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Objectives

- Assess when the spatial variation of temperature is
negligible, and temperature varies nearly uniformly with
time, making the simplified lumped system analysis
applicable.

« Obtain analytical solutions for transient one-dimensional
conduction problems in rectangular, cylindrical, and
spherical geometries using the method of separation of
variables, and understand why a one-term solution is
usually a reasonable approximation.

» Solve the transient conduction problem in large mediums
using the similarity variable, and predict the variation of
temperature with time and distance from the exposed
surface.

« Construct solutions for multi-dimensional transient
conduction problems using the product solution approach.
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LUMPED SYSTEM ANALYSIS

Interior temperature of some
bodies remains essentially
uniform at all times during a
heat transfer process.

U
E0°C

70°C

70°C  70°C

The temperature of such
bodies can be taken to be a
function of time only, T(t).

(a) Copper ball

Heat transfer analysis that
utilizes this idealization is
known as lumped system
analysis.

A small copper ball
can be modeled as a
lumped system, but

a roast beef cannot.
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The increase in the
energy of the body

(Heat transfer into the bndy) _
during drf

during drt

hA(T., — T) dt = mc, dT

m=pV dT =dT—T,)

dT—-T.,  hA, ;
T—T. p'k/(_‘p(r

Integrating with

T=T, att=0

T=T() at t=t

Ity —T.  hA;

lnﬂ-?;__pWJ
m-T. _, hA,
— p U b = : I/H
.T‘; - T;c ‘ p V[ 'Jr;r { )
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SOLID BODY

M = mass
V= volume

P = density

T, = initial temperature

’ T'=1(1)

Q= hA [T, - T(1)]

The geometry and
parameters involved in the
lumped system analysis.

Time
constant



r—T._ _, , _ hA
T,l' o T:c ¢ [J V( ‘}'J
T(r) A
T

hg_ > hg > h]

=
I

The temperature of a lumped system
approaches the environment

This equation enables us to
determine the temperature
T(t) of a body at time t, or
alternatively, the time t
required for the temperature
to reach a specified value T(t).

The temperature of a body
approaches the ambient
temperature T_ exponentially.

The temperature of the body
changes rapidly at the
beginning, but rather slowly
later on. A large value of b
Indicates that the body
approaches the environment
temperature in a short time.
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(W) The rate of convection heat
transfer between the body
and its environment at time t

O(t) = hA[T(t) — T,]

Q = mc,[T(t) — T (kJ) The total amount of heat transfer
N between the body and the surrounding
medium over the time intervalt=0to t
O =mc(T. —T) (kJ) The maximum heat transfer between
<~ max P £s i - . .
the body and its surroundings

Heat transferto or froma 1; T. ¢
body reaches its T. o 1; 7. I«
maximum value when the
body reaches the
Q_anx_”“ (‘T I,)
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Criteria for Lumped System Analysis

Convection _V Characteristic
L.= A, length
\ h |
o Conduction v, T . I Biot number
'[\.
SOLID Lumped system analysis
BODY % s applicable if

,’ 4 \ Bi =< 0.1

When Bi < 0.1, the temperatures

‘ within the body relative to the
surroundings (i.e., T —-T_) remain
Bj = feat convection within 5 percent of each other.

" heat conduction

h AT Convection at the surface of the body
- k/IL.AT Conduction within the body

Bi

. L.Jk Conduction resistance within the body
BO/T0/3073 = Convection resistance JFFRS VANTEE fhe body U




10/10/2013

Jean-Baptiste Biot (1774-1862) was a
French physicist, astronomer, and
mathematician born in Paris, France.
Although younger, Biot worked on the
analysis of heat conduction even earlier
than Fourier did (1802 or 1803) and
attempted, unsuccessfully, to deal with
the problem of incorporating external
convection effects in heat conduction
analysis. Fourier read Biot’s work and
by 1807 had determined for himself
how to solve the elusive problem. In
1804, Biot accompanied Gay Lussac
on the first balloon ascent undertaken
for scientific purposes. In 1820, with
Felix Savart, he discovered the law
known as “Biot and Savart’s Law.” He
was especially interested in questions
relating to the polarization of light, and
for his achievements in this field he was
awarded the Rumford Medal of the Royal
Society in 1840. The dimensionless
Biot number (Bi) used in transient heat
transfer calculations i1s named after him.
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h=15wm2°ec Heat Transfer in Lumped Systems
Spherical

copper
ball

k=401 W/m-°C

Small bodies with hlgh T, =20°C
thermal conductivities
and low convection
coefficients are most
likely to satisfy the
criterion for lumped
system analysis.

