.238)

Since Me is known, use the isentropic relations to find other exit conditions.

v
-y-1

Pe = Po 1+ %Mez , (4.239)
1 -35
= (200kPa)1+ 25z . (4.240)
= 1171kPa (4.241)
1
Te = Tol+ %MEZ ' (4242)
1 B
= (S00K)1+ 25z , (4.243)
= 2222K (4.244)
Note
. (4.245)
Pe = pp :
_ 11.71 kP a , 4.246)

0287 i (2222K)

kg
01834 (4.247)
ms3

6adopted from White, Fluid Mechanics McGraw-Hill: New York, 1986, p. 529, Ex. 9.5
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Now the exit velocity is simply

J m
Ue = MeCe = Me YRTe = 2.5 1.4 287 kgT (222.2K)=747.0 : (4.248)
Now determine the exit area:
A2 oE
A = Me v+l 1+ V—Zl—l\/lez (4.249)
0008297mz 5 1. ’ 4250
= — +
25 6 %2 ' (4.250)
= 70.0219 m2 (4.251)
\
Example 4.8
Discharge Problem 7
Given: Air in tank, Po = 700 kP a, To = 20- C, V = 1.5 ms. Throat area in converging nozzle of
0.65 cmz, exhausting to 1 atm environment
Find: Time for pressure in tank to decrease to 500 kP a.
Assume: CPIG, stagnation temperature constant (so small heat transfer to tank in time of opera-
tion)
Analysis:
First, To = 20 + 273 = 293K
Now check for choked flow! At the initial state
Pam  10L3KPa 4 4.252
Po ~ 700kPa #.252)
But for airpr.. =0.5283, so the flow must be choked at the exit and the mass flow is restricted.
(Further expansion takes place outside the nozzle)
For choked flow one has
ly+l
2 2y-1
me = pPo vl YRTo A« (4.253)
Po 2 A
= . 4.254
RTo y +1 YRTo A ( )
Pe ' 093K)065 Lo
=, . 14287 ——— .65 cm2 — (4.255)
287 ngT (293 K) kg K 100 cm
- 0.5787
= 15348 x 107 Po (4.256)

7from White, 9.33,35



4.3. NORMAL SHOCK WAVES

Now mass conservation gives

d
dt Mev - -M e
d _
| (Po V) = e
d » v -
dt RT, —Me
dPo  _ RTo
= m e
dt -y
J
dro 8 o (93K)
da = - 1.5 ms 1.5348 x 10-7 Po
dPo  _
dt -0.008604Po

A exp (-0.008604t)

Use initial value of Po to fix the constant A so

Po = 700 exp (-0.008604t)
When does Po = 500 kP a?

500
500 = 700 exp (-0.008604t) In 700 = -0.008604t

1 W59
t=- 0008604 70

4.3 Normal Shock Waves

85

(4.257)

(4.258)

(4.259)

(4.260)

(4.261)

(4.262)
(4.263)

(4.264)

(4.265)

(4.266)

This section will develop relations for normal shock waves in fluids with general equations of
state. It will be specialized to calorically perfect ideal gases to illustrate the general features

of the waves.
Assumptions for this section
- one-dimensional flow

- steady flow

- no area change

- viscous effects and wall friction do not have time to influence flow

- heat conduction and wall heat transfer do not have time to influence flow
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—| vp =Vv2 ]
D u2 - u=-D
[ v=v2 _| . v=0 B P2 - - P1
P2 P1 )2 5!
)2 )1

Steady Frame

Laboratory Frame
' X

u=v-D; v=u+D
Xx=x*-Dt; x*=x+Dt

Figure 4.8: Normal shock sketch

The piston problem as sketched in Figure 4.8 will be considered.
Physical problem:

I!;lve pis t with known ve#ocit\é/ vp into fluid at rest (v1 = 0) with known properties,
1, pLin e + laboratory fram

- Determine disturbance speed D
- Determine disturbance properties vz, P2, p2

- in this frame of reference unsteady problem

Transformed Problem:

D to tra sfor%to the frame in which
y In this frame

- use Galilean transformatign x = x»
Fhe Wave I af rest, theretore rendmg the problem stea

solve as though D is known to get downstream “2" conditions: uz(D), P2(D)
invert to solve for D as function of uz, the transformed piston velocity: D(u2)

%v )get all variables as function of v, the laboratory piston velocity:
2(V2

bBivzgrip?f rmp

4.3.1 Governing Equations
Under these assumptions the conservation principles in conservative form and equation of

state are in the steady frame as follows:

—(pu) = (4.267)

=

dd puz+P =0 (4.268)
X
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d
o pub+ uz =0 (4.269)

h = h(P, p) (4.270)

Upstream c%nditions are p = p1, P = P1, u = —=D. With knowledge of the equation of
state, one gets h = hi. Integrating the equations from upstream to state “2" gives:

pauz  _ ) (4.271)
puz + P2 =piD2 + P1 (4.272)
h u2 h D2 4973
2 + ? =N + 7 (4. )
h: = h(P2, p2) (4.274)
4.3.2
Rayleigh Line
Work on the momentum equation:
P2 = P1 + p1D2 — p2u22
P2=P1+1 (4.275)
D2 T2t
paD2 "pie: (4.276)
p1 P2

Since mass gives p22u22 = p21D2 one gets an equation for the Rayleigh Line, a line in (P, p1)
space:

=

l
P2 = P1 + pa1D2 - 4.277)
o p2

Note:

- Rayleigh line passes through ambient state
- Rayleigh line has negative slope
- magnitude of slope proportional to square of wave speed

- independent of state and energy equations

4.3.3  Hugoniot Curve

Operate on the energy equation, using both mass and momentum to eliminate velocity. First
eliminate uz via the mass equation:
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Now use the Rayleigh line to eliminate D 2

D2
h2 + % =h1 + 7
1 piD ° D:
h2 + 2 02 = hl + 7
D2 o1 2 0
h-hi+ 2 p2 -1 -
D: P21 = P22
ho-hi+ 2 P22 =0
D2 0
- Qp—l—ng—(p—l—"-—ngi_ =
h2 - ht + 2 022
1 l 1
D2 = (P2 - Py1) p21 po-op2
1 -1
D2 = (P2 - P1) p21 p1p2
1 p1p2
D2=(P2-P
2 = (P2 1) p21 02 - p1

so the energy equation becomes

ha-hi+ 2 (P2-P1)

1
—— {pr=pHpr+pr— =0
PPz p2 - p1
" 1 1 p1 + P2 -0
o
het-20-Bp
1 l 1
t =0

h2-hi- 2 (P2 - P1) N p1

Solving finally for the enthalpy difference, one finds

h2 — h1 = (P2 - P1) 2 ] p1

This equation is the Hugoniot equation.

- enthalpy change equals pressure difference times mean volume

- independent of wave speed D and velocity uz

- independent of equation of state

(4.278)

(4.279)

(4.280)

(4.281)

(4.282)

(4.283)

(4.284)

(4.285)

(4.286)

(4.287)

(4.288)
(4.289)

(4.290)



4.3. NORMAL SHOCK WAVES 89

4.34  Solution Procedure for General Equations of State

The shocked state can be determined by the following procedure:

- specify and equation of state h(P, p)

: s%k%s i’E)ute the equation of state into the Hugoniot to get a second relation between P2
2.

- use the Rayleigh line to eliminate Pz in the Hugoniot so that the Hugoniot is a single
equation’in ;%

- solve for p2 as functions of “1" and D
- back substitute to solve for P2, uz, hz, T2 as functions of “1" and D

- invert to find D as function of “1" state and u2

- beck t\r/ansform to laboratory frame to get D as function of “1" state and piston velocity
2 = Vp

4.3.5 Calorically Perfect Ideal Gas Solutions

Follow this procedure for the special case of a calorically perfect ideal gas.

h = cp(T = To) + ho (4.291)
P = pRT (4.292)
so
h " P 4.293
= Cp W Rpo + ho ( . )
P Po
h= & - == (4.294)
R ] Po
P Po
h = c + ho (4.295)
Cp — Cv p P _Ppo
h= Y ° +ho (4.296)
y - 1 P — Po
Evaluate at states 1 and 2 and substitute into Hugoniot:
)T o - /. o)
y-1 y-1
1 l 1

= (P2 - P1) 2 p1
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_q1 R + (P2 - P1)
‘,_HMY\ P
P -  — _p, B o

y-1p2 o In y-1lp:

STT A e

2 2§yt 1) p2 v+l 2(y-1p1

= l 1 — _Pl -
y-1p2 vy-1lp1

0 I Piys1
pl Tyl o

1
-a hyperbola in (P, 01 ) space
‘ y—t1—

v - y+lpr  causes P2 — oo, note =y = 1.4, p2 — 6 for infinite pressure

1 — oo, P2 = —P1yy+11, note negative pressure, not physical here
-as e

The Rayleigh line and Hugoniot curves are sketched in Figure 4.9.

P (kPa
500

Shocked State
P2

400

Excluded s \
300 '
Zone, :

1/) < 1)min

Excluded Zone
Slope of Rayleigh Line <0

a—— Rayleigh Line, slope ~ D ,

from mass and momentum

200

E / - / Hugoniot,
4 2 N initial StaV....fLorn_ene[gy............ A ————
100 :
p H »
£ Excluded Zone, 2nd Law Violation
'n i - L {Larar, D ol R X Y ST BT
\ 1/ (kg/m )
J— 2 3 4 5 6 7 3
o ps 2 \
©+1 /f Excluded Zone, negative pressure
1/ymin =(©-1) 1
(©+1) 11

Figure 4.9: Rayleigh line and Hugoniot curve

Note:

- intersections of the two curves are solutions to the equations

- the ambient state “1” is one solution
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- the other solution “2" is known as the shock solution
- shock solution has higher pressure and higher density
- higher wave speed implies higher pressure and higher density

- a minimum wavespeed exists
— occurs when Rayleigh line tangent to Hugoniot
— occurs for very small pressure changes
— corresponds to a sonic wave speed

— disturbances are acoustic

- if pressure increases, can be shown entropy increases

. ifﬁ%%?c%rle decreases (wave speed less than sonic), entropy decreases; this is non-

Substitute Rayleigh line into Hugoniot to get single equation for p2

pl

=

! 1 2
Piv pub2 = Pt 1 (4.297)
W1 ro. p1
This equation is quadratic in , and factorizable. Use computer algebra to solve and get
two solutions, one ambient o1, = p1 and one shocked solution:
l 2
b o1y-1 ¥ B (4.298)
pr pry+1 (y-1)D 2 p1

The shocked density p2 is plotted against wave speed D for CPIG air in Figure 4.10.

Note

- density solution allows allows all wave speeds 0 < D < oo
- plot range, however, isc1 < D < o
- Rayleigh line and Hugoniot show D > c1

- solution for D = D(vp), to be shown, rigorously shows D > c1
v+l

- strong shock limit: D2 = oo, p2 — V-1

- acoustic limit: D2 = yppu, p2 = p1

- non-physical limit: D2 - 0, p2 = 0
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Strong
Shock
rho2 (kg/m"3) Limit
7
8 Calorically perfect
5 ideal air
4 \ Exact ©=7/5
3 Solution R =287 kJ/(kg K)
2
1
D (n/s)
f:: 1000 1500 2000 2500 3000
D=Dmin=cl

Figure 4.10: Shock density vs. shock wave speed for calorically perfect ideal air

Back substitute into Rayleigh line and mass conservation to solve for the shocked pressure
and the fluid velocity in the shocked wave frame:

2

P2= i oD y%l P1 (4.299)
2y B

w o_ o ¥l — (4.300)
y +1 (y-1)D 2p1

The shocked pressure P2 is plotted against wave speed D for CPIG air in Figure 4.11
including both the exact solution and the solution in the strong shock limit. Note for these
parameters, the results are indistinguishable.

