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Objectives

Understand multidimensionality and time dependence of heat transfer,
and the conditions under which a heat transfer problem can be
approximated as being one-dimensional.

Obtain the differential equation of heat conduction in various
coordinate systems, and simplify it for steady one-dimensional case.

|dentify the thermal conditions on surfaces, and express them
mathematically as boundary and initial conditions.

Solve one-dimensional heat conduction problems and obtain the
temperature distributions within a medium and the heat flux.

Analyze one-dimensional heat conduction in solids that involve heat
generation.

Evaluate heat conduction in solids with temperature-dependent
thermal conductivity.
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INTRODUCTION

Although heat transfer and temperature are closely related, they are of a
different nature.

Temperature has only magnitude. It is a scalar quantity.
Heat transfer has direction as well as magnitude. It is a vector quantity.

We work with a coordinate system and indicate direction with plus or minus
signs.

Magnitude of ) O = 500 W
temperature Hot Cold
at a point A medium medium
(no direction) — ¢ >
0 L
80 W/m?

A \ mmm— () - 500 W
Magnitude and Cold Hot
direction of heat medium medium
tlu_x at the same 0] I
point

FIGURE 2-1 FIGURE 2-2

Heat transfer has direction as well Indicating direction for heat transfer

as magnitude, and thus itis (positive in the positive direction;
10/16(2013uantity. Heat Transfgiohtiie in the negative direction).



The driving force for any form of heat transfer is the temperature
difference.

The larger the temperature difference, the larger the rate of heat
transfer.

Three prime coordinate systems:

v rectangular T(X, Y, z, t) FIGURE 2-3
v cylindrical T(r, ¢, z, 1) The various distances

and angles involved when
v spherical T(r, ¢, 6, 1). describing the location of a point

in different coordinate systems.
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Steady versus Transient Heat Transfer

10/10/2013

Steady implies no change
with time at any point within
the medium

Transient implies variation
with time or time
dependence

In the special case of
variation with time but not
with position, the
temperature of the medium
changes uniformly with
time. Such heat transfer
systems are called lumped
systems.

Time = 2 pMm

15°C

7°C
N Y
— ()

Time = 5 pMm

15°C 7°C

NG
m— O, -0,

(a) Steady

C 7°C
N Y
— O

() Transient

12°C 5°C

N Y
m— O, =0,
FIGURE 24

Transient and steady heat
conduction in a plane wall.
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Multidimensional Heat Transfer

« Heat transfer problems are also classified as being:
v

v two dimensional
v’ three-dimensional

* In the most general case, heat transfer through a medium is three-
dimensional. However, some problems can be classified as two- or
one-dimensional depending on the relative magnitudes of heat
transfer rates in different directions and the level of accuracy desired.

« One-dimensional if the temperature in the medium varies in one
direction only and thus heat is transferred in one direction, and the
variation of temperature and thus heat transfer in other directions are
negligible or zero.

« Two-dimensional if the temperature in a medium, in some cases,
varies mainly in two primary directions, and the variation of
temperature in the third direction (and thus heat transfer in that
direction) is negligible.
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FIGURE 2-5

Two-dimensional heat transfer
in a long rectangular bar.

10/10/2013

Negligible
heat transfer

,-
Primary
direction of
heat transfer

FIGURE 2-6

Heat transfer through the window
of a house can be taken to be
one-dimensional.
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* The rate of heat conduction through a medium in a specified direction
(say, In the x-direction) is expressed by
for one-dimensional heat conduction as:

TA
: drl R
) - — — W ¢
Q cond dx ( ) {_ slope g‘: 0
Heat is conducted in the direction N
of decreasing temperature, and
thus the temperature gradient is 0>0
negative when heat is conducted e
In the positive x -direction. I
>
X
FIGURE 2-7

The temperature gradient d7/dx 1s
simply the slope of the temperature
curve on a T-x diagram.
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The heat flux vector at a point P on .
the surface of the figure must be
perpendicular to the surface, and it

must point in the direction of

decreasing temperature

If n I1s the normal of the isothermal
surface at point P, the rate of heat
conduction at that point can be
expressed by Fourier’s law as

0,= ka2l (w)
1 ) 7

—

FIGURE 2-8
The heat transfer vector is always
normal to an isothermal surface and

0,=0.i +0,j +0.k

. T . ¥ can be resolved into its components
O .=—kA 2L 0 =-ka 2L IO 115 chmponent
= " 00X <) Y like any other vector.
. )T
Q.= —kA, =~
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Examples:
v’ electrical energy being converted to heat at a rate of I°R, Heat
v’ fuel elements of nuclear reactors, Gen erati on
v exothermic chemical reactions.

Heat generation is a volumetric phenomenon.

The rate of heat generation units : \W/m?® or Btu/h-ft3,

The rate of heat generation in a medium may vary with time as well as
position within the medium.