hL. 15 x%0.02

Bi =

=0.00075 < 0.1

k 401

Convection

h =2000 W/m?.°C

When the convection coefficient h is high
and k is low, large temperature differences

- ;"E occur between the inner and outer regions
= of a large solid.

nglqg lg%tyv(?ﬁg heat transfer to a

—~ - - soid and passenger traffic to an island.
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TRANSIENT HEAT CONDUCTION IN LARGE PLANE

WALLS, LONG CYLINDERS, AND SPHERES WITH
SPATIAL EFFECTS . |
“' N -1=0
We will consider the variation of temperature F= )
with time and position in one-dimensional r:r“
problems such as those associated with a large T, .
plane wall, a long cylinder, and a sphere. i
0 L x
4 Initially T,
T Initially r. 7, Initally |7, r=1; L
h r=1, h h =8 h |
Transient temperature profiles in a
Y | plane wall exposed to convection
L «x

{%Q/J;Q/I?Qilﬁl ane wall

Ob———=r

(b) A long cyliblggt Transfe

from its surfaces for T,>T_.
T,

h
Schematic of the
r, Simple geometries in

which heat transfer is
one-dimensional. 10



Nondimensionalized One-Dimensional Transient
Conduction Problem

T. Initially
T=T,

A large plane wall

e | 3T 19T
Differential equation: —5 =——
o0xX" a of
Boundary conditions:
a7(0, 1) dT(L. 1)
: =0 and —k— = h|T(L, 1) — T.]
dx dx
[nitial condition: Ix,0) =T,

a=klpc, x = y/L 6(x, 1) =[T, 1) — T[T, — T,]

Dimensionless differential equation: ——

Dimensionless BC's:

Dioergiomzss initial condition:

920  L* o6 a6(1, 1)  hL
== =—— and = —H(1, 1
aX2 a ot ane ! k (1.9
9°0 _ a0
oX? ot
96(0, 1) a6(1, 1)
= () d = —Bif(l. T
09X a 09X (L, 7)
tHdeat Trandfer-CH4 11



Tl 1) =T,

X, ) =
(X, 7) T —T.
X
X==3
LhL
Bi =—
k
al
r=—=Fo
L2
(a) Original heat conduction problem:
..-2 n
1 rh 0=,
dx? o« of :
aT(0, ¢ dT(L.
: }:(} —k ( )=h[T{L.r}—Tx]
dx ]
T'=Fx Ltk o hT)

(b) Nondimension
e
eTJX-E

ad(0, 1) _
ax

Dimensionless temperature

Dimensionless distance from the center

Dimensionless heat transfer coefficient (Biot number)

Dimensioniess fime (Fourier number)

alized problem:

2 b, 0)=1

1]
a0(1, 7)

X —Bio(1, 7)

10/10/2013 ¢ = f(X, Bi, =

Nondimensionalization
reduces the number of
independent variables in one-
dimensional transient
conduction problems from 8 to
3, offering great convenience

et HR pifeSeltation of results.
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Exact Solution of One-Dimensional Transient
Conduction Problem

= FX)Gr) 1 &EF 1dG () G,
O, 7) = FOGM R 25 _ ¢ S 4 NF=0 and 4G =0
aT

Fax* G dr dx?