P2 (Pa)
6
8. 10 .
Calorically perfect
6 ideal air
Ambient = ©=17/5
6 100,000 Pa R = 287 kJ/(kg K)

Exact
Solution and
Strong Shock Limit

D (m/s)

o

/
s

D=Dmin=cl

1000 1500 2000 2500 3000

Figure 4.11: Shock pressure vs. shock wave speed for calorically perfect ideal air

The shocked wave frame fluid particle velocity uz is plotted against wave speed D for
CPIG air in Figure 4.12.
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u2 (m/s)
D (m/s)
500 ] 500 00 20 3000
-100
a0l Strong _Calongally perfect
ideal air
Shock -
-300 Limit ©=7/5

o=

R = 287 kJ/(kg K)

-400
Exact ik
-500 Solution
ul=-co
D=Dmin=cl

Figure 4.12: Shock wave frame fluid particle velocity vs. shock wave speed for calorically
perfect ideal air

The shocked wave frame fluid particle velocity M2 = %, is plotted against wave speed
D for CPIG air in Figure 4.13.

M242
Calorically perfect
1 ideal air
Exact ©=7/5
0.8 xac _
R =287 kJ/(kg K
“—Splution (kg K)
0.6
Strong
Shock 0.4
(m/s)

D
0 T5OO 1000 1500 2000 2500 3000

D =Dmin=cl
M2722 =1

Figure 4.13: Mach number squared of shocked fluid particle vs. shock wave speed for calor-
ically perfect ideal air

Exercise: For the conditions shown in the plot of M2z vs. D do the detailed calculations
to demonstrate the plot is correct.

Note in the steady frame that

- The Mach number of the undisturbed flow is (and must be) > 1: supersonic

- The Mach number of the shocked flow is (and must be) < 1: subsonic
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Transform back to the laboratory frame u = v - D:

vw_-D=_p Yt 1t

V2 _p5_p

. . _(y-1)D .
Manipulate the above equation and solve the resultlnquuadratlc equation for D and get

oyl e
D= 4 vt |t 4 (4.303)

Now if v2 > 0, one expects D > 0 so take positive root, also set velocity equal piston
velocity vz = vp

+1 P +1
D = 3’—4 Vo + yp—ll + Vo2 L4 (4.304)

Note:

- acoustic limit: as vp = 0, D — c1; the shock speed approaches the sound speed

vl
L Y
- strong shock limit: as vp — o0, D — p P

The shock speed D is plotted against piston velocity vp for CPIG air in Figure 4.14. Both
the exact solution and strong shock limit are shown.

Calorically perfect

D (m/s) . i
Exact |de_a| /alr
1200 Solution ©=7/5
R =287 kJ/(kg K)
1000 \
800
Strong
Acoustic o084 Shock
Limit 409 Limit
D->cl—mm200
vp (m/s)
200 400 600 800 1000

Figure 4.14: Shock speed vs. piston velocity for calorically perfect ideal air

If the Mach number of the shock is defined as

D

4.305
Ms = C1 ( )
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one gets
y+l v vee y+l ¢
p
4 YRT1 YRT1 4
The shock Mach number Ms is plotted against piston velocity vp for CPIG air in Figure
4.15. Both the exact solution and strong shock limit are shown.
Ms
Exact Calorically perfect
3.5 Solution ideal air
3 ©=7/5
2.5 R = 287 kJ/(kg K)
2 \ Strong
. 1.5 Shock
Acoustic - Limit
Limit, —= !
Ms->1 0.5
40U oUU U VP (m/s)
’ 1000
Figure 4.15: Shock Mach number vs. piston velocity for calorically perfect ideal air
\
Example 4.9
Normal shock problem 2
Given: Air flowing through normal shock. Upstream u1 = 600 % To1=500K, Por = 700 kP a.
Find: Downstream conditions Mz, uz, T2, P2, Poz and s2 - s1..
Assume: calorically perfect ideal gas
Analysis:
First get all local unshocked conditions.
uz1
Tor = Ti+ (4.307)
2Cp
uz1
T1 = Ti- 26 (4.308)
T 600 ?2 (4.309)
1 = - .
>00K 1 1004.5 kgix—
= 320.81K (4.310)
ca = YRTy, (4.311)
14287 : 320.81 K 4.312
= . koK (320. ) (4.312)
m
= 359.0 (4.313)
s

8adopted from White's 9.46, p. 586
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pP1

A1
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I

_ 600ms
359.01ms
- 1671
1 -35
= Po1l+ Mlg ,
1 -35

= (J00kPa)l+ (67 ! ,
= 1481kPa
_ P1
" Rm
_ 1481 kP a

0287 % (320.81K)

k
= 1609 2
ms3

1 2 - o
oML y +1 v Mz

1 2 e
- 14-1

1671 14+1 5 LOE '

= 1311

Now in this case it is fortunate because the incoming velocity D = 600-ms is known. Note that the
shock density only depends on D2, so one can be a little sloppy here with sign. Solve for the shocked

state:

=

p2

=

P2

ly=1_ 1+ 2y

pry +1

1
4—1— 1t
1600 a1

m3

0.2890

1
02890 '

kg
m3

3461

(y-1)D

P1
2 p1

2(1.4) 148,100P a

m2
(14-1)600 s  160Ime

Now a variety of equations can be used to determine the remaining state variables. Mass gives u2:

p2u2 = p1u1l
uz2 = fu '
p2
kg m
1609 . 60 °

3461 ©

ms3

(4.314)
(4.315)
(4.316)

(4.317)

(4.318)
(4.319)

(4.320)

(4.321)

(4.322)

(4.323)

(4.324)

(4.325)

(4.326)

(4.327)

(4.328)

(4.329)

(4.330)

(4.331)
(4.332)

(4.333)
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= 2789

w 3

Momentum gives P2

P2+ p2u22 = Pi1+pruz
P2 = P1+ p1u21 - p2 u22
2
P, = 148100Pa+1609 9 g I K9 g
m3 -3461 ms
P2 =458, 125P a = 458kPa
Remaining assorted variables are straightforward:
P2
T2 = —
p2 R
_ 458,125P a
3461 0 287
= 461.2K
[ YRT2,
= 405 T
s
u2
M2 = ,
c
_ 289 7T
305 ™'
= 0648
1
Toz = T21+ Mag,
1
= 461.2K1+ 0.64g82
= 500K unchanged as required
1 b
Poz = Pal+ Mz ,
1 35
= 458kPal+ 0.6%82
= 6074kPa dropped from unshocked state
_ | iF; P2
s2s-s1 ™ 1 _RIn p
- 10Ms J | 461.2 K J 458 kP a
- ° kgK " 32081K -7 kgK 148.1kP a
~ 3646 - 3240,
J
= 406 ——
kg K
Ly+l
A2 1 2y-1
= I+ Y 1oma

A2 Mz y+1 2

=

97

(4.334)

(4.335)
(4.336)

(4.337)

(4.338)

(4.339)

(4.340)

(4.341)
(4.342)

(4.343)
(4.344)
(4.345)
(4.346)
(4.347)
(4.348)
(4.349)
(4.350)

(4.351)

(4.352)

(4.353)

(4.354)

(4.355)
(4.356)

(4.357)

(4.358)
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1 2 214-1
_ 14-1
0648 14+1 1+ > 0.6482 , (4.359)
= 1.966. (4.360)
Since A2 = A1 = A,
A S 1m
A2 _ AL L4
N AA L6 - 0.667 (4.361)
Note the entropy increased despite not including any entropy-generating mechanisms in this model.
Why? First, the differential equations themselves required the assumption of continuous differentiable
functions. Our shock violates this. When one returns to the more fundamental control volume forms,
it can be shown that the entropy-generating mechanism returns. From a continuum point of view, one
can also show that the neglected terms, that momentum and energy diffusion, actually give rise to a
smeared shock. These mechanisms generate just enough entropy to satisfy the entropy jump which was
just calculated. Just as with Burger's equation and the kinematic wave equation, the jumps are the
same, diffusion simply gives a wave thickness.
\
Example 4.10
Piston Problem
Given: A piston moving at vp = 1, 000-ms is driven into Helium which is at rest in the ambient
state at a pressure of P1 =10 kP a, T1 = 50 K .
Find: The shock speed and post shock state.
Assume: Helium is calorically perfect and ideal
Analysis: For Helium,
y = 1667 (4.362)
J
R = 2077 kgT (4.363)
o = R (4.364)
y-1
16672077 g%
- . (4.365)
1667-1
= .5, 1925 kgT (4.366)
Ambient density
" 4.367
pl - RTI 1 ( . )
_ 10,000 P a , (4.368)

2,077 —+— (50K)
kg K
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k
= 0093 O
m3
ca = YRT1,
= 1.667 2,077 kgT (50 K),
m
= 416.0
s
Now the wave speed D one gets from
2
y+l yP1 y+1
D = 4 Vp + ot + Vp2 4
1667 +1 1.667 (10, 000 P a) 2 1667 +1
- , 1o T o +100 .
> 0.0963 m: >
= 666.7 + 785.8,
= 14525 ™

s
Strong shock limit is appropriate here as a quick check:

1,4525

m
1, 000 . =1,3333

- 1667 =1 (10,000 P a)
s - 1667+1

v+l 1667 + 1
D~ 2 "7 2
P2 = 2 y=1—p
2 - Y +1 p1 D2 - y +1 !
2 kg
T 1667 +1 0.0963 3
= 152,377 - 2, 500,
= 149,877Pa=150kPa
p2u2 = prui
p2(v2-D)  pi(vi-D)
p2(vp-D)  p1(0-D)
p2 = —prb-
Vp — D
kg
_ _ooo3 ™ 1,452.5
1,000 " 1,4525
Kg S
= 0309
ms3
T2 = Piz
p2 R
_ 149,877P a
0309 22 2,077 gk
= 2335K

99

(4.369)

(4.370)

(4.371)

(4.372)

(4.373)

(4.374)

(4.375)
(4.376)

4.377)

(4.378)

(4.379)

(4.380
(4.381
(4.382
(4.383
(4.384

D = — =

(4.385)

(4.386)

(4.387)

(4.388)

(4.389)

(4.390)
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43.6 Acoustic limit

Consider that state 2 is a small perturbation of state 1 so that

p2=p1+ Ap (4.391)
uz = u1 + Aul (4.392)
P> =P1+ AP (4.393)

Substituting into the normal shock equations, one gets

(p1 + Ap) (U1 + Au) = p1uz (4.394)

(p1 + Ap) (u1 + Au)2 + (P1 + AP) = piu1z2 + P1 (4.395)
P1 + AP 1 P 1

R Cur e = =g (4.396)

y-1p1+Ap y-1p1
Expanding, one gets

piui + U1 (Ap) + p1 (Au) + (Ap) (Au) = piu1
piU1 2 4 2p1u1 (Au) + ua (&p) + p1 (Au)2 + 2u1 (Au) (Ap) + (Ap) (Au)2
+ (P1+ AP) = piui2 + P1

vkl B 12 + 21 (Au) + (Au)2
y-1 ol } AP -p2Qp + ..+
yP1
= +
y-1lp
Subtracting the base state and eliminating products of small quantities yields
ui (Ap) + p1 (Au) =0 (4.397)
2p1u1 (Au) + u12 (Ap) + AP =0 (4.398)
y 1 P
yj } AP - p2Ap + u1 (Au) =0 (4.399)
In matrix form this is
u1 p1 0 Ap 0
ui2 2p1u1 1 (4.400)
— — w AP 0
. Ty-ylPert v-lpt  « « Ay -+ = - 0 -

As the right hand side is zero, the determinant must be zero and there must be a linear
dependency of the solution. First check the determinant:

NE -
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2
ut ! u-u -p1 ! u£+y - =0
y 21 y-1lpt y-1 pa1
u1 1 Ui+ P1 0
- 12 =
L @y-(-1)- YE2TY o
y-1 -1 b
_1 —
ur2(y+1)-yuiz2+vy p1 =0
P1
U12:v = C21
p1

So the velocity is necessarily sonic for a small disturbance!