Sun
Solar
. ) radiation
Ej,:’{']] - - e L_,L\nfflvr ‘K}\r ) - q_.s'
T JV
@ % —‘--I—-\_-o-'—-h\_,-ﬂ—- .,-o-'l - e
. ’ _ ® X
i Egen o f?gen V, N
g - Solar energy
d absorbed by
m Water v water
L 4
/ Vgl = aored®)
FIGURE 2-10
The absorption of solar radiation
. by water can be treated as heat
FIGURE 2_9 gU"Cl'L‘lliﬂl‘l.
Heat is generated in the heating coils
A0 0I2013 range as a result of the Heat Transfer-CH2 10
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ONE-DIMENSIONAL HEAT CONDUCTION
EQUATION

Consider heat conduction through a large plane wall such as the wall of a
house, the glass of a single pane window, the metal plate at the bottom of
a pressing iron, a cast-iron steam pipe, a cylindrical nuclear fuel element,
an electrical resistance wire, the wall of a spherical container, or a
spherical metal ball that is being quenched or tempered.

Heat conduction in these and many other geometries can be
approximated as being one-dimensional since heat conduction through
these geometries is dominant in one direction and negligible in other
directions.

Next we develop the onedimensional heat conduction equation in
rectangular, cylindrical, and spherical coordinates.
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/Rate of heat!  [Rate of heat Rate of l}eat Rate of change
: : generation of the energy
conduction conduction |+ | £ .7 -
_ inside the content of the
at x atx + Ax
\ / element element
. i i AE
element
Q.r - Q.r + Ax + Egen, element At (2'6)

J'ﬂ“ElE:JE:Juf:;nt = Ee‘ + At E
=é_.

gen Y element gen

=me(T, 5 — T,) = pcAAX(T, L 4, — T))

E AAx

gen, element
Substituting into Eq. 2-6, we gel
a— T

L T,
Or = Ortan + gAY = peAAx ———

Dividing by AAx gives
Qrrar — O, ) T! + Ar Tr

1 .
AT Ax G TPy

aT
|1‘L‘51—] + €gen = pC—— a9r

. 1+;!L1 Qx_ag_ﬂf_
Jﬁ!rlﬂll:l Ax T oax aln ME J

10/10/2013
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Heat Conduction
Equation in a Large
Plane Wall

Eyen , Volume
| element

[ s
I
| I
|
T | : I\H-" -
— [ : I }‘--s
oy s I : s
0, s | 1 |L"‘i
T S 5 ‘,L.. 1 I"""-;h
T Qr+£~.rh1“"=_,l
e - ;L‘-i-
e [ fjé‘:“i T
ST s
”"{:-‘.H Pt
0 Tl e
X H"““‘H—-..._‘_H_
XY+Ax
X
Ar=Ay, ax=A
FIGURE 2-12

One-dimensional heat conduction
through a volume element in
a large plane wall.
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r*T

Variable conductivity: — l k— .
’ )

T | €sen 19T

Constant conductivity: — + = —
' 0x- k o ol
(1) Steady-state: d:T N Coen 0
(d/dt = 0) dx? k |
(2) Tmm'f{*m no heat generation: d°T 10T
‘gen — =0) Ax: o« of
(3) Steady-state, no heat generation: d*T 0
(0/0t = 0 and é,,, = 0) dx?
General, one-dimensional:
No Steady-
fr:::n:::mlinn state
0
e S : .
J‘Z The simplification of the one-
‘1‘3“ o o dimensional heat conduction equation
Steady, one-dimensional: in a plane wall for the case of constant

conductivity for steady conduction
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' Rate of heat ! /Rate of change \ ~ Heat

'Rate of heat|  [Rate of heat' veneration of the enerov _
‘onduction | — | conduction | +| & . ° = =
- - inside the content of the CondUCthn
at r Catr + Ar : :
'- / element element Equathﬂ N a
Long Cylinder
'ﬁEe]ement g y

Qr' o Qr+ﬁr' + Egcn.e]cmem - At

i‘““—::tzlenuznt = E.r+£u‘ - E.!.‘ = ‘r”‘i-‘[T.r+ Ar T.!.‘} = p('ﬂ‘ﬁr{Tx+ﬁx o T.r]

Egcn. element — {;gcnur:]emr:m T Ei]lA'lr
‘) :] _A 3 I + Ar T!
O, —Crya Tt gnA r= pcAAr At
_lQr+ﬁr'_Q]r+{; _ EFT.E+:1:_T:

A Ar gen — PO

Taking the limit as Ar — 0 and Ar — 0 yields

Volume element

FIGURE 2-14

One-dimensional heat conduction

) through a volume element
0rHeat Transfer-CH2 in a long cylinder.
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* - l o[ oT\ K . )T
Variable conductivity: 7 \ rk <= | J + pen = PC = ‘
' rH ar 0t
. o 1 9 [ 0T\  €en 19T
Constant conductivity. F oy l,." ar J + L w ol
1) Steadvy-state: | d [ (z’T €gen |
(1) Sleady-si —.—\ J+ — =0
(0/ot =0) F dr ._fh k
(2) Transient, no heat generation: 10 , aT \ 19T
(€pey = 0) Far l or J & gf
(3) Steadv-state, no heat generation: di. dT\ _ 0
(a/ot = 0 and é,., = 0) dr l dr J
| N A
o e

(a) The form that is ready to integrate

d [,,ﬂ} ~0
dr dr
(b) The equivalent alternative form

Two equivalent forms of the
differenti'll equation for the one-

1&%0/2013 I P eat eﬂgégrn ihE’ldy heat conduction in

dr? dr a cylinder with no heat generation.