F = Cicos(AX) + Cysin(AX) and G = Cye™*7
0 = FG = Cse™""[Cicos(AX) + Cysin(AX)] = e "[Acos (AX) + Bsin(AX)]

A — C]C:; ELl'ld B = C2C3

at(0, ) o _ e
X =0 — —¢ "T(AAsin0 + BAcos0) =0 — B=0 — 0 =Ae " "cos(AX)

db(1. 7) . Y T Y .
X = —Bif(1.7) — —Ae " "AsinA = —Bide " "cosA — AtanA = Bi

Aptan A, = Bi § = ZAHE_"F”TEHI?&H/"(} AX.0)=1 — 1= Eﬂncns{)\n}f}
n=1

n=1

B B & ) | B 4sin A,
cos (A, X)dX = A, ﬂ cos (A, X)dx — A, = A+ sin(2A)
Heat Transfer-CH4
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TABLE 4-1

Summary of the solutions for one-dimensional transient conduction in a plane wall of
thickness 2L, a cylinder of radius r,and a sphere of radius r, subjected to convention from
all surfaces.”

Geometry Solution A,'s are the roots of
- 4 sin A 2
Plane wall 0= ——— e~ M cos (A /L | tan 1 5 Bi
; 2A + sin(2A,) cos (Ax/L) n 4
. . 2 -JI {An} 2 -u'ir {r;l”}
Cylinder 0= > —— S e M Ty (Ar/r,) A, — = Bi
:z=J}‘:‘! v'rﬁ (‘}l:z} +J]-{‘?ln} "Iﬂ{’}ln}
= d(sin A, — A, COS A,) .. Sin(A,x/L)
Sphere 0= e M | — A, cot A, = Bi
P ; 2, — sin(2\,) Ax/L nEOH A

*Here § = (T — TAT, — T.) is the dimensionless temperature, Bi = hL/ or hr, /k is the Biot number, Fo = 7 = ar/ L®
or ar / 12 is the Fourier number, and J, and J; are the Bessel functions of the first kind whose values are given in Table 4-3.
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9” — An E_AHT CDS()’L” X) ) )
o The analytical solutions of
_ 4sinA, transient conduction problems
2A, + sin(2A,) typically involve infinite series,
A \ — Bi and thus the evaluation of an
ptan A, = bl infinite number of terms to
Bt = 507 = 1 el e deter_mlne the _temperat_ure at a
specified location and time.

A,

n A, A, 6,

| 1.3138 1.2402 0.22321

p) 4.0336 —0.3442 0.00835 The t;el‘fn in the S?l‘ieﬂ solution of +
transient conduction problems decline

3 6.9096 0.1588  0.00001  rapidly as n and thus A, increases

A 0.8078 0.876 0.00000 because of the exponential decay

function with the exponent —A 7.
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Approximate Analytical and Graphical Solutions

The terms in the series solutions converge rapidly with increasing time,
and for t > 0.2, keeping the first term and neglecting all the remaining
terms in the series results in an error under 2 percent.

Solution with one-term approximation

I(x. 1) — T. 2
Plane wall: 0l = T —T, =Ae” 17 COS (AX/L),
o I(r,t) =T, _2,
Cylinder: 0oy = T —T. Aje™ M7 Jo(Arfr,),
I(r.1) — 1, 2_sin(Ar/r,)
: N _ \ J — A p— AT Nl 0
Sphere: O pn T T, A, ¢ Arir,
. . _ Iy —
Center of plane wall (x = 0): 0o, wal = ;*‘
. o Ty — 1.
Center of cylinder (r = 0): 0o, eyl = T T,
1 . - . — . - ﬂl o Tx
Qb Sphere (r = 0): Heat Transfiechis — 7. — 7.
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TABLE 4-2

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hil/k
for a plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of

TABLE 4-3

The zeroth- and first-order Bessel
functions of the first kind

radius r,)
Plane Wall Cylinder Sphere

Bi Ay A, A A, Ay A,
0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04  0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06  0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.7051 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.8 0.7910 1.1016 1.1450 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.1785 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.5029 2.5704 1.7870
6.0 1.3496 1.2479 2.0490 1.5253 2.6537 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.5526 2.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.5611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.5919 2.9857 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 3.0372 1.9898
40.0 1.5325 1.2723 2.3455 1.5993 3.0632 1.9942
50.0 1.5400 1.2727 2.3572 1.6002 3.0788 1.9962
5552 1.2731 2.3809 1.60 BERO
16&(?9)2013%.5?@8 1.2732 2.4048 l.EOg{éat i.rﬁﬁfer §%E%O