Take Au to be known and solve a resulting 2 x 2 system:

0
i B | AAE = -~pidu
I A LSS W -uiAu
Solving yields
p1Au
Ap = - PL
p1
P
AP = —p1 I, B

437 Non-Ideal Gas Solutions

Non-ideal effects are important

- near the critical point

- for strong shocks

Some other points:

- qualitative trends the same as for ideal gases

- analysis is much more algebraically complicated

- extraneous solutions often arise which must be discarded

101

(4.401)

(4.402)

(4.403)

(4.404)

(4.405)

(4.4006)

(4.407)
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|
Example 4.11

Shock in van der Waals gas
Given: Shock wave D = 500 ', propagating into N2atrestatT1 = 125K, P1=2MPa.
Find: Shocked state
Assume: van der Waals equation of state accurately models gas behavior, specific heat constant.
Analysis:
First, some data for N2 are needed. At P1 = 2 M P a, N2 has a boiling point of 115.5 K, so
the material is in the gas phase but very near the vapor dome. R = 296.8 kgik , ¢v = 744.8%giK ,

Te=126.2K, Pc = 3,390, 000 P a.

Since the material is near the vapor dome, the van der Waals equation may give a good first
correction for non-ideal effects.

RT a
P = (4.408)
- V2
VR b
P = 3 . (4.409)
P -b
T
P (4.410)
1-bp P

As derived earlier, the corresponding caloric equation of state is
T

] 1
e(T,v) =eo + o (THdT™ + a \' ; (4.411)
3 e

Taking cv constant and exchanging v for p gives

eM,p)=eo+cv(T-To)+a(po-p) (4412)
Eliminating T in favor of P then gives
= + =
e(P,p)=eo+cv Lapl(l—bQPPR “To +al(po-p) (4.413)
and in terms of h = e + P/p:
h(P, p) = P+app(1-bp) B (4.414)
(,p)—eo+Cv pR -To +a(po—p)+ p :
and hz - h1 allows cancellation of the “0" state so that
P2 + ap22 (1 — bp2) P1+ap2 (1 — bpi1) B B (4.415)

ha-hi1=c p2R - p1R —a(p2-p1)+ p - p1
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The constants a and b are fixed so that an isotherm passing through the critical point, P = P¢, T =

Tc, passes through withopt @0 andoave. = 0 A standard analysis 9 yields
a = 4RIz (4.416)
64 Pc
J 2 2
2729681k (1262K)
= , (4.417)
- g oM 4418
- ' kg2 1418)
b = Bk (4.419)
8P
2968 g (1262K)
- 8(3,390,000Pa) ' (4.420)
000138 - 4421
) s
Find the ambient density.
p12968 (g (125K) Pams
2,000,000 Pa = — _1746 kgr pa1 (4.422)
1-000138 K P!
Three solutions (from computer algebra):
kg
p1 = 69.0926 ms physical (4.423)
. kg .
p1 = (327773 + 112702 i) non-physical (4.424)
ms3
. kg .
p1 = (327773 + 112702 i) s non-physical (4.425)
f ?st%urlc;;]crnd 2 fro y5| S SIS ltﬁe7\}a2n8crre? W%gf')srp?eg o OF aOgPéZ\]fzcgnt %’pr%%grﬁgﬁwgvtgre
i = RTu = 12 m — 0,
vgr%dvsﬁkgc Slsl?%g\("glvceng here Sre mﬁg OOBe%%% 53d9 rlnoke chrr%hca%%:{ equa |g%)s/2) szt%te c}rém
materials near the vapor dome.
Now use the Rayleigh line and Hugoniot equations to solve for the shocked density:
1
P2 = Pi1+paD:2
p2
P 1 P1
v 2 +ap22 (1 - bp2) P1+ ap21 (1 — bp1)
p2R - p1R —a(Pz-p1)+ @ - p1
1 L 1 0
- 2 (P2-P1) o ‘ p1 -

9Sonntag and Van Wylen, 1991, Introduction to Thermodynamics: Classical and Statistical, John Wiley:
New York, p. 392
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Plugging in all the numbers into a computer algebra program yields the following solutions for p2:

kg .
p2 = 195309 m shocked solution
k
p2 = 69.0926 « inert solution
m3
p2 = (8574 +65791) kg non-physical solution
ms3
= kg hysical soluti
P2 = 8574-65790) ms non-physical solution
The Rayleigh line then gives the pressure:
kg ° m 2 1 1
P2 = 2,000, 000Pa+ 69.0926 500 : .
ms3 s 69.0926  ° 195309 ¢
P2 = 13,162,593Pa=132MPa
The state equation gives the temperature.
T = P2 + ap22 (1 — bp2)
p2R
2
P ams ki m3 ka
13,162,593 Pa + 174.6 T 1953 kg 1-000138 & 1953 o
= . )
1953 2 2%8 oK
=2498K

Note the temperature is still quite low relative to standard atmospheric conditions; it is unlikely at

these low temperatures that any effects due to vibrational relaxation or dissociation will be important.

Our assumption of constant specific heat is probably pretty good.

The mass equation gives the shocked particle velocity:

p2u2 = piruL
uz P1 U1l
P2
69.0926 © S0 ™
- 1953 @
ms3
m
= 17689
S

An ideal gas approximation (yn. = 1.4) would have yielded

1 2 P1
< - ly-1 4, Y H
p2 pry+1 (y-1)D 2p1
1 1 214 2,000,000 P a
oo wa & 14+1 O e

: At . 53.91 mkgs

- (14-1)500 * me

p2 = 15865 I;g ideal gas approximation

= 18.8%

relative error =
195.3

(4.426)
(4.427)

(4.428)

(4.429)

(4.430)

(4.431)

(4.432)

(4.433)

(4.434)

(4.435)
(4.436)

(4.437)

(4.438)

(4.439)

(4.440)

(4.441)

4.442)
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The Rayleigh line then gives the pressure:

kg m 2 1 1
P = 2,000,000Pa+5391 500 . 3 (4.443)
m3 S 53.91 nﬂ © 158.65 n;%
P, = 10,897,783 Pa=1090MPa (4.444)
relative error = 132-109 =174% (4.445)

13.2

44  Flow with Area Change and Normal Shocks

This section will consider flow from a reservoir with the fluid at stagnation conditions to a
constant pressure environment. The pressure of the environment is commonly known as the

back pressure: Po.

Generic problem: Given A(x), stagnation conditions and Py, find the pressure, tempera-
ture, density at all points in the duct and the mass flow rate.

44.1 Converging Nozzle

A converging nozzle operating at several different values of Ps is sketched in Figure 4.16.
The flow through the duct can be solved using the following procedure

- check if Po > P«
- if so, set Pe = Pp

- determine Me from isentropic flow relations

4 relation

- determine A- from A

AA and then invert AA relation to

. ah%aylgcoépMn the flow where A is known, compute
Note:

- These flows are subsonic throughout and correspond to points a and b in Figure 4.16.

. Ifcplbn:FiB*utr%eﬂltE.e flow is sonic at the exit and just choked. This corresponds to point

TG tan tedlosh ShpkRRS SR et Al et gs to expand outside
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a
0 } } Pb/Po

P*/Po 1

P(X)/Po

1 -
a--subsonic exit
b--subsonic exit

P*/Po c--sonic exit
\ d--choked, external expansion

e--choked, external expansion

xe

Figure 4.16: Converging nozzle sketch

442 Converging-Diverging Nozzle

A converging-diverging nozzle operating at several different values of Ps is sketched in Figure
4.17.

The flow through the duct can be solved using the a very similar following procedure

- set At = A

- with this assumption, calculate A

. . . relation
- determine Mesub, Mesup, both supersonic and subsonic, from

- determine Pesub, Pesup, from Mesub, Mesup; these are the supersonic and subsonic design

- if Pb > Pesub, the flow is subsonic thr hout and the throat is nhot sonic. Use same .
procedetjure as for converging 5uct:%J<eq(erm|ne E/Ierby setting Pe = Po and using isentropic

relations

* if Pesub > Pb > Pesup, the procedure is complicated

— estimate the pressure with a normal shock at the end of the duct, Pesh

— If Po > Pesh, there is a normal shock inside the duct

—If Po < Pesh, the duct flow is shockless, and there may be compression outside the
duct
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Pb
Po — Pt Pe
= possible
normal
shock
P(X)/Po
1 a--subsonic exit
—__/______—— b--subsonic exit
c--subsonic design
d--shock in duct
*
P*/Po . | e-shock at end of duct
Sonic f--external compression
Throat -
—— g--supersonic design
| h--external expansion
T X
Xt Xe
m/Mmax
hgfe d c
1

P*/Po 1 Pb/Po

Figure 4.17: Converging-diverging nozzle sketch

- if Pesup = Pb the flow is at supersonic design conditions and the flow is shockless

- if Pb < Pesup, the flow in the duct is isentropic and there is expansion outside the duct

|
Example 4.12

Nozzle Problem 1°

Given: Air at To = 600 K flowing through converging-diverging nozzle. At = 1 cm2, Ae = 3 cmz,
K
m’ = 148.5 nr . Pitot tube at exit plane gives Poe = 200 kP a, Pe = 191.5 kP a.

Find: exit velocity, location of possible normal shock in duct, Mach number just upstream of normal

shock

19 adopted from White's 9.69, p. 588

107
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Assume: Air is calorically perfect and ideal

Analysis:

m = 148.5

kg h k
| ;9 (4.446)

hr36o0s - 042

Now if there is no shock, the stagnation pressure would be constant in the duct; one can use the choked
flow formula to compare to the actual mass flow rate:

e O 2 RTo A (4.447)
Me” RTe  y+1 YRl A '
200.000P 2 2 ad 14287 (600K) 1 tm (4.448)
= R —_ cmz2 X
287 JK (600 K) 14+1 kg K 100 cm
9
kg
= 200, 000 x 165 x 10-s = 0.033 . (4449)
Now the actual mass flow is higher than this, so the stagnation pressure upstream must also be higher;
therefore, there must be a shock in the duct which lowers the stagnation pressure. Use this equation
to determine what the upstream stagnation pressure must be.
kg kg1
0.04125 — Po1 x 165 x 109 <Pa (4.450)
Po1 = 250 kP a (4.451)
So
Poy 200kPa
by L 250kPa - 0.800 (4.452)
The flow conditions could be deduced from this; one can also utilize the normal shock tables for
air. These are valid only for a calorically perfect ideal air. Interpolating this table yields
M1 ~ 1.83 (4453)
(4.454)
M2 ~ 0.61
The area ratio is determined from the isentropic flow tables. Recall that A« changes through a
shock, so in this case one wants to use conditions upstream of the shock. From the tables at M1 = 1.83
one finds aa. = 1.4723 so,
(4.455)

A1=14723 x 1 cm2 = 14723 cm2

Get the exit velocity. Even if there is a shock, the stagnation temperature is constant; thus, one
has from energy conservation:
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he + Qf = ho (4.456)
Ue = 2 the - he (4.457)
= (4.458)
2Cp (To - Te)
= Te 4.459
- 2Cp Tol - To ( ’ )
= B 4.460
= 2Cp To 1- Poc ( . )
191.5kPa
= 210045 oK (600K)1- 200 kP a (4.461)
= 1219 (4.462)
4.5 Flow with Friction—-Fanno Flow
Wall friction is typically considered by modelling the wall shear as a constant. Wall friction
is usually correlated with what is known as the Darcy friction factor: f, where
_ S (4.463)
f= pu
Now in practice f is related to the local flow Reynolds number based on pipe diameter
D: Rep
puD
Reo= (4.464)
and roughness of the duct = where s the average surface roughness.
f=fR — 4.465
en, 5 ( )
For steady laminar duct flow, the friction factor is independent of . It turns out the
Poiseuille flow solution gives the friction factor, which turns out to be
64
= (4.466)

Rep
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If the flow is steady and turbulent, the friction factor is described by the following em-
pirical formula known as the Colebrook equation:

1 /D 251

fin =-20logw 37 i Reof 12 (4.467)

Often one needs to iterate to find f for turbulent flows. Alternatively, one can use the
Moody chart to estimate f. This is simply a graphical representation of the Colebrook
formula. Most fluid texts will contain a Moody chart. While in principle f varies with a
host of variables, in practice in a particular problem, it is often estimated as a constant.