Heat Conduction Equation

In a Sphere

Variable conductivity:

| 9 ( , aT"]
——\rek— |+ €., = pc
r2or ar gen — f
Constant conductivity:
%g(ﬁﬁj+@m_1£f
redr\ dr, k a of

(1) Steady-state:
(0/ot = 0)

(2) Transient,
no heat generation.
(€oen = 0)

(3) Steady-state,
no heat generation.

10/1Q2M8= 0 and ¢,,, = 0)

ol

ot

FIGURE 2-16

Volume
element

One-dimensional heat conduction
through a volume element in a sphere.

Ld(dl) | fen

rdr j dr k
Lipmq_iﬂ

rlar j ar |  « ot

d f°£ =0 or d ) +2
dr dr. (?’f -

" Heat Transfer-CH2
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Combined One-Dimensional Heat Conduction
Equation

An examination of the one-dimensional transient heat conduction
equations for the plane wall, cylinder, and sphere reveals that all
three equations can be expressed in a compact form as

rJ'T
ot

(FT

9, J—I-{ L = pC

i | rk
n = 0 for a plane wall
n =1 for a cylinder

n = 2 for a sphere

In the case of a plane wall, it is customary to replace the variable
r by x.

This equation can be simplified for steady-state or no heat
generation cases as described before.

10/10/2013 Heat Transfer-CH2
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GENERAL HEAT CONDUCTION EQUATION

In the last section we considered one-dimensional heat conduction
and assumed heat conduction in other directions to be negligible.

Most heat transfer problems encountered in practice can be
approximated as being one-dimensional, and we mostly deal with
such problems in this text.

However, this is not always the case, and sometimes we need to
consider heat transfer in other directions as well.

In such cases heat conduction is said to be multidimensional, and
In this section we develop the governing differential equation in
such systems in rectangular, cylindrical, and spherical coordinate
systems.

10/10/2013 Heat Transfer-CH2 18



Rectangular Coordinates

Rate of heat

Rateof heat | /Rateofheat| | Rateof change |

conduction at | — conduction + | generation | _ | of the energy
x.v. and : at x + Ax, inside the content of
T ) y+ Ay, andz + Az element the element
or
‘ﬁEc]ement

':-.) + Q + Q Jr + Ax Qm + Ay T ':-.)z + Az + Egtn. clement — (2-36)

At

Noting that the volume of the element is Vyjapen = AxAvAz, the change in the
energy content of the element and the rate of heat generation within the ele-
ment can be expressed as

AE e = Er v ar — Ey = malT, 4, — T)) = pcAxAYALT, 4 4, — T))
Egcn. clement — {&gcn II"‘I:cl.nrrrl.v.:l:ut Egcnﬁxﬁwam
Substituting into Eq. 2-36, we get

Tr+.|:|.: B Tr

Qi+ 0+ 0: = Cuvan = Oyray — Qo art CoenlTAYAZ = pelxAyAs —

Dividing by AxAyAz gives

B 1 '::'-.xhh'_ Qx _ 1 ';.1+.'!n Q 1 G.zhiz - Qz
AvAz Ax AxAz Ay AxAy Az gen

(2-37)

10/10/2013 Heat Transfer-CH2

FIGURE 2-20

Three-dimensional heat conduction
through a rectangular volume element.
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Noting that the heat transfer areas of the element for heat conduction in the
x,y.and zdirections are A, = AyAz, A, = AxAz, and A, = AxAy, respectively.
and taking the limit as Ax, Ay, Az and A — 0 yields

d (,oT\ o[, T\ a/[, 8T\ . aT
ax \Kax | T ay\Kay ) Taz\kag ) T e = pc Ty (2-38)

since. from the definition of the derivative and Fourier’s law of heat
conduction,

01 Quea— O 1 0, 1 4 a:r) 9 [ aT)
l = = — — TN — | = — — -
ax=0 AvAz Ax AvAz ax  AyAzox ( kayA [

. 1 Q:.-m:.- - Q:»- ] 90, 1 o aT) a a:r)
l = — = — | — -2 | = — 2 il
wo0AxAz Ay AxAz 9y AxAz 9y ( kAxBz s G

o Qua— Q. 90, 1 g aT) 3 [ aT)
| = — _r \ _ i
A0 AxAy Az AxAy dz  AxAvyaz ( kAxAy a7 (R

Eq. 2-38 1s the general heat conduction equation in rectangular coordinates.

In the case of constant thermal conductivity, it reduces to
e 92 e ‘-}qen '
n’T_i_dI‘: n’T_i_h _1ar

-9 - + " ) p
ax- ay- a7 k o df

(2-39)

where the property a = k/pc is again the thermal diffusivity of the material.
F7 . 2—39 is known as the Fourier-Biot eq11_lati01;1, ﬂndzil reduces to these
18R A er specified conditions: Heat Transfer-CH
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(1) Steady-state: 0*T  0*T . 9°T  €gen

. . — Tt T T =0
(called the Poisson equation) ax*  ay?* 972 k
(2) Transient, no heat generation: d*T n 0°T n °T _ 10T
(called the diffusion equation) ax*  dy*> a9z o« ot
(3) Steady-state, no heat generation: 0*T N 0°T N *T 0
(called the Laplace equation) ax*  dy*> a7
P &

The three-dimensional heat
conduction equations reduce to
the one-dimensional ones when

the temperature varies in one
dimension only.