! Jaln7) Jy(n)
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8453 0.3688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
1.1 0.7196 0.4709
1.2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
1.7 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
2.6 —0.0968 —0.4708
2.8 —0.1850 —0.4097
3.0 —0.2601 —0.3391
3.2 —0.3202 —-0.2613
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(a) Midplane temperature
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10/10/2?13 ) ) Heaﬁ.‘l‘ ranst[er-FH4
temperature T_ with a convection coefficient or h.
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0, To-T.
1.0 ——x/L=0.2 EEmRE ”'ﬂ’ﬁw
{}L) : —1 5 is L :'/fﬂ"' /r‘;.fﬂ
0.8 [ 1HHE BVdllvaz
A v/
0.7
0.6 et A /
0.6 - A
K. fj
0.5 stf
0.4 i}'i i d f{f
0.3 |
0.9 L4
0.2 L
0.1 H- 1.0
0 =T Plate
0.01 0.1 1.0 10 100
1k
Bi = AL

(b) Temperature distribution
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Initially | 7
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The dimensionless temperatures anywhere in a plane wall,
cylinder, and sphere are related to the center temperature by

= cos|—|. =Jol — ). and =
00, wall L / 00, sph AT,

o

90, cyl

(a) Finite convection coefficient (b) Infinite convection coefficient

The specified surface temperature corresponds to the case of convection

to an environment at T_ with a convection coefficient h that is infinite.
10/10/2013 Heat Transfer-CH4
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0 fpolTan—Tlav 1|

' - _ _ _Lla—eav

Omax = .?H{‘!_,,{Ty_ —T,)=p 'k/(‘p( I.—T) (k) Ome  peT — TV Vv
Q SIn A, [
Pi(f.’.’fj H'(JH: — l — HU wall N Q - !](P[T{‘r‘ 1) — Tr]du
m 1/ wall L /}L] v

Cylind ( ) | = 26y oy A

viinder: =1 =20, ,,——

1 Qm ax 0. eyl )l]

f Sin Ay — A{COS A,
Sphere: =1 =360 on 23

 ma sph 1
F=0 max [0 Q
—_— [
h h
T, I,
(a) Maximum heat transfer (f — =) Bi= Q0
. @ = B|3r: Qm:uc_
The fraction of total heat transfer 2
yp to a specified time tis, (Grober chart) -
determlnee% using the Grober charts.

(b)) Actual heat transfer for time ¢



The physical significance of the Fourier number

The rate at which heat is conducted
af KkL* (1/L)y AT across L in"a body of volume L’
7 pc, L3/t AT ~ The rate at which heat is stored
in a body of volume L’

T

The Fourier number is a L

measure of heat L | I
conducted through a body :

relative to heat stored. :

A Iarge value of the Q : anmluclccl

Fourier number indicates - -

faster propagation of heat |
through a body. 1

b S .
'f *
- - /
Fourier number at time t = Qstored /

can be viewed as the ‘
ratio of the rate of heat + at  Peonducted
conducted to the rate of Tourier number: 7 = 72T

. B ) .
heat stored at that time. Qsmwd
10/10/2013 Heat Transfer-CH4 23




TRANSIENT HEAT CONDUCTION IN SEMI-
INFINITE SOLIDS

o0

Plane
surface

Schematic of a semi-infinite body.

For short periods of time, most bodies
can be modeled as semi-infinite solids
since heat does not have sufficient time

Semi-infinite solid: An idealized
body that has a single plane surface
and extends to infinity in all
directions.

The earth can be considered to be a
semi-infinite medium in determining

the variation of temperature near its

surface.