To get a grasp on the effects of wall friction, consider a special case of generalized one-

dimensional flow:
- steady
- one-dimensional
- adiabatic
- constant area duct
- Darcy friction model

- calorically perfect ideal gas
Our equations from the section on influence coefficients

d 1 i+ Twl K
_Q _ L —pUZ + TwL + n..ajl 0
dx ~ A (2 c) (4.468)
I (Qw+Twu)l
du 1 copudx — utwl - ﬁl .
i« - A pont (4.469)
p (U2 - c2)
dpP 1 —Copu2df+ Cotul + & o
dx = A por | (4.470)
(U2 = c2)
reduce to
QQ 1+ pael
dx - J;XITU*«H% (4.471)
2 —C2)
du 1 +peet —
& _ utwk el 4.472)
A p (u2 - C2)
dp “rrl
o = :FKITu;L (4.473)

2 —C2)
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Now for a circular duct

L o (4.474)
A =T (4.475)
L2 4 4.476
Ay mr?2 r D (4476)
For a calorically perfect ideal gas
1P
o (4.477)
-1
Oe Y l_f
—_— (4.478)
oP
_ v-1lp
! P — (4.479)
%_% y-1
1 (4.480)
P =y-1
p
1
de
op
p
1
1+ 5 =y (4.481)
oPp
So making these substitutions yields D (uz - ¢2)
d w
@ _ A4Tp oYy, - o) (4.482)
dx
d w
" W, Yoy) (4.483)
dx =-
dP
T FhAwae+u(y-1) (4.484)
dx D
Substituting for tw gives 2 - Q)
d f
€ _ TPV ) (4.485)
dx 2D (u
du f puau Y
T B - 4.486
dx =-2Dp(u vz — 2 ( )
dP
=fpuzco+u2(y - 1) (4.487)
dx 2D
Rearranging to place in terms of M2 gives
f pM
do_ fpM:z 'y (4.488)

dx oM
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du fMau vy
dx =-2D(M
dpP

== =fpuwl+M2(y-1)
2D

Now with the definition of M2 for the calorically perfect ideal gas, one gets

_ pu2
M2 = VP
dM: ~ uzdp 2oudu puz_dP
dx  yPdx | yPdx - yP2dx
wfpMz y 20u  fMau
= +
Y YP
_ f
- - M
4 —
= DM ¢
yf M4
_ o
) 2
f
M
4
Y
So rearranging gives
dx
1-M2)dM =f —
( 2) dM2 fD

Yy (M2)21+ Ma2y-21

(4.489)

(4.490)

yP22D

(4.491)

Integrate this expression from x = 0 to x = L« where L. is defined as the length at which

the flow becomes sonic, so M2 = 1 at x = L.

: 1-M"2dM"; © dx
2 = f
M2 M“ 0 D
y M2 2
An analytic solution for this integral is
1 _ M ' 1Lv_ (1 + V) M 2 f L

Example 4.13

(4.492)

(4.493)



Flow in a duct with friction u

" from White, 9.82, p. 589

2—-1)
(M2 - 1)
puzfpurl+Mofy=1)
WD M:-1) DM:2-1) (M2 - 1)
vEMal+Mo(y—1)
2D (M2 - 1) (M2 -1)

2D (M2 - 1)
yfM

2—-1)
1+M2 y—1
D(1-M

1-2-1-M2(y-1)

1+M"2

y=1

2(y-1)
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Given: Air flowing in pipe D =

Find: Exit pressure P2, m’

Lin, L =20ft, P1 =40 psia, u1 = 200 f

Assume: calorically perfect ideal gas, Darcy friction factor models wall shear, constant viscosity

Analysis: First get the mass flow rate.

pr =

pr =

Now compute the friction factor. First for cast iron pipes, one has surface roughness = 0.00085 f t, so

(=]

P1
RT1
40 144 —
53.34 lbm (520 R)
0.2077
fts
p1 U1Az,
2
piur T E
02077 M R linlft
' fta s " 212in
lbm
0.2266 .

0.00085 ft 12 in

lin  1f 00102

The Reynolds number is needed, which involves the viscosity. For air at 520 R, u ~ 4.08 x 10-7

p1 uiD
Rep : u =

.08 x 10-7 bft
Since Rep >> 2, 300, the flow is turbuzrent ancPo7netr§eeds to use th

Darcy friction factor:

fi2

1
ft

WM B _12ft = 263,739
32

17 1ot
£t/ bmfat

£
T

slbf

_ /D 251
~  -20logwo 37 Rep f1/2
0.0102 251

-2.0 log1o 3.7 263, 739f 1,2

Now reading the Moody chart gives f = 0.04. A numerical trial and error solution of the Colebrook

equation gives

f=0.0384

f Ti=520R

e Colebrook formula to estimate the

113

(4.496)

(4.497)

(4.498)

(4.499)

(4.500)

(4.501)

Ibf s
ft

(4.502)

(4.503)

(4.504)

(4.505)
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Now find M1 .

M u1i
A F

ft
n o

ftlbf lbm ft
145334 [ 317 Pmito(530R)

= 01789

Now
f L. _ 1-M N 4y (L+y)M
b yMu2 Yy s Mo (y - 1)

- 1-01789 1+14 (1+14)0.17892

14(0.1789) , 4+ 2(14)In2 +0.1789% (1.4 - 1)
= 18804
L. . 188041 ft
vz 00384
= 4081ft

so at a distance 40.81 f t from station 1, the flow will go sonic. It is needed to find M2 at a station
20 f t from station 1. So

Lo = 4081ft-20ft,
= 2081ft
f Lo« _ 0.0384 (20.81 f 1)
D 112 ft '
- 9.589
9589 = 1-M 1+14 1+ 14) M2

W 214 n2+M2014-1)
1

Iterative solution gives

M2 = 0.237925

Since energy conservation holds in this flow

u22 u21
h2 + ) = hi+ 5
T+ Y42 - 4 Uz
2Cp 2Cp
200
ft
T+ Y2 - 520R+ 26,015 °
2Cp ft2
s2R
T+ Y2 - 52333R
2Cp
Te MARL o o0a3p

(4.506)

(4.507)

(4.508)

(4.512)
(4.513)

(4.514)
(4.515)

(4.516)
(4.517)

(4.518)

(4.519)

(4.520)

(4.521)

(4.522)

(4.523)

(4.524)

(4.509)

(4.510)

(4.511)
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T21+ @Y;219*M22 =

T2 =

uz2 =

p2u2 =

pz2 =

P2 =

S2 —S1

4.6

Flow with heat transfer is commonly known as Rayleigh flow. To isolate the effect of heat

52333R

52333 R

(y-1)
1+ > M2

52333 R
1+ 7 0237925
517.47 R

M2 yRT2,

0.237925

141,715 (51747 R)

ft
265.2
s

p1 U1

200 "

02077
fts 265.2 fst

0.1566

p2 RT2,
lbm ftIbf
fo ¥ pmr
30.02 psia
I P2
I -Rln p;

ft2 . 51747R ft2
6,01525R -1,715s2R

0.1566 (517.47 R)

Gpln

ft °
4629 26 R

Flow with Heat Transfer—Rayleigh Flow

transfer, the following assumptions will be adopted:

- constant area duct
- no wall friction

- calorically perfect ideal gas

ft 2
144 in2

30.02 psia
40 psia

115

(4.525)

(4.526)

(4.527)

(4.528)
(4.529)

(4.530)

(4.531)
(4.532)
(4.533)

(4.534)

(4.535)
(4.536)

(4.537)
(4.538)

(4.539)

(4.540)

(4.541)
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Consequences of heat addition:

- stagnation temperature changes

- heating drives both subsonic and supersonic flows towards sonic states

- cooling drives both subsonic and supersonic flows away from sonic state
- heating increases To, decreases Po, both subsonic and supersonic

- cooling decreases To, increases Po, both subsonic and supersonic
The governing equations are

p2U2 = piu1
pun  + P2 =piD2 + P1

uz u2
p2u2A h2 + 2 > =piwutAhi + 1 2+ qull
P Po
h = v - B - + ho
y-1 F Po

(4.542)
(4.543)

(4.544)

(4.545)

Note that these are a more general case of the equations for a normal shock. One could
get equivalents of Rayleigh lines and Hugoniots. The Rayleigh line would be the same as the
equations are the same; the Hugoniot would be modified because of the heat transfer term.

If one defines the heat transfer per unit mass of flow q in terms of the wall heat flux qu:

_ guwlkl—
4= piuA
the energy equation becomes
hy + % =h1 + ui; +q
ho2 = ho1 + q
9 = ho2 — ho1
9

Cp = T02 - Tol

(4.546)

(4.547)

(4.548)
(4.549)

(4.550)

With lots of effort very similar to that used for the normal shock equations, expressions can

be developed relating the "2" state to the "1” state. If one takes the final "2" state to be

%%wgc% Ge*aﬁagstnwea!tmt'al 1" state to be unsubscripted, it is found for the calorically
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T
= - (4.551)
Tos (1 +yM2)2
\
Example 4.14
Heat Addition Problem 12
Given: Fuel air mixture enters combustion chamber at u1 = 250 L‘s , P1=20psia, T1 = 70- F . The
mixture releases 400 Btupm-
Find: Exit properties uz, P2, T2, heat addition to cause flow to go sonic at exit
Assume: Fuel air mixture behaves just like calorically perfect ideal air
Analysis:
Initial state
T1 70 + 460, (4.552)
530R (4.553)
c1 YRTy, (4.554)
ft
141,716 ——— (530R), (4.555)
s2R
1,1284 (4.556)
ui
M1 , (4.557)
a
250 "
s, (4.558)
1,1284
0.2216 (4.559)
P1
4.560
ot RT: (4.260)
Ibf lbm f t2 in2
0 in2 32.17 g 144 -
2 ' (4.561)
1, 716smr (530 R)
lbm
0.1019 (4.562)
fts
1
To1 Til+ Ml%, (4.563)
1
(530R) 1 + 0.22;[62 , (4.564)
535.2R (4.565)
1 b
Po1 P11+ M1§ . (4.566)

1

2adopted from White, pp. 557-558
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= (20 psia) 1 + 0.22%162 ,

= 20.70 psia

Now calculate To«, the stagnation temperature corresponding to sonic flow

Tox

YEDMZe My
(1+yMa2)
(14 + 1) 0.22162 2+ (14 - 1)0.22162

(1 +(1.4)(0.22162))

0.2084
To1
02084 '
5352 R
0.2084
25683 R

Now calculate the effect of heat addition:

To2

To2
Tox

To2
Tox

0.8573

= 2+ (v —
A §

Btu ft lbf lbm f t
= 0 e P ey 20 ofss
ft2
= 10024 x106 o,
= To1+ g,
Cp

fo

- 5352+ 10024x105 ¢

6, 015 o2

= 2,201L7R

2,2017R
2,5633R '

= 08573

Y+ 1) Mz 1) M22

(1+yM22)

= @QA+D M2+ @4-DMa

(1+14M22)

Computer algebra gives four solutions. For a continuous variation of M, choose the positive subsonic
branch. Other branches do have physical meaning.

relevant branch M2 = 0.6380
M2 = 06380
M2 = 1710
M2 = 1710

Calculate other variables at state 2:

1
T2 = T021+M25 '

(4.567)

(4.568)

(4.569)

(4.570)
(4.571)

(4.572)

(4.573)

(4.574)

(4.575)

(4.576)

(4.577)

(4.578)
(4.579)
(4.580)
(4.581)

(4.582)

(4.583)

(4.584
(4.585
(4.586
(4.587

—_— = =

(4.588)
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C2

uz2

p2 u2

p2

P2

l
(2,201.7R) 1 + g 0.63802 ,

2,036 R
YRT2,

141,71 fu 2
41,716 SR (2,036 R),

ft
2,2116
s

Macz,

ft
(0.6380) 2, 211.6 _s .

ft
1,411
S
p1 UL
lom 250 "
0.1019 s
fts 1, 411 tst
lbm
0.01806
fts
p2 RT2
lbm ft 2 1 Ibfs ? ft ?
001806 ¢ 176 SR~ 3p17bmft @ 030R g,
13.62 psia

Is momentum satisfied?