10/10/2013 Heat Transfer-CH2



Cylindrical Coordinates

Relations between the coordinates of a point in rectangular
and cylindrical coordinate systems:

X =rcos o, y = rsin ¢, and 72=1
10 (, 0T\, 1aT(, aT [ aT) aT
kr — | +— k —l—.— k— |+ ¢é,.,= pc—
or\ — or | r2dd dh 0z | az | gen f ot
LM
A S —a 1
N —
z N
v |
//”f; \“\\ N
P T 3
__________- I B f{iﬂ =
: p——
FIGURE 2-22
A differential volume element in

10/10/2013 Heat Tfa”§§-ﬁ’fﬁ§.*ﬂéu coordinates. 22



Spherical Coordinates

Relations between the coordinates of a point in rectangular
and spherical coordinate systems:

X = rcos ¢ sinb, y = rsin ¢ sin 6, and Z = cos 6

1 a [, ,dT) | 0 oT
-— kP —— |+ —=————— k— | +
r2or\ ar )  r2sin @ J0d A

FIGURE 2-23
LIiIT*rc?ﬂ_:]l#x-'nlumc element in

10/10/2013 Heat ‘Igrans er-
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BOUNDARY AND INITIAL CONDITIONS

The description of a heat transfer problem in a medium is not complete without a full
description of the thermal conditions at the bounding surfaces of the medium.

Boundary conditions: The mathematical expressions of the thermal conditions at the

boundaries.

The temperature at any
point on the wall at a
specified time depends
on the condition of the
geometry at the
beginning of the heat
conduction process.

Such a condition, which
Is usually specified at
time t =0, is called the
initial condition, which
Is a mathematical
expression for the
temperature distribution
of the medium initially.

T10/1072003 fix. v, 2)

The differential equation:
d*T
a®
General solution.
T(x) = Cix + G,
r
[

Arbitrary constants

=0

Some specific solutions:
Tix)=2x+ 5
Tx)==x+ 12
T(x)=-3
T(x)=06.2x

FIGURE 2-25
The general solution of a typical
differential equation involves

arbit rany SRS _]El |L|)2u 5 an

infinite number of solutions.

TT _— Some solutions of
d*T

ar-

~—— The only solution
0 I T that satisfies
the conditions
T(0) = 50°C
and T(L) = 15°C.

FIGURE 2-26

To describe a heat transfer problem
completely, two boundary conditions
must be given for each direction along
which heat transfer 1s significant.

=0
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Boundary Conditions

« Specified Temperature Boundary Condition
» Specified Heat Flux Boundary Condition

« Convection Boundary Condition

« Radiation Boundary Condition

« |Interface Boundary Conditions

« Generalized Boundary Conditions

10/10/2013 Heat Transfer-CH2
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1 Specified Temperature Boundary Condition

The temperature of an exposed surface

can usually be measured directly and
. —> ' —
easily. el | o
| 150°C T(x, 1) 70°C
Therefore, one of the easiest ways to
specify the thermal conditions on a surface 04 | .
IS to specify the temperature. L x

For one-dimensional heat transfer through

a plane wall of thickness L, for example, 110, ” = '5{}'?
the specified temperature boundary L. 1 =70"C
conditions can be expressed as
P FIGURE 2-27
170, =T, Specified temperature boundary
T(L.1) =T, conditions on both surfaces

of a plane wall.
where T, and T, are the specified

temperatures at surfaces at x = 0 and
X = L, respectively.

The specified temperatures can be
constant, which is the case for steady
HAE/ZH3duction, or may vary witHeggjeansfer-CH2 26



2 Specified Heat Flux Boundary Condition

The heat flux in the positive x-direction anywhere in the
medium, including the boundaries, can be expressed by

i= —k 0T Heat flux in the (W/m?) Heat
— R " - : (W/m-~ , Lorgd
! J positive x — direction flux | Conduction

: . — i dT(0, 1)
For a plate of thickness L subjected to heat U
flux of 50 W/m? into the medium from both | Heat
sides, for example, the specified heat flux Conduction| flux
boundary conditions can be expressed as [
K dT(L, 1) _ ;
aT(0,r) aT(L. 1) i ox AL
—k———=150 and —k— = —50
0X ox 0 T »
I x
FIGURE 2-28

Specified heat flux boundary
conditions on both surfaces
of a plane wall.
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Special Case: Insulated Boundary

A well-insulated surface can be modeled

as a surface with a specified heat flux of
zero. Then the boundary condition on a 7 - R

. Insulation T(x, 1) 60°C
perfectly insulated surface (at x = 0O, for
example) can be expressed as

0] >
070, 1) B 010, 1
ax

On an insulated surface, the first
derivative of temperature with respect
to the space variable (the temperature
gradient) in the direction normal to the
insulated surface is zero.

10/10/2013 Heat Transfer-CH2

T(L, 1) =60"C

FIGURE 2-29

A plane wall with insulation
and specified temperature
boundary conditions.
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Another Special Case: Thermal Symmetry

Some heat transfer problems possess thermal
symmetry as a result of the symmetry in imposed
thermal conditions.

For example, the two surfaces of a large hot plate
of thickness L suspended vertically in air is
subjected to the same thermal conditions, and thus
the temperature distribution in one half of the plate
IS the same as that in the other half.

That is, the heat transfer problem in this plate
possesses thermal symmetry about the center
plane at x = L/2.