A thick wall can be modeled as a
semi-infinite medium if all we are
interested in is the variation of
temperature in the region near one
of the surfaces, and the other
surface is too far to have any impact
on the region of interest during the
time of observation.

tolpépedisite deep into the body. Heat Transfer-CH4 24



Analytical solution for the case of constant temperature T, on the surface

EFT_ 1 9T

Differential equation: — _
ox X ol

Boundary conditions: 70, 1) =T, and

Initial condition: I(x,0)=T,
Similarity variable: n= f_
V dat
d*T dT
> = —21
dn” dm
I0)y=7T, and T(n—o =) =T,
r-1, 2 (" . : :
e e “du=erf(n) =1 — erfc(n)
I 5 \__; T
2 (",
erff(n) =——= | e “du Error_
Vo function
2 ("
ol = 1 = —& ;. Complementary
“bil2013 Vi o oo error ftfRtfeRpster-CH4

I(x - o0 =T,

’T 14T X
—=—— and n=——77
x> a of \‘ff_’l.ﬂef
ar  dT am - X dT

ot dn at  op\/aar AN
a7 dTin 1 dT
dx  dnax  \/4qrdn
3T d (fiT) i 1 &T
axt  dn \ox

ax - dat (hf

Transformation of variables
in the derivatives of the

heat conduction equation

by the use of chain rule. 2°



1.0 I L TABLE 4-4
—_ / N The complementary error function
= * Va
;: 0.8 7 erfc (n) 7 erfc (n) 7 erfc (n)
s | | o000 1.00000 | 0.38 05910 |0.76 0.2825
3 0.6 / 20T 0.02 0.9774 | 0.40 0.5716 |0.78 0.2700
S | El‘f(ﬂ)ij e"'du + 004 09549 | 0.42 0.5525 | 0.80 0.2579
S 04 T |J0 0.06 0.9324 | 0.44 0.5338 | 0.82 0.2462
- B | 008 09099 | 046 0.5153 | 0.84 0.2349
2 0.2 0.10 0.8875 | 0.48 0.4973 | 0.86 0.2239
g Y 0.12 0.8652 | 0.50 0.4795 |0.88 0.2133
-|  0.14 08431 | 052 0.4621 | 0.90 0.2031
0061 L | ' ' e 0.16 0.8210 | 0.54 0.4451 |0.92 0.1932
00 05 1.0 15 20 25 30 18 0.7991 | 0.56 0.4284 |0.94 0.1837
Ui 0.20 0.7773 | 0.58 0.4121 | 0.96 0.1746
. 0.22 0.7557 | 0.60 0.3961 | 0.98 0.1658
Error function is a standard 024 0.7343 | 0.62 0.3806 | 1.00 0.1573
mathematical function, just like the 0.26 0.7131 | 0.64 0.3654 | 1.02 0.1492
sine and cosine functions, whose 0.28 0.6921 | 0.66 0.3506 | 1.04 0.1413
| os b q 030 0.6714 | 0.68 0.3362 | 1.06 0.1339
value varies between 0 and 1. 0.32 0.6509 | 0.70 0.3222 | 1.08 0.1267
0.34 0.6306 | 0.72 0.3086 | 1.10 0.1198
0.36 0.6107 | 0.74 0.2953 | 1.12 0.1132
. ol dT d : k(T, — T,
X | x= max|, — \/ At L N/
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Case 1: Specified Surface Temperature, 7. = constant Analytical
solutions for

Tx, t) — T, | d o k(T, —T) different
= erlc — an [\I) = —
T.— T, '\ at 950 \rat boundary

conditions on

Case 2: Specified Surface Heat Flux, ¢s = constant. the surface

1 [dat X’ N
Tx,r) — T, = 1 |—exp | —— | — xerfc —
(| N7 | T e

Case 3: Convection on the Surface, ffh(r) =h|T_—T(0,1)].

I(x,n — T, \ X hx  hat) X h\ at
= eric +

— exp + erfc
I.—T, 2V at koK NVat K

Case 4: Energy Pulse at Surface, ¢, = constant.

X

I'x,t)—1T =

3
exp
10/10/2013 KN\ 7t/ Hed X ahsfer-CH4 27



0.8 \
0.6

\ '/“ erfc(n) ~
0.4

- \ -1 Dimensionless
0.2

).2 AN temperature distribution
- \ - for transient conduction
0.0 | | ——t—u In a semi-infinite solid
0.0 0.5 1.0 [.5 2.0 \whose surface is
n= — maintained at a constant
\/E temperature T..
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100 100
80 80
60
- S
~ 4p ~ 40
20 0.1h 20
0.01 h \\4
D ‘\.. | I . D T T
0 0.2 0.4 0.6 0.8 1 2 0.6 0.8
/_.. Distance from surface x. m /_.. Distance from surface x, m
Ti=0°C L Ti=0°C
T,= 100°C 4, = 7000 W/m?
(@) Specified surface temperature, T, = constant. (b) Specified surface heat flux, g, = constant.