13.62

Entropy Change

S2 —S1

bf
in2

0

P2 + p2u22 = P1 + p1rua

144 in> 0.01806 Ibm ”m ft 2 1 Ibfs2
fo fs ' s 3217 lbm ft
Ibf 144 in> 01019 Ibm " ft 2 1 Ibfs2
in2 fo 7 fts s 3217 lbm ft
Ibf Ibf
3,078.97 =3077.97 close!
fto ft2
| i P2
My -RIn py
fto | 2036R fto 13.62 psia
_ " In _ " In )
6,015 R 530R  -1,716s2R 20 psia
8, 095.38 - (-659.28),
ft
8,754.66 2o R
ft 1 Btu 1 Ibfs2

8,754.66 25 R 779 f t Ibf 32.17 lbm ft
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(4.589)

(4.590)
(4.591)

(4.592)
(4.593)
(4.594)

(4.595)

(4.596)
(4.597)
(4.598)

(4.599)

(4.600)
(4.601)

(4.602)
(4.603)

(4.604)

(4.605)
(4.606)

(4.607)

(4.608)
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Btu

= (.3493 bm R (4.609)
Second Law
9
s2-s1 =2 T (4610
03493 B 400 sgin- (4.611)
lbmR 2 2,036R
03493 _BW 01965 oW yes! (4612)
lbmR 2 lbm R
maximum heat release
Qmax = cp (To* _ TF12 . . b . (4.613)
t Btu s
= 601 o ) 5683R-5352R)  779ftlbf  32171bmft (4.614)
Btu
Qmax = 488 (4615)
lbm
4.7  Numerical Solution of The Shock Tube Problem
A detailed development is given in lecture for the numerical solution to the Riemann or
shock tube problem. The equations are first posed in the general conservative form:
by _
N i (f(q) =0. (4.616)
Here q and f vector functions of length N = 3; further f is itself a function of g. The
equations are discretized so that
4.617
q, t) = ani, ( )
(4.618)
f(qx, t) = f (gni).
47.1 One-Step Techniques
A brief discussion of finite difference techniques is given in lecture. The most tempting
technique is a first order forward difference in time, central difference in space technique
which yields the finite difference relation:
At
(4.619)

gri+1=qni— 2Ax f(qgni+1) — f(gni-1) .
Unfortunately this method is unstable.
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4.7.2  Lax-Friedrichs Technique

A robustly stable first order method is found int the Lax-Friedrichs method.

1 At
Gni+1 = 2 Qni-1 + Qni+1 — 2Ax f(C]ni+1) - f(qm—l) . (4620)
4.7.3  Lax-Wendroff Technique
The two-step Lax-Wendroff discretization is as follows
- at a given time step estimate q at the i + 1/2 cell interface:
1
Qgni+1/2 = E Qgni + Qni+1, (4621)
n+1/2
- usecenal differencing (about i + 1/2) to step forward At/2 so that gi+1/2 can be
At/2
n+1/2
4.622
Qi+1/2 = Qni+1/2 = Ax  f(gni+1) = f (gni) . ( )
. u%e+ci?5r§{é:l6fsf:erencmg (about i) to step forward At, evaluating f at the i £ 1/2 and
At n+1/2 n+1/2 (4623)

gi+1=0ni—  Ax  f(qgi+12) - f(gi-12) .
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Chapter 5

Steady Supersonic Two-Dimensional
Flow

Suggested Reading:

Liepmann and Roshko, Chapter 4: pp. 84-123
Hughes and Brighton, Chapter 8: pp. 208-230
Shapiro, Chapters 9-16: pp. 265-609

White, Chapter 9: pp. 559-581

This chapter will discuss two-dimensional flow of a compressible fluid. The following
topics will be covered:

- presentation of isentropic two-dimensional flow equations
- oblique shocks
- Prandtl-Meyer rarefactions

- flow over an airfoil
Assume for this chapter:

ﬁt = 0; steady flow
-w = 0,420 = 0; two-dimensional flow
- no viscous stress or heat conduction, so isentropic except through shocks
- calorically perfect ideal gas

123
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5.1 Two-Dimensional Equations

With the assumptions of above the following equations govern the flow away from shock
discontinuities:

5.1.1 Conservative Form

ai<pu)+ 0;(pv)=o (5.1)
i puz + P + t—(puv) =0 (5.2)
ox ] ’
ﬂ 9 P=0
axf(pVU)+ By pv2 + F = (5.3)
0 1 P o) 1 P
67 pue + ) uz + vz + 0 4 @ pve + ) uz2 + v2 + 0 =0 (5.4)
1P
e ——  +eo (5.5)
y-1p
5.1.2 Non-Conservative Form
ug'!; +y gs +p Z‘i : g_; =0 (5.6)
du du apP
pu N +y dy t N =0 (5.7)
o ov apP
pu N +y dy t y =0 (5.8)
de de du ov
pu N +y dy +P N t dy =0 (5.9)
1p
ez ——  +eo (5.10)
y-1p

5.2 Mach Waves

Mach waves are small acoustic disturbances in a flow field. Recall that small disturbances

propagate at the ambient sound speed. Let's consider a small sphere moving at u1 through
a fluid with ambient sound speed co.

- U1 < Co, subsonic flow, sphere does not catch acoustic waves

- U1 = Co, sonic flow, upstream flow always unaware of sphere
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- u1 > Co, supersonic flow, larger region still unaware of sphere
Consider that in time At, the sphere will move uiAt and the wave will propagate will be

felt by a circle with radius coAt, see Figure 5.1

collt c ollt
ul<co ul=co
. sonic
subsonic flow
flow S
\
u_1rt
u_l1r0it Mach wave
® = arcsin (1/M_1)
zone of silence
ul>co
supersonic
flow

Figure 5.1: Acoustic disturbance sketch

From the geometry,

ColAt (o 1
sinf= - = = = — 5.11
in u1At u M1 ( )
1
=arcsin —— 5.12
B [ M (5.12)

5.3  Oblique Shock Waves

An oblique shock is a shock which is not normal to the incoming flow field. It can be shown
that in the limiting case as the oblique shock strength goes to zero, the oblique shock wave

becomes a Mach wave, as described in the previous section.

Oblique waves can be understood by considering the following problem.
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Given:

- a straight wedge inclined at angle 6 to the horizontal

- a freestream flow parallel to the horizontal with known velocity v =u1i + 0]
- known freestream pressure and density of P1 and p1

. Stob
Find:

eaﬁl(gJéo;%gzkas)calorlcally perfect ideal gas (this can be relaxed and one can still find

- angle of shock inclination f3

- downstream pressure and density P2, p2
Similar to the piston problem, the oblique shock problem is easiest analyzed if we instead
consider

- B as known

- B as unknown
They are best modeled in a two-dimensional coordinate system with axes parallel and
perpendicular to the shock, see Figure 5.2, so that

x=X"sinB +y cosf (5.13)

y=-x"cos B +y sinp (>.14)
u=u"sinpB + Vv cos P (5.15)

v=-u"cosP+Vvsinp (5.16)

Consequently, in this coordinate system, the freestream is two-dimensional.
It is easily shown that the equations of motion are invariant under a rotation of axes, so
that

ﬂ t
—pEuU)+ —(Ev)=0 (5.17)

0 e P u s
— PuU2+F+ dy.—(puv):O (5.18)

0X
i } 0 -
—(vu)+ — PV2+P=0 (5.19)
b oy
9 ~ lu~2+v~2+ E u2+v2+ P =0 520
5 PUer ; toas Vet o = (5.20)
1P
e= ——  +eo (5.21)
y-1p

To analyze oblique shocks, we make one additional assumption
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oblique shock wave

tan® = 5_17 v 1

V1 Ut
p1 '
® -
1
- u 1

tan (® ) = 27v_2
~u 2

y 2
unshocked shocked
freestream flow

(supersonic)

Figure 5.2: Oblique Shock Schematic

i =0

Note however that, contrary to one-dimensional flow we will not enforce v© = 0, so
v =0

Consequently, all variables are a function of x™ at most and 9 - 4 The governing
equations reduce to

dXf—(pu”) -0 (5.22)
4 oumep=o0 (5.23)
dx
d%(pv"u") =0 (5.24)
I
. 1 .. P
_ pue+ u2+v2+ =0 (5.25)
d P
1P
er ——  4eo (5.26)
y-1p

Integrate and apply freestream conditions

p2uT2 = puT1 (5.27)
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p2uT22 + P2 = piu™21 + P1 (5.28)
pP2v2uT2 = p1vIu1 (5.29)
. 1. P2 . 1. P
p2u2 ez + 5 Un+va+ 0 =pw1 e+ 5 Uuan+vn+ o1 (5.30)
1P
ez —— 4 g (5.31)
y-1p

Now using the mass equation, the y” momentum equation reduces to

V2=V (5.32)

Using this result and the mass a state equations gives

p2u2 = p1UT1 (5.33)
pn  + P2=piu"21 + P1 (5.34)
1 1 P 1P 1 p
= oagme o wgme (5.35)
f p1

y-1p: y-1lp
These are exactly the equations which describe a normal shock jump. All our old results
apply in this coordinate system with the additional stipulation that the component of velocity
tangent to the shock is constant.

Recall our solution for one-dimensional shocks in a calorically perfect ideal gas:

l 2
b o1y-1 ¥ B (5.36)
pr pry+1 (y-1)D 2 p1
For this problem D = u™ so
l
S .o1ly-1 h-44ﬂ£%7 (5.37)
o pry+1 (v -1 utpn

With the freestream Mach number normal to the wave defined as

u 1

_ (5.38)
M = y_Ppll

we get

oyl (5.39)
S (y = 1) Mzzn
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and since from mass

2

Siy-1 o1 S (5.40)
. v+l (y = 1) Mi2n
Now for our geometry
ul
tanp= " (5.41)
V1
] u—
o= 5.42
tan(B-0)= | o (542)
so - = tan(B-=8) (5.43)
1 tan B
thus
2
tanf-6) . y=-1 1+ = (5.44)
tan B y +1 (v = 1) Mazn
Now note that
Miz2n = M12 sinz (5.45)
SO
2
%aﬂH = v—TJr 1+ (5.46)
an B v (Y- 1)2M12 sin2 3
tan(B=0)=y=1(¢y -1 MisinoB+2 (5.47)
tan B y +1

(y = 1) M1z sin2

WﬁMﬂém%@% (5.48)
tan (B -6) =tan B (y + 1) M1sinZp

tanB-tan@ — =tanp (y=1)Musin2B+2 (5.49)
1+tanBtanf (y + 1) Mz sin2 B =X

(5.50)

tanp -tan B = x + x tan B tan p cc1

tan B - x =tan 6 (1 + x tan B) .51)

tan 6 = tanP—x— (5.52)

1+yxtanp
With a little more algebra and trigonometry this reduces to

tan B = 2cotp — Mu2sinef-1 (5.53)
Mi2 (y + cos 2B) + 2
Given My, y and B, this equation can be solved to find 6 the wedge angle. It can be inverted
to form an equation cubic in sin 3 to solve explicitly for . Figure 5.3 gives a plot of oblique
shock angle 3 versus wedge angle 6.
Note the following features:
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strong branch
(post-shock subsonic)