Therefore, the center plane can be viewed as an
insulated surface, and the thermal condition at this
plane of symmetry can be expressed as

dT(L/2. 1)

X

0

which resembles the insulation or zero heat

flux boundary condition.
10/10/2013 Heat Transfer-CH2

,— Center plane

Zero
slope

— Temperature
distribution
(symmetric
| A

about center
plane)

() * L >
X

L L

dT(L/2,1)

dx =0

FIGURE 2-30

Thermal symmetry boundary
condition at the center plane
of a plane wall.
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3 Convection Boundary Condition

For one-dimensional heat transfer in the x-direction
in a plate of thickness L, the convection boundary
conditions on both surfaces:

at the surface in
‘the same direction

at the surface ina | =

' Heat conduction )
selected direction

| Heat convection )

aT(0, 1) | oT(L. 1
—A——h][TL] 100, 1)] —&——h S| T(L. 1) — T,5]
oxX ox -
Convection | Conduction L Convection | Conduction
2
T
JT(0. t 2 B _ 970, 0
W[ T, - T(0. )] =k (0,1 [Ty = T(O, ] =~k =2
X
hy, T,
h Conduction | Convection
T * Convection | Conduction
%]
dI(L. t .
Ox IIT(O, 1)~ Tyl = k=52
(e >
L X 0 ‘L E
FIGURE 2-32 FIGURE 2-33
Convection boundary conditions on = The assumed direction of heat transfer
10/10/B618v0 surfaces of a plane wallgat Transfétt@ppoundary has no effect on the 30

boundary condition expression.



4 Radiation Boundary Condition

Radiation boundary condition on a surface:

Heat conduction
at the surface in a

Radiation | Conduction

Radiation exchange
at the surface in

selected direction, . the same direction |
\ ! y ! _1_ 4 a T{Dq r }

E]Cl- [TSUH'_. 1 — T{D. .f) ] =—k Tx_
For one-dimensional heat transfer in the €, €,
x-direction in a plate of thickness L, the L T goer, 2
radiation boundary conditions on both Conduction | Radiation

surfaces can be expressed as ‘P

dT(L, 1) ; ,
0 T{{L l) —k ox = EEU[T(L‘ ”4 - Tsfu'r_. El
N J'—\ - *{:T](T[Tjun'.l — T(0, ”4]
- 0¢ T
Jﬂ‘{?*T{L.r} T — T
— K = £, . lr - —
o oL D7 Lol FIGURE 2-35

Radiation boundary conditions on
both surfaces of a plane wall.
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5 Interface Boundary Conditions

The boundary conditions at an interface Interface
are based on the requirements that /
Material Material

(1) two bodies in contact must have the A B

same temperature at the area of contact

(2) an interface (which is a surface)
cannot store any energy, and thus the
heat flux on the two sides of an interface
must be the same.

TA (.T. .f) TB(I‘ .f'}

. _ Conduction | Conduction
The boundary conditions at the interface

of two bodies A and B in perfect contact at T ,(xy. 1) ITp(x0, 1)
X = X, can be expressed as —hy——— =g ———
ox dx
()® »—»
Txﬂ L x
Ty(xg, 1) = Ty(xg, 1)
FIGURE 2-36
—k T4 1) = —k T, 1) Boundary conditions at the interface
A )

. ‘B Iy . : . .
0 0X of two bodies in perfect contact.
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6 Generalized Boundary Conditions

In general, however, a surface may involve convection,
radiation, and specified heat flux simultaneously.

The boundary condition in such cases is again obtained
from a surface energy balance, expressed as

Heat transfer Heat transfer
to the surface | = | from the surface
1n all modes 1in all modes

10/10/2013 Heat Transfer-CH2
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SOLUTION OF STEADY ONE-DIMENSIONAL
HEAT CONDUCTION PROBLEMS

In this section we will solve a wide range of heat
conduction problems in rectangular, cylindrical,
and spherical geometries.

We will limit our attention to problems that result
in ordinary differential equations such as the
steady one-dimensional heat conduction
problems. We will also assume constant thermal
conductivity.

The solution procedure for solving heat
conduction problems can be summarized as

(1) formulate the problem by obtaining the
applicable differential equation in its simplest
form and specifying the boundary conditions,

(2) Obtain the general solution of the differential
equation, and

(3) apply the boundary conditions and determine

the arbitrary constants in the general solution.
10/10/2013 Heat Transfer-CH2

Heat transfer problem

v

Mathematical formulation
(Differential equation and |
boundary conditions)

v |

General solution of differential equation

v

Application of boundary conditions

v

Solution of the problem

— J

FIGURE 2-39

Basic steps involved in the solution
of heat transfer problems.
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EXAMPLE 2-10 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity k =
1.2 W/m-K, and surface area A = 15 m?. The two sides of the wall are main-
tained at constant temperatures of 7, = 120°C and T, = 50°C, respectively, as
shown in Fig. 2-40. Determine (a) the variation of temperature within the wall
and the value of temperature at x = 0.1 m and (b) the rate of heat conduction
through the wall under steady conditions.

SOLUTION A plane wall with specified surface temperatures is given. The
variation of temperature and the rate of heat transfer are to be determined.
Assumptions 1 Heat conduction is steady. 2 Heat conduction is one-
dimensional since the wall is large relative to its thickness and the thermal
conditions on both sides are uniform. 3 Thermal conductivity is constant.
4 There is no heat generation.