90

08

2nd Law
Violation

60

06

Maximum wedge
angle for attached
oblique shock

®

— F

o

05

C7

1=

Expanded View of ®\ plane

=
=

weak branch
(post shock supersonic, primarily)

©=17/5
oK

Iae)
o

30

02

o
o

50

<
=

40

01

0 10 20

'
o~
o

Figure 5.3: Shock angle B versus wedge angle 6

- for a given O < Bmax, there exist two B's

— lower B is weak solution

* lime-o B = arcsinmi, a Mach wave

* relevant Pranch for
Can exist in Interna

2

52~

57-

2nd Law
Violation

mi)os\‘/cvgxternal flows, matches in far-field to acoustic wave,

* total Mach number primarily supersonic, M22 = v c+a~ > 2 for nearly all 0 <

< Umax
2

* normal Mach number subsonic, Mazn = v < 1
— higher B is the strong solution

* lime-o0 B =n2, @ normal shock wave

* relevant branch for some internal flows

u2+v72
* total Mach number completely subsonic, M22 =

L
c22

* normal Mach number subsonic, M2z2n =

- for © > Bmax, Nno solution exists; shock becomes detached

c22

<1 forall 0 < B < BOmax
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- Consider fixed 6, increasing freestream Mach number My, see Figure 5.4
—0 < M1 < 1, subsonic incoming flow, no shocks continuous pressure variation

—1 < M1 < M1, supersonic incoming flow, detached curved oblique shock

— Mia < M1 < oo, supersonic incoming flow, attached straight oblique shock

—as M1 — oo, = B
- Consider fixed supersonic freestream Mach number My, increasing 6, see Figure 5.5

-0 ~ 0, Mach wave, negligible disturbance
—small 8, small B, small pressure, density rise

— medium 6, medium [, moderate pressure and density rise

— large 6, curved detached shock, large pressure and density rise

continuous pressure

_ shock approaching detached
variation wedge from infinity oblique shock
— —m I/ —=
— — —
— — —
— — —
— — —
M_1<1 M 1-~1
1<M_1<M_la

subsonic, shockless flow moderately supersonic flow

slightly supersonic flow

attached attached
oblique shock oblique shock

—= — at limiting wave
angle.
®_ min
—= —
—= —
—= —
M_la<M_1<0O

Figure 5.4: Shock wave patterns as incoming Mach number varied

\
Example 5.1
Oblique Shock Example

Given: Air flowing over a wedge, © = 20-, P1 = 100 kP a, T: = 300 K, M1 = 3.0

Find: Shock angle B and downstream pressure and temperature P2, T2 .
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M_1 fixed, supersonic, P_1,) 1 fixed

ML ML M1 M1
- — = - — -
S — = - — =
— - — - - — =
—- — = - — =
N/
Mach Wave Attached Shocks Detached Shock

Small Disturbance Moderate Disturbances Large Disturbance

Figure 5.5: Shock wave patterns as wedge angle varied

Assume: calorically perfect ideal gas

Analysis:
First some preliminaries:

J m
a= yRT1= (1.4) 287 k9K (300K) =347.2 . (5.54)
m m
u1 = Mic1 = (3.0) 347.2 < - 1,041.6 . (5.55)
o= Fro-  100000Pa .5, ka (5.56)
RT1 287 kgr-(300 K ) ms
Now find the wave angle:
tan © = 2cotp Mizsina B = 1 (5.57)
M2 (y + cos 2B) + 2
tan 20- = 2cotf i = (5.58)
3.02(14 + cos2B) + 2
(5.59)
Three solutions:
weak oblique shock; common B =37.76 (5.60)
strong oblique shock; rare B = 82.15 (5.61)
second law violating “rarefaction” shock B = —9.91. (5.62)

1. Weak Oblique Shock

m m
u1=uisinp =1,0416 ; sin 37.76- = 637.83 : (5.63)



5.3. OBLIQUE SHOCK WAVES 133

I m
vi=uicosP =1, 0416 'S cos 37.76. = 82347 (5.64)
s
Mun = ! — 637.83 ms” = 1.837 (565)
C1 3472 ms
: y=1 _— (5.66)
k i (y - 1) M12n
11614 ¢
/T m . 14-1 e (5.67)
U] 14+1
(4118
B 116141 - (5.68)
0.41359 ms3
p2u™2 = p1u”1 (5.69)
11614 'S 637.83
= - m = 26380 (5.70)
p2 ms s
’ m
28081 mgs V2 =V1=382347 . (5.71)
uz=u"2sinPB +v2cosfB (5.72)
v
~v2=-u"2cos P +Vv2sinf (-73)
m . L1
u2 = 263.80 . sin 37.76 + 823.47 cos 37.76. = 812.56 (5.74)
m . 1 _
V2 = — 263.80 s cos 37.76 + 823.47 sin 37.76 = 295.70 (5.75)
check on wedge angle 0 = arctan ¥ (5.76)
u2
-arctan  22L0ms  —19997. (5.77)
812.56.ms
P2 = P1 + piu™21 — p2u™22 (>78)
_ kg m2 k m 2
P2 =100, 000 P a + 1.1614 3 637.83 < — 28081 m% 26380 ; (5.79)
P2=377,072Pa (5.80)
n- - 377,072Pa - 467.88 K (5.81)
PR 28081k, 287k
m
c2= YRT2 = (1.4) 287 kgiK (467.88 K') = 433.58 . (5.82)
I s
Man= = = 2638ms = 0.608 (5.83)
Q 433.58ms
u2 +va2 812.56 TZ + 295.7 ?2
Mz = = . =1.994 (5.84)
c2 433.58
i P2
s2-s1=cpln  -RIn p, (5.85)
= 10045 J . 467.88K J | 377,072Pa (5.86)
kg K 300K —287 kgkK 100,000 P a
. (5.87)

s2 — s1 = 65.50 kg K
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2. Strong Oblique Shock

1

uz = 269.33

v2 = - 269.33

P2 =100, 000 P a + 1.1614

c2 =

EADY SUPERSONIC TWO-DIMENSIONAL FLOW

- m
m
S
\%
S
B u 10384
3472 ms~
N
k (y = 1) M1zn
p2 14+1
Uy, — PAZEPWL
W1 11614 A ;
e - n -26033
p2 m3 S
1,031.84 m
44495 o V2 =V11=14226
: S
uz=u"2sinPB +v2cosfB
f sin82.15. + 14226~ cos 82.15. = 286.24
f cos 82.15. + 14226 | V25 8b45%8 Bgy Y4 Sin B
check on wedge angle 0 =arctan ¥
u2
286.24 s
P2 = P1 + piu™21 — p2u™22
k kg 0 m
< 1038 ™ kg m:
S
P2=1,013,775P a
269.33
M. P2 10124495 P am = 793.86 K
PR 44495k 287 koK
JI
YRT2=  (1.4) 287 - (793.86 K) = 564.78
o Lo 26933t
T N 0477
u22 + va2 286.24 ?2 7?2
= . = 0.539
C2 T
+10414 T P2
SEa 8= Cp i1 =RIn p;

(5.94)

(5.95)

(5.96)

(5.97)
(5.98)

(5.99)
(5.100)

(5.101)

(5.102)
(5.103)

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)
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= 1,0045

3. "Rarefaction Shock”

) 1,013,775 P a
-287 kgK  100,000Pa

J
s2-s51=31286 KgK

- R m
u1=uisinB =1, 0416 s sin (<991.) = ~179.26 ¢
m
Visuicosp=10416 5 co5(-991.)=1,026065
m J—
Min = =4—1-19r26-mS
347 2 = -0.5163
T oy—1 I
11614 1+ ) (y = 1) Mi2n
e Tt ~ =32928
% 14 +1
(14 - 1) (-0.5163)
L6l T -
pP2u™2 = p1u1
e o MOMme 17956 - m
2= =
p2 0.3527 migs = -59027 s
m
V2=v1=102606
u2=u72sinfB +v2cosf
m o V2=—U2COSB+V25|nE
u2 = -590.27 s m cos (_9'910) =1, 11234 <

sin (-9.91) + 1, 026.06 s
v2 = - =590.27 m o
s cos(-9.91)+ 1, 026.06

m
m
s sin(-9.91)=404.88s

V2

check on wedge angle 0 =arctan
u2
rctan | 0488w o000,
1,112.34.ms
P2 = P1 + piu™1 - pau™22
m2 . - m m
P»-100,000Pa+ 11614 "2 T g
P2=14,433Pa
n= 2 o= wassPa 59k
02 R m3
Q= YRT2 = (1.4) 287 kg K (142.59K) = 239.36
0 TtonoT
Mon = =+ =590.27ms

e 23936ms = 247

135

(5.111)

(5.112)

(5.113)

(5.114)

(5.115)

3.2928
(5.119)

(5.120)

(5.121)

(5.122)
(5.123)

(5.124)

(5.125)

(5.126)

(5.127)
(5.128)

(5.129)

(5.130)
(5.131)

(5.132)

(5.133)
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1,11234 ™? 140488 7

u22 + v22 s

M2 = o = 23936 7 = 4.95 (5.134)
D P2
s2-si=cpln  -RIln p; (5.135)
_ loms O 14259K J 14,433Pa (5.136)
kg K 300K —287  kgK 100, 000 P a
J
s2 - s1=-1915 kgiK (5137)
54  Small Disturbance Theory
By taking a Taylor series expansion of the relationship between 3 and 6 about 8 = 0, for
fixed M1 and y it can be shown that
1 +1
tanp= - ‘T L 6<<1 (5.138)
M -1 (M2 - 1)
Note that when 6 = 0 that
1
tan p = (5.139)
M2 -1
tan2 = — (5.140)
M1 -1
. .2
sinB _ sinB 1
osif - R (5.141)
1-sinp M1
sin2 B Mz
— = — (5.142)
1-sinf 1 - M
1
sinB= — (5.143)
P M1
, 1
B =arcsin — (5.144)

M1

After a good deal of algebra and trigonometry, it can also be shown that the pressure

change, change in velocity magnitude, w, and change in entropy for flow over a thin wedge is

P> —P1 — yM12 8]
P1 Mo -1

(5.145)
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S]
wr=wie (5.146)
wi M2 -1
$2 =51 (5.147)
s1 ~6
In terms of changes,
AP
A _WMe 4 (5.148)
PlA M -1
w
_ % (5.149)
wi o= -
M2 -1
fs 5.150
S1 ~ Ae3 ( ’ )

Note that a small positive AB gives rise to

- an increase in pressure

- a decrease in velocity magnitude

- a very small change in entropy
Figure 5.6 shows the pattern of waves that one obtains when subjecting a flow to a series
of small turns and the pattern that evolves as the turning radius is shrunk.

: compression waves converge

- expansion waves diverge

- convergence of compression waves leads to region of rapid entropy rise-shock formation

- divergence of pressure waves leads to no shock formation in expansion

This has an analog in one-dimensional unsteady flow. Consider a piston with an initial

velocity of zero accelerating into a tube

- lead compression wave travels at sound speed

- lead wave increases temperature (and sound speed) of disturbed flow
- each successive acoustic wave travels faster than lead wave

- eventually acoustic waves catch and form a shock

Consider a piston with zero initial velocity which decelerates
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Wave convergence;
Shock Formation;
Breakdown of Isentropic Assumption

Isentropic Compression

Isentropic Expansion
Wave divergence;

No shock formation

Oblique
Shock

Prandtl-Meyer
Expansion

Figure 5.6: Wave pattern and streamlines for flows undergoing a series of small turns and
for sudden turns

- lead expansion wave travels at sound speed
- lead wave decreases temperature (and sound speed) of disturbed flow
- each successive acoustic wave travels slow than lead wave

- no shock formation
A schematic for these one-dimensional unsteady flows is shown in Figure 5.7

5.5 Centered Prandtl-Meyer Rarefaction

Tore it A%na Qe IoRs S hengst e A L paleb e emeh eo/abie L2 BIP s S Stk

relations:

yM2

=V

d_FF: do (5.151)

M2-1
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accelerating

t
piston shock
path

decelerating
slow, acoustic piston
lead wave path
X

4: P1,)1 q P 1,1

t suddenly t
accelerated
piston path /
shock
locus
suddenly
decelerated
piston
path PrandtITMeyer
expansion fan
X X

Figure 5.7: Schematic of compression and expansion waves for one-dimensional unsteady
piston-driven flow

dw d
M2 -1
d .o (5.153)
S

Recall now that for adiabatic flow

T
o=l -1 ™ 5.154
T + Y 5 2 ( )
YRTo N
-1 -1 M 5.155
VRT + Y 5 2 ( )
%2 =1+ V-1 M2 (5.156)
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-21

c=cCo 1+ »jk M2 (5.157)
Co B -2
dm- o, I xuzL Mz ) MdMm (5.158)
d .
sl B L (5.159)
C =7 1+y=21M2
w=cM (5.160)
dw = cdM + M dc (5.161)
e oM ' de (5.162)
wo M C :
d dM .
oo (5.163)
W M- 14+ =21M2
w1 1 dM (5.164)
Woooqeome M
de 1 dM
_y = (5.165)
M2 - 1 vt 1+2M2M
—Ma-—1 (5.166)

A Il Ll -
2

Now positive © corresponds to compression and negative 8 corresponds to expansion.
Let's define v so positive v gives and expansion.

Now integrate the expression

v=-0+60 (5.167)
dv = —db (5.168)
v dM
dv= M=l — (5.169)
M 1+y=2tM2
Let v = 0 correspond to M = 1. This effectively selects 8o
_oovxl _ v
viM) = tan-1 tﬁlr (M2 - 1) - tan-1 Ma -1 (5.170)

The functionv (M) is caﬁledlthe Prandtl-Meyer function. It is plotted in Figure 5.8.
Many texts tabulate the Prandtl-Meyer function. For a known turning angle, one can find
the Mach number. As the flow is entirely isentropic, all other flow variables can be obtained
through the isentropic relations. Note:
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v+l
“AsM — oo, v — 1 — 1, corresponds to vacuum conditions

N A

- given v, one can calculate M
- isentropic relations give P, p, T, etc.

- Prandtl-Meyer function tabulated in many texts

O {_max =130.5 |
120
100
80
60 ©=7/5
I 10 20 30 M
Figure 5.8: Prandtl-Meyer function
|
Example 5.2
Centered Expansion
Given: Calorically perfect, ideal air with P1 = 100 kP a, T: = 300 K, u1 = 500 s, turned through
a 30- expansion corner.
Find: Fluid properties after the expansion
Analysis:
100 kP a k
e -11614 2 (5.171)
RT1 0.287 kg (300 K ) m:
J m
c= YRT1 = 14287 kgT (300K) =347.2 . (5.172)
u
T Y (5.173)
a 347 25
To=T11l+ y=1_ Muw (5.174)
2

1
To = 300 K 1+ E 144012 = 42443K (5.175)
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J
y-1

Po=P1 1+ V;Zk M12 (5.176)

35

1
Po = 100 kP a 1+ ; 1.44012 = 336.828 kP a (5.177)

Now calculate the Prandtl-Meyer function for the freestream:

T -
V(M) = tan-1 le:L (M12 - 1) - tan-1 M1z -1 (>.178)
_ y-1 Y
VM) = 41 o (144002 - 1) - tana 144015 - 1 (6179)
’ v (M1) = 0.177138 rad (5.180)
v(Mi)=0177138rad o0 = 10.1493. (5.181)
Tra
The interpretation here is that an initially sonic flow would have had to had turned 10.1493: to achieve
a Mach number of M1 = 1.4401.
Now add on the actual turning:
v (M2)=v (Mi1) + 30 (5.182)
v (Mz2) = 10.1493 + 30 = 401493 (5.183)
mrad
v (M2) = 40.1493- 180, " 0.700737 rad (5.184)
A trial and error solution gives the M2 which corresponds to v (M2) = 0.700737 rad:
0.700737 rad = 14+1 t 14-1 5.185
: POt L T Me-D-tana M- (>.185)
' M2 = 2.54431 (5.186)
-1
V=1 Mo (5.187)
19T =To 1 +
1 -1
T2 = 42443 K 1+ ; 2.54331> = 189;4]1( (5.188)
P2=Po 1+ V -21 M2 (5.189)
1 -35
P2 = 336.828 kP a 1+ ; 2.543312 =1843 kP a (5.190)
P 18.43 kP k
p= o = | (#894K) _o3390 2 (5.191)
RT2 L — ms3
J m
2= YRT2 = 1.4 287 kg K (1894 K) = 275.87 . (5.192)
m m
w2 = M2 c2 = 2.54431 275.87 < =701.89 . (5.193)
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5.6 Wave Interactions and Reflections

Shocks and rarefactions can intersect and reflect in a variety of ways.

5.6.1  Oblique Shock Reflected From a Wall

An oblique shock which reflects from a wall is represented in Figure 5.9.

P 3

— interior streamline
P1 pressure field

P_3

Pl wall pressure

Figure 5.9: Reflection of an oblique shock from a wall
Note:
- analysis just that of two oblique shocks
- flow always turns to be parallel to wall
- angle of incidence not equal angle of reflection due to non-linear effects
- interior pressure profile has two steps
- wall pressure profile has single step
- P2 > 2P1, that is the pressure is higher than that obtained in the acoustic limit

5.6.2  Oblique Shock Intersection

Two oblique shocks intersect as sketched in Figure 5.10
Note:

- flow always turns to be parallel to wall

- when shocks intersect, flow turns again to be parallel to itself
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E c 2

c 1 E ; c 3
E c 2

Figure 5.10: Interaction of two oblique shocks

5.6.3  Shock Strengthening

A flow turned by a corner through an oblique shock can be strengthened by a second turn

as sketched in Figure 5.11
; am
fl J

Figure 5.11: Shock Strengthening Sketch

Note: three new waves generated
- strengthened shock

- Sléﬁﬁfter?am in which pressures match, velocity directions match, but velocity magnitudes

- weak rarefaction wave
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5.6.4  Shock Weakening

A flow turned by a corner through an oblique shock can be weakened by a second turn as
sketched in Figure 5.12

Figure 5.12: Shock Weakening Sketch

5.7 Supersonic Flow Over Airfoils

The standard problem in flow over an airfoil is to determine the lift and the drag. While in

actual design it is the magnitude of the lift force Fi, and drag force Fo, that is most crucial,

there exists dimensionless numbers the lift coefficient C. and the drag coefficient Co which
give good relative measures of airfoil performance.

FL

CL= %pluzA (5.194)
Fo
Co = m (5.195)

Though this is the traditional formula, it is probably not the best for interpreting how the
forces vary when flight speed is varied. This is because when u, flight speed is varied both
numerator and denominator change. To remedy this, we can instead scale by the ambient

sound speed to define a dimensionless lift force F . and dimensionless drag force F *o:

R (5.196)
Fr= picaA
Fo (5.197)

Fvo=  picaA
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far
field
Mach
wave

din tio

Figure 5.13: Supersonic Flow over a Flat Plate

5.7.1  Flat Plate at Angle of Attack

The simplest problem is that of a flat plate at angle of attack a.. A schematic is illustrated
in Figure 5.13. Note:

- flow over the top is turned through an isentropic rarefaction to P
- flow over the bottom is turned through an oblique shock to P2

- Since P2 > Py, there is both lift and drag forces!

. bRth.a S o$k and rarefaction are attached to the trailing edge to turn the flow to the
orizonta

- thr%é‘lccgw regions are separated by a slipstream in which pressure and velocity directions

(Pz—Pz) COS Qo

-FL= (P2 = P2) A cos ao, CL = 7 pua
(Pz—Pz) sin oo
-Fp = (P2 = P2) Asin oo, Cp = Fpua

- the drag here is known as wave drag or induced drag

: Of%ftcaonr&pzoer}gntﬁigﬁr%g&i?rlﬂp friction drag and thickness drag are zero due to inviscid
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In the small disturbance limit

. Y
P Ma-1
YP1M 21
Po=P1+ ——
M1z -1
o _p, _YPIMu
(=)
M1z -1
2yP1M 21
P2 -P2=
M1z -1
2yP1 ua
P2 - P2 = _
M21 - 1p02
2
P, — Py = 5 p1u21 Co
2 Mi1-1
FL= ————— p1u21 QA COS Qo
M1 - %
FL = p1u21 0A(1)
Ma-1
400
C =
5 Ma-1
Fo = ——=—— piu21 QA sin 0o
M1 -1 2
Fo = ———— piua 020A
M -1
Co = 4 020
M122— 1
FL  2Mido
F XL = -
picaA Mo — 1
Fo _ 2Mia»
F *p = -

. i e picaA Mo — 1
H.|g Mach number .|m‘|t. F L = 2Mice
High Mach number limit:

F *o = 2Mioo

Dimensionless lift and drag are plotted versus Mach number in Figure 5.14

\
Example 5.3
Lift and Drag on an Inclined Flat Plate

147

(5.198)

(5.199)

(5.200)

(5.201)

(5.202)

(5.203)

(5.204)

(5.205)

(5.2006)

(5.207)

(5.208)

(5.209)

(5.210)

(5.211)

(5.212)
(5.213)
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2
RE=FE/NILA
2
Dimensionless Lift Force
1.75 Flat Plate at Small Angle of Attack
1.5
1.25
1 = Invalid Region
0.75
0.5
\
0.25 (=5
0 2 4 6 8 10
M1
F*=F/)c2A
D D 11
0.5
Dimensionless Drag Force
0.4 Flat Plate at Small Angle of Attack
0.3
0.2 T lhvalid Region
0.1
(1=5]1
L (3 8 T0
M1

Figure 5.14: Dimensionless Lift and Drag versus Incoming Mach Number for Flat Plate at
Small Angle of Attack

Given: Flat plate, of chord length 2 m, depth 10 m inclined at 20- to the horizontal in a freestream
of M1=3,P1=100kP a, T1 = 300K .
Find: Lift and drag forces on the plate.

Analysis: First some preliminaries:

. J m

= WRTi= (L4287 S (B00K)=3472
m m

u1 = Mic1 = (3.0) 347.2 . =L

ne P 100, 000 P a 116 ko

m3

RT1 287 19300 K )

Po=P1 1+ V_Z—:[ M12

3
Po = 100 kP a 1+ %23 = 367.327 kP a

(5.214)

(5.215)

(5.216)

(5.217)

(5.218)
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In a previous example, we found the oblique shock state under identical conditions:

P2=377,072Pa (5.219)

Now consider the rarefaction.

v(M1) = . tan-1 VV—LII (M12 - 1) - tan-1 Mo - 1 (5.220)
. y-1
14+1  —
- = - 14-1
VM= T G-D-tena 3:-1=08691 rad = 497973 (>-221)
' v(M2)=v (M1) + 20- (5.222)
v (M2) = 49.7973. + 20- = 69.7973- (5.223)
14+1 —
69.7973- = 1.218 rad = tan-1 in;L M2-1)-tan-1  Ma-1 (5.224)
14-1 ot
Mz = 4.3209 (5.225)
Po=Pol+ %L Mz (5.226)
1 -35
P, = 367.327 kP a 1+ ; 4.3209; = 1591 kP a (5.227)
(5.228)
FL=(P2-P2)Acoso- °
(5.229)
FL=(377,072Pa-1,591 Pa) (10 m) (2 m) cos 20
FL=7,142,073 N (5.230)
7,142,073 N
Cot o . (5.231)
2p1wA 5 11614k~  1,0416m— " (10m)(2m)
CL = 0.5668 (5.232)
Fpo = (P2 - P2) A sin a0 (>.233)
Fo , (5.234)
=(377,072Pa-1,591 P a) (10 m) (2 m) sin 20-
Fo = 2,320, 600 N (5.235)
o . Fo . 2,320, 600 N 5.236)
cprwA 111614 P 10416 77 (10m) 2 m)
Cp = 0.1842 (5.237)
Compare with thin airfoil theory: Clthin = _ A (5.238)
M2 -1
Ct thin “%L Wred = 04936 (5.239)
32-1
Co thin = Ado2 (5.240)
M2 -1
2
Cowmn=  1(20-)msoad” = 01723 (5.241)

v
32-1
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5.7.2  Diamond-Shaped Airfoil

The simplest supersonic airfoil with camber for analysis purposes is the diamond shaped
airfoil as sketched in Figure 5.15. The sketch shows the airfoil at zero angle of attack. The
upper half of the wedge is inclined at angle to the horizontal In this case there will be no
lift but there will be drag. Note the following features:

far field
Mach waves

lead Ob“que _\
shock \

trailing oblique
shock

Prandtl-Meyer
rarefaction

Figure 5.15: Supersonic Flow over a Diamond-Shaped Airfoil

- sudden turn through lead oblique shock
- turn through isentropic Prandtl-Meyer rarefaction
- final turn through oblique shock attached to trailing edge
- far field limit: acoustic (Mach) waves
tin 5 same as for flat plate!