Properties The thermal conductivity is given to be k = 1.2 W/m-K.

Analysis (a) Taking the direction normal to the surface of the wall to be the
x-direction, the differential equation for this problem can be expressed as

with boundary conditions

T(0) = T, = 120°C
T(L) = T, = 50°C

The differential equation is linear and second order, and a quick inspection of
It reveals that it has a single term involving derivatives and no terms involving
the unknown function T as a factor. Thus, it can be solved by direct integration.
MNoting that an integration reduces the order of a derivative by one, the general

s EH20UR: differential equation above can heabikiabsief -G 2imple suc-

cessive integrations, each of which introduces an integration constant.

Plane
wall
] N
T T,
0 . x
FIGURE 240

Schematic for Example 2-10.
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Integrating the differential equation once with respect to x yields

dT
Pl

where C; is an arbitrary constant. Notice that the order of the derivative went
down by one as a result of integration. As a check, If we take the derivative of
this equation, we will obtain the original differential equation. This equation is
not the solution yet since it involves a derivative.

Integrating one more time, we obtain
;"TI) = CII + Cz

which is the general solution of the differential equation (Fig. 2-41). The gen-
eral solution in this case resembles the general formula of a straight line whose
slope is C; and whose value at x = O is Cs. This is not surprising since the sec-
ond derivative represents the change in the slope of a function, and a zero sec-
ond derivative indicates that the slope of the function remains constant.
Therefore, any straight line is a solution of this differential equation.

The general solution contains two unknown constants C;, and C,, and thus
we need two equations to determine them uniguely and obtain the specific so-
lution. These equations are obtained by forcing the general solution to satisfy
the specified boundary conditions. The application of each condition yields one
equation, and thus we need to specify two conditions to determine the con-
stants C; and C..

When applying a boundary condition to an equation, all occurrences of the
dependent and independent variables and any derivatives are replaced by the
specified values. Thus the only unknowns in the resulting equations are the ar-
bitrary constants.

The first boundary condition can be interpreted as in the general solution, re-
place all the x's by zero and T(x) by T,. That is (Fig. 2-42),

T(ﬂ\.l:C]XD+Cz — C2=T1

10/10/2013 Heat Transfer-CH2

Differential equation:

d*T _ |
2 |

Integrate:
a1 _ e
dr
Integrate again.
Tix) =Cix + C,
General Arbitrary
solution constants

i J
FIGURE 2-41

Obtaining the general solution of a
simple second order differential

equation by integration.
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The second boundary condition can be interpreted as in the general solution,
replace all the x's by L and T(x) by T.. That Is,

T, — T,
T(L) = ClL + Cz — Tz = C]L + Tl — C] = I
Substituting the C, and C, expressions into the general solution, we obtain
T'_- - T|
T(x) =— 7 x + T, (2-56)

which is the desired solution since it satisfies not only the differential equation
but also the two specified boundary conditions. That is, differentiating
Eq. 2-56 with respect to x twice will give d2T/dx?, which is the given differential
equation, and substituting x = 0 and x = L into Eqg. 2-56 gives T(0) = T; and
T(L) = T, respectively, which are the specified conditions at the boundaries.

Substituting the given information, the value of the temperature at x =
0.1 m is determined to be

(50 — 120)°C
0.2 m

(b) The rate of heat conduction anywhere in the wall is determined from
Fourier's law to be
. _ _.a.dT _ _ Tz_Tl_,Tl_Tz
Qvan = ax MG ="k =d—y
The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be
T, — T, (120 — 50)°C

= . 5 2 = !
2 (1.2 W/m-K)(15 m") 02 m 6300 W

Discussion Note that under steady conditions, the rate of heat conduction
through a plane wall is constant.

7(0.1 m) = (0.1 m) + 120°C = 85°C

(2-57)

0 = kA

10/10/2013 Heat Transfer-CH2

o N
Boundary condition: |
Ty =T,
General solution:
Ix)=Cix+C;

Applving the boundary condition:

T T
0o 0
Tl

Substituting.:
/""TJ :Clx[}'f' CE_}CEZTJ.

5 It cannot involve x or T1x) after the
boundary condition is applied.

N y
FIGURE 2-42

When applying a boundary condition
to the general solution at a specified
point, all occurrences of the dependent
and independent variables should

be replaced by their specified

values at that point.
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EXAMPLE 2-14 Heat Loss through a Steam Pipe

Consider a steam pipe of length L = 20 m, inner radius r, = 6 cm, outer radius
r, = 8 cm, and thermal conductivity k = 20 W/m-K, as shown in Fig. 2-49.
The inner and outer surfaces of the pipe are maintained at average tempera-
tures of T, = 150°C and T, = 60°C, respectively. Obtain a general relation for
the temperature distribution inside the pipe under steady conditions, and de-
termine the rate of heat loss from the steam through the pipe.

SOLUTION A steam pipe is subjected to specified temperatures on its sur-
faces. The variation of temperature and the rate of heat transfer are to be de-
termined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensicnal since there is thermal symmetry about the
centerline and no variation in the axial direction, and thus T = T{r). 3 Thermal
conductivity is constant. 4 There is no heat generation.