- Thin airfoil limit C. = VM

, same as for flat plate!

- Thin airfoil limit Co hin =V,

5.7.3  General Curved Airfoil

A general airfoil with camber is sketched in Figure 5.16. The sketch shows the airfoil at zero
angle of attack. In this case there will be no lift but there will be drag. Note the following
features:
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- lead oblique shock
- lead shock weakened by series of non-centered rarefaction waves

- shock at trailing edge, also weakened by non-centered rarefaction waves

- far field: acoustic (Mach) waves

Figure 5.16: Supersonic Flow over a Curved Airfoil

5.74  Transonic Transition

Transonic flow exists whenever there is a continuous transition from subsonic to supersonic
flow. One example of a transonic flow is sketched in Figure 5.17 1 which shows an accelerating

airfoil.
Note:

- for high subsonic Mach number a bubble of supersonic flow appears
- smooth transition from subsonic to supersonic

- shock transition from supersonic to subsonic

-as Mach number increases, supersonic bubble expands

- for slightly supersonic Mach number, new shock approaches from far field

- aséag F:Srg%?clcbl\dlg@en Irsré%eprelg%reases, shock from far field approaches leading edge and

- challenging problems, not easily solved till 1960's!

adopted from Bryson, A. E., “An Experimental Investigation of Transonic Flow Past Two-Dimensional
Wedge and Circular-Arc Sections Using a Mach-Zehnder Interferometer,” NACA Tech. Note 2560, 1951.
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. Sonic Locus
Sonic Locus\. - chosk
= Shock = =>Noc
M<1 Mp1 M<1 M<1 M<1
c 1=0.852 c 1=0.892
M>1 Shock Shock Shock —_
M>1
M<1 M>1 M>1
. M<1
'Sonic Locus M>1
u
c 1=1.207 c 1=1315 c 1=1.465

Figure 5.17: Transition from Subsonic to Transonic to Supersonic Flow



Chapter 6

Linearized Flow

see Anderson, Chapter 9

In this section we consider flows which are

- steady,

- two-dimensional,

- irrotational,

- isentropic,

- calorically perfect, and

- ideal.

The analysis is extensible to other cases.

6.1 Formulation

In lecture a detailed discussion is given in which the linearized velocity potential equation is
obtained:

, 0w . 0RO

1-Ms 0x dy2 =0. 61)

6.2 Subsonic Flow

Here we consider flows in which the Mach number is subsonic, but not negligibly small.

153
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6.2.1 Prandtl-Glauret Rule

A discussion is given where it is shown that the pressure coefficient on a supersonic airfoil
can be determined in terms of the pressure coefficient known from subsonic theory:

Cpo
1 - Mo

6.2.2 Flow over Wavy Wall

The technique of separation of variables is used to show the subsonic flow over a wavy wall
can be written in terms of the velocity potential as

2
o y) = —U=h__ i £ exp —2m 1 -Mwy | (6.3)

6.3 Supersonic Flow

6.3.1 D’'Alembert’s Solution

The D'Alembert solution for the wave equation is shown for supersonic flows:

— 2 2
Pl y) = fx+ Mo - 1y + g x - Me — 1y . (6.4)

6.3.2 Flow over Wavy Wall

The solution for flow over a wavy wall is given in detail in lecture.



Chapter 7

Viscous Flow

This chapter will focus on problems in which viscous stress plays an important role in deter-
mining the motion of the fluid. The topic in general is quite broad; to gain understanding
of the fundamental physics, we will restrict our attention to the following limits:

- incompressible fluid

- isotropic Newtonian fluid with constant properties

- at most two-dimensional unsteady flow

The chapter will consider the governing equations and then solve a few representative
problems.

7.1  Governing Equations

This section considers the governing equations for the conditions specified for this chapter.
In dimensional non-conservative form, the governing equations are as follows:

il ov
o dy =0
ill ou ill JP du d2u
Pa "™ o TP sy = o TH e T ey
ol il il aP dn  Qdav
Pa P o TPy =- oy Y e ooy
el aT el aP aP oP .1 9T
P o ey T o T Ty TN e T ey
du > 1 a ov *  ov ?
20 ox 2 dy Tax T dy
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An argument could be made to eliminate the viscous dissipation term and the pressure
derivatives in the energy equation. The argument is subtle and based on the low Mach
number limit which corresponds to incompressibility.

7.2 Couette Flow

Consider a channel flow driven by plate motion See Figure 7.1

)
T=To _—

y=h

Po Po

y

L
y=0

x=0 T = TO

Figure 7.1: Sketch for Couette flow

The mechanics of such a flow can be described by stripping away many extraneous terms
from the governing equations.

Take
il a
- fully developed velocity and temperature profiles: =0, * =0
)
- steady flow
=0
-107at
- constant pressure field P (x, y, t) = Po
- constant temperature channel walls T (x, 0,t) = T (x, h, t) = To
Since fully developed mass gives:
v
-0 (7.1)
oy
v(x, y) = f(x) (7.2)

and since in order to prevent mass flowing through the wall boundaries, v(x, 0) = v(x, h) = 0,
thus
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vix,y) =0 (7.3)

Since g—)‘j = 0,03=0and % = 0,01,= 0, we have at most,
u = u(y) (7.4)
T=T(y) (7.5)

The y momentum equation has no information and x momentum and energy reduce to the
following:

0=y 2 (7.6)
¥ dy2 ’
0-k F du - 77
T dy tH dy (7.7)
The x momentum equation is thus
du
=0 (7.8)
dy
w C 7.9
y " 1 (7.9)
uly) = Gy + C2 (7.10)
Now applying u(0) = 0 and u(h) = U to fix C1 and C2 we get
uly) = U ﬁ (7.11)
Shear stress:
du
Ty = oy (7.12)
V]
T =H h (713)
The energy equation becomes
&I o odu’ 714
dy =- k dy '



158 CHAPTER 7. VISCOUS FLOW

dT uU2
dp == khe (7.15)
ar uU2
gy =- kr?y+C1 (7.16)
1uUa 2
Ty =- 2kh VTV FC (7.17)
Now T (0) = To and T (h) = To. This fixes the constants, so
2
T(y) = iﬁuz if ) ?f + To (7.18)
In dimensionless form this becomes
T-1 1ucp U2 y y 2 719
To 2 k cpTo h - h (7.19)
PrEc y y ?
% : 5 ho-h (7.20)
o . ..
. e o, _ | _ momentum dif f usivity
Prandtl Number. Pr= k = pCL "¢ thermal dif f usivity (7.21)
U2 kinetic energy
Eckert Number: I (7.22)
Ec= T thermal energy
Now
a0 Lub
dy = 2kh2 (h-2y) (7.23)
a1 7.24
ay=-k dy =2ph2(2y-h) 729
pU 2
GO=- 7.2
-52h
Note:

- at lower wall, heat flux into wall; heat generated in fluid conducted to wall
- wall heat flux magnitude independent of thermal conductivity

- higher plate velocity, higher wall heat flux

- higher viscosity, higher wall heat flux

- thinner gap, higher wall heat flux
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Also since Tmax OCcurs aty = B

Tmax = 8;kEU2+ To (726)

Note:

- high viscosity, high maximum temperature
- high plate velocity, high maximum temperature

- low thermal conductivity, high maximum temperature

Dimensionless wall heat flux given by the Nusselt number:

0 0)A
Ay
wU2h
Nu = 2h2 =) (7.28)
ks U2

7.3 Suddenly Accelerated Flat Plate

The problem of pulling a plate suddenly in a fluid which is initially at rest is often known
as Stokes’ First Problem or Rayleigh’s problem.

7.3.1 Formulation

Consider a channel flow driven by a suddenly accelerated plate. See Figure 7.2 Initially,
t<0

- fluid at rest
- plate at rest
Fort>0

- plate pulled at constant velocity U

Assume:

- constant pressure P (x, y, t) = Po
du

fully developed flow o = 098~ 0
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u(y,0)=0
T(y, t) =To

12

™M< (e t/))

u(o,ty=U -
T(0,t) =To

Figure 7.2: Sketch for Stokes' First Problem

Again from mass we deduce that v(x, y, t) = 0. The x momentum equation reduces to

du dau

Pa ' oy (7.29)
The initial and boundary conditions are
ufy,0) =0 (7.30)
u(, t) = U (7.31)
(7.32)

u(eo, t) =0

7.3.2  Velocity Profile
This problem is solved in detail in lecture. The solution for the velocity field is shown to be

y/NvtT

u 2
U =1-+vm . exp —s2 ds (7.33)
7.4  Starting Transient for Plane Couette Flow
The starting transient problem for plane Couette flow can be formulated as
oo, ou 7.34
t - ay (7.34)
ufy, 0) =0, u(0, t) = Uo, uth, t) = 0. (7.35)

In class a detailed solution is presented via the technique of separation of variables. The
solution is
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A |
%zl— o ~exp ﬂ%ﬁjw sin %y (7.36)

n=1

7.5 Blasius Boundary Layer

The problem of flow over a flat plate in the absence of pressure gradient is formulated and
solved using the classical approach of Blasius.

7.5.1 Formulation

After suitable scaling and definition of similarity variables, discussed in detail in class, the
following third order non-linear ordinary differential equation is obtained:

SR (737)
T dn '
& o d -1 7.38
ay - dn - fla=0 = 0. (7.38)

n=0

n-oo

This equation is solved numerically as a homework problem.

7.5.2  Wall Shear Stress

The solution is used to obtain the classical formulae for skin friction coefficient:

0.664
. (7.39)
Cr = VRex
and drag coefficient:
1328
— (7.40)

()
lw)
1
<
X
(0]
—
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Chapter 8

Acoustics

This chapter outlines the brief introduction to acoustics given in class in somewhat more
detail.

8.1 Formulation

We reduce the Euler equations for isentropic flow to the following equations where quantities
with a hat are understood to be small perturbations about the ambient state, denoted with
a subscript of "0”".

)
a tP oo (8.1)
6_\f
| x * b= (8.2)
P" = c2op”. (8.3)
Introducing the velocity potential ¢ = Vv~ and employing further manipulation allows the
equation to be written as the wave equation:
ik
_6th ) (8.4)
The pressure, velocity, and density are then obtained from
iy
P =-po ' (8.5)
v = (8.6)
fy
P = —PoC20 ¢ ®7)
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8.2 Planar Waves

The D'Alembert solution for planar waves is shown in class to be

@ =f (X + cot) + g(x — Cot), (:'2)
P" = —poCof (X + Cot) + PoCog (X — Cot), (8.9)
n (8.10)

u” =f(x+ cot) + g (x = Cot),
(8.11)

8.3 Spherical Waves

The D'Alembert solution for spherical waves is shown in class to be

f(r + cot) + g(r — cot),
P"=- g (r = cot),

7‘ (r + cot) + g (r — cot),