Properties The thermal conductivity is given to be kK = 20 W/m-K.
Analysis The mathematical formulation of this problem can be expressed as

with boundary conditions
ﬂn"']]‘ = T[ = 150°C
T(r,) =T, = 60°C
Integrating the differential equation once with respect to r gives

1T
Fif_r=£‘[

whepL 6129 28 arbitrary constant. We now divide ppdheHemaidiliotgpation by

r to bring it to a readily integrable form,

FIGURE 2-49

Schematic for Example 2—14.
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dr _ G
dr r

Again integrating with respect to r gives (Fig. 2-50)
Try=C/Ilnr+ G, (a)

We now apply both boundary conditions by replacing all occurrences of r and
Tir) in Eq. (&) with the specified values at the boundaries. We get

Iy )=T, - C/lnrn+C,=T,

Iiry)=7, — Clnn+C =T,
which are two equations in two unknowns, C; and Cs. Solving them simultane-
ously gives

c =" i c=1-2"h
L In(ry/ry) an 2o

In(ry/r)) Inn
Substituting them into Eq. (a) and rearranging, the variation of temperature
within the pipe is determined to be

][-l[l’l:l'llfl'|':'

In(ry/r)  ~

The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier's law to be

T, — T,

In(rafry)

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values

= 27(20 Wm-K)(20 m) S0 — 00°C e w
Q = 2n(20 Wim M) 1n(0.08/0.06) o0

Discussion . Note that the total rate of heat transfer through a pipe is constant,
butjtée{%éégﬂaéq = Q/(27rL) is not since it decreaseﬁéﬁeﬁg&%ﬂbéhét

transfer with increasing radius.

dr
dr

: C
Ocytioger = —kA 5~ = —k(2mrL) 7 = —2wkLC, = 2mkL (2-59)

Differential equation:

d( a‘r):D

a \"ar
fntegrate.
dT
el
Divide by r (r=0)
dI” €,
ar - r

Integrate again:

TNn=CiInr+ G

which is the general solution.

FIGURE 2-50

Basic steps involved in the solution
of the steady one-dimensional

heat conduction equation in
cylindrical coordinates.
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EXAMPLE 2-15 Heat Conduction through a Spherical Shell

Consider a spherical container of inner radius r, = 8 cm, outer radius r, =
10 ecm, and thermal conductivity K = 45 Wim-K, as shown in Fig. 2-51. The
inner and outer surfaces of the container are maintained at constant tempera-
tures of T, = 200°C and T, = 80°C, respectively, as a result of some chemical
reactions occurring inside. Obtain a general relation for the temperature distri-
bution inside the shell under steady conditions, and determine the rate of heat
loss from the container.

SOLUTION A spherical container is subjected to specified temperatures on its
surfaces. The variation of temperature and the rate of heat transfer are to be
determined.

Assumptions 1 Heat transfer is steady since there is no change with time.
2 Heat transfer is one-dimensional since there is thermal symmetry about the
midpoint, and thus T = T(r). 3 Thermal conductivity is constant. 4 There is no
heat generation.

Properties The thermal conductivity is given to be kK = 45 W/im-K.
Analysis The mathematical formulation of this problem can be expressed as

with boundary conditions
T(r) = T, = 200°C
T(r,) = T, = 80°C
Integrating the differential equation once with respect to ryields

,dT _

10/10/2013 T dr = Heat Transfer-CH2

FIGURE 2-51

Schematic for Example 2—135.
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where C, is an arbitrary constant. We now divide both sides of this equation by
r* to bring it to a readily integrable form,

ar_c
dr  r?

Again integrating with respect to r gives
Cl
Tiry = _T + Cg (a)

We now apply both boundary conditions by replacing all occurrences of r and
T(r) in the relation above by the specified values at the boundaries. We get

f'
Tirp=17T, — +C2 T,

-
ﬂr2}=T2 — _T2+C2:T2

which are two equations in two unknowns, C; and C,. Solving them simultane-
ously gives

Fira f'ng - !'JT[
H—r" (T, — T3) and C, = =T

C, =
Substituting into Eq. (a), the variation of temperature within the spherical shell
Is determined to be

s ryls — T,
T-:f'!-_— I —-—T)+——— (2-60)
F(ra — 1) Fh — K
The rate of heat loss from the container is simply the total rate of heat con-
duction through the container wall and is determined from Fourier's law

10/10/2013 C Heat Transfer 2
Qsphere = —kA E = _k{"]fﬂ'f'z}r_;: —47kC, = 47 k!lf‘as"f :(:H

dr (2-61)
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The numerical value of the rate of heat conduction through the wall is deter-
mined by substituting the given values to be

) — 4r(d5 W/m-K)(0.08 m)(©0.10 m) =0 — 80°C o kW
O = 4m( m-KO(0U08 m)(0. 10 m (D.IU—U.US}m_'+ "

Discussion Note that the total rate of heat transfer through a spherical shell is
constant, but the heat flux g = @/47r? is not since it decreases in the direc-
tion of heat transfer with increasing radius as shown in Fig. 2-52.

10/10/2013 Heat Transfer-CH2

4 < g
' 27.1 kW
, G _211kW . =337 kW/m?
Ay 4m(0.08 m)-
)y 271 kW .
q, :g __2TIEW . =216 kW/m?
= A, 4m(0.10 m)”
FIGURE 2-52

During steady one-dimensional
heat conduction in a spherical (or
cylindrical) container, the total rate
of heat transfer remains constant,
but the heat flux decreases with
increasing radius.

42



HEAT GENERATION IN A SOLID

Many practical heat transfer applications

Chemical
iInvolve the conversion of some form of energy reactions
into thermal energy in the medium. >
Such mediums are said to involve internal heat
generation, which manifests itself as a rise in
temperature throughout the medium. uclear

o W g

Some examples of heat generation are
- resistance heating in wires,
- exothermic chemical reactions in a solid, and

Electric
resistance
wires

- nuclear reactions in nuclear fuel rods

where electrical, chemical, and nuclear
energies are converted to heat, respectively. FIGURE 2-53
Heat generation in solids is

Heat generation in an electrical wire of outer . ,
CG[l]Il]Glll}f encountered in pr:-,u:tu:e,

radius r, and length L can be expressed as

* 2
. E ren, electric [ R{, )
g s .
€oen = \/ = 5 (W/m~)
' wire wr,
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The quantities of major interest in a medium with
heat generation are the surface temperature T,
and the maximum temperature T, that occurs
In the medium in steady operation.

Rate of
heat transfer
from the solid,

energy generation

Rate of )
. within the solid

O = 6y (W) Q =hA,(T,—T,) (W)
{}L’{']‘JV
— -~ + =
I, =T. hA

Heat generation

Egen = égenv

FIGURE 2-54

At steady conditions, the entire heat

generated 1n a solid must leave the
solid through its outer surface.

For a large plane wall of thickness 2L (A, = 24, and V = 2L A, ) with both
sides of the wall maintained at the same temperature 7, a long solid cvlinder
of radius r, (A, = 27r,L and V = 7772 L). and a solid sphere of radius r, (A, =

P 4 >
d7rkand V = 37r). Eq. 2-66 reduces to

.‘J *
L € ‘!__"-.‘]'J'f o

T =T, +—
2h

5, cylinder
Heat Transfer-CH2

€

>
gen

h

Tﬂ.p]:mc wall — Tx +

10/10/2013

€.l

Zen

3h

T

8, sphere

=T +
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dT . S~ ﬂ_ ; 2 o _‘:;gen
_kﬂrﬁzij_ r: E_IFL ur: ﬂ}.ZL _R{EJJF"L} dr —cgm[uf‘ L] — dT = ok

rdr

Integrating from r = 0 where 7(0) = T, to r = r, where T(r,) = T, yields

: .2 . 2 : .2
€genlo {)aanu €oenlo
‘ﬁ?—]'ﬂii."{.&‘}'ll['ﬂik‘]' - Ti} o T‘- = Ak 3Tm-,1x. plane wall - e "ﬁTm;lx. sphere -

T“rc.mcr - Ti} - Tﬂ' + AT,

8 max

AT,
Ll | T,
I"'_/ I LT'I

Heat generation
|

|
|
|
|
(i =IT:
|
|
|
|
[

|

|

|

|

|

b Symmetry
line

FIGURE 2-55

FIGURE 2-56

Heat conducted through a cylindrical . .
The maximum temperature in

shell of radius ris equal to the heat q svinmetrical solid with uniform
g&l%%?n%%lu ithin a shell. HeaF THARRI RS 45

1cat generation occurs at Its center.



VARIABLE THERMAL CONDUCTIVITY, k(T)

500 =

00| === Silver

300 T Copper
~— | [T™~Gold

200 \Hu minum

Tungsten

100 .y
____'_,_,_,—'-""-F’}L\_\_
Platinum
50
Iron
_."'"-/
20 Stainless steel,

AIST 304

Aluminum
oxide

Thermal conductivity (W/m-K)

Pyroceram ———_

/ Fused quartz
L

100 300 500 1000 2000 4000
Temperature (K)

FIGURE 2-62

Variation of the thermal conductivity
of1:Q/4@/208s with temperature.

When the variation of thermal conductivity with
temperature in a specified temperature interval is
large, it may be necessary to account for this
variation to minimize the error.

When the variation of thermal conductivity with
temperature k(T) is known, the average value of
the thermal conductivity in the temperature range
between T, and T, can be determined from

T,
k(T)dT
kg =
v LT,
- Tl - T: .,% [ T|
Qpl;ln{' wall — A':L\'j__' A L = z Ir, A{ ‘T}dT
) kg =L 2wl (T
i dan — STTRL = - (|
C cylinde WE T n(ry/ry)  In(ry/ry) ‘
; — Ak =T, Amrr, [T T
Qsphere = 4T Kavg 17 ry— 1y Iy o e
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The variation in thermal conductivity of a material with
temperature in the temperature range of interest can often be
approximated as a linear function and expressed as

_ T
K(T) = k(1 + BT) |
L Plane wall
B temperature coefficient
. K(T) = ky(1 + BT)
of thermal conductivity.
B>0
The average value of thermal conductivity T, =t
in the temperature range T, to T, in this
case can be determined from I
p<0
(T, 0 I »
ko(1 + BTdT _ | '
) kDA
kg == 7 Tk BT = kTuy) FIGURE 2-63
The variation of temperature in a plane
wall during steady one-dimensional
The average thermal conductivity in this heat conduction for the cases
. . . of constant and variable
case Is equal to the thermal conductivity

thermal conductivity.
value at the average temperature.
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