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 107> m?/s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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100

80

o o
B ~
20
0
0.4 0.6 0.8 - 0.4 0.6 0.8
l/** Distance from surface x, m /,4- Distance from surface x, m
! .= 2
T, =100°C T;=0°C 1 TI;=0°C
h—’”{}a’hn?-"c e, = 1.7x10" J/m
{c) Convection at the surface (c) Energy pulse at the surface, e, = constant

Variations of temperature with position and time in a large cast iron block (a = 2.31 X 107> m?/s,
k = 80.2 W/m - °C) initially at 0 °C under different thermal conditions on the surface.
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Variation of temperature with position and time in a semi-infinite

s@lighjpdtiglly at temperature T, subjegted i9-cenvection to an
environment at T., with a convection heat transfer coefficient of h.
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Contact of Two Semi-Infinite Solids

When two large bodies A and B, initially at
uniform temperatures T, ; and Ty ; are
brought into contact, they instantly achieve
temperature equality at the contact
surface.

If the two bodies are of the same material,
the contact surface temperature is the
arithmetic average, T, = (T, + Tg;)/2.

If the bodies are of different materials, the

surface temperature T, will be different Contact of two semi-infinite solids of
than the arithmetic average. different initial temperatures.
. , ka(Ty — Ty  kp(Ty —Tg)  Ta;— 1T [(kpc,)p
dsa = 4s.B —7 — — = — T = = Tl
5 V mrayt \ rapt Iy — Tp; \ (kpcp)a
V (kpc,)aTy; + V (kpc,)pTp,; The interface temperature of two bodies
I = o brought into contact is dominated by the

Vi(kpey)s + V (kpey)p body with the larger kpc,,.

EXAMPLE: When a person with a skin temperature of 35°C touches an aluminum
blggk/a1d then a wood block both gt 15 Crthie gontact surface temperature will be
15.9°C in the case of aluminum and 30°C in the case of wood.




TRANSIENT HEAT CONDUCTION IN
MULTIDIMENSIONAL SYSTEMS

« Using a superposition approach called the product solution, the transient
temperature charts and solutions can be used to construct solutions for the two-
dimensional and three-dimensional transient heat conduction problems
encountered in geometries such as a short cylinder, a long rectangular bar, a
rectangular prism, or a semi-infinite rectangular bar, provided that all surfaces of
the solid are subjected to convection to the same fluid at temperature T_, with the
same heat transfer coefficient h, and the body involves no heat generation.

« The solution in such multidimensional geometries can be expressed as the
product of the solutions for the one-dimensional geometries whose intersection
IS the multidimensional geometry.

Z, T,
h h L /:‘\ The temperature in a short
- 70 1) e Heat h - cylinder exposed to
transfer N7 P . convection from all surfaces
varies in both the radial and
axial directions, and thus
\r heat is transferred in both

10/¢9/2O43 cytinder (5 Short cyISALTIANS Bl GHdona)  CITECHIONS: 33



The solution for a multidimensional geometry is the product of the solutions for the
one-dimensional geometries whose intersection is the multidimensional body.

The solution for the two-dimensional short cylinder of height a and radius r, is
equal to the product of the nondimensionalized solutions for the one-dimensional
plane wall of thickness a and the long cylinder of radius r,.

(T{r.,r. f) — TI) B (T(,r. r) — TI) (T{r. 1) — TI)
_ short o _ plane _ infinite
T“- TI cylinder Tf- TI wall Tf- Tf

cylinder

T,

; e Plane wall
1

ll..- _\—-—.-'FM
|

v

T A short cylinder of radius
r, and height a is the

L | intersection of a long
M—‘u 1 '-" cylinder of radius r, and a

=~ o plane wall of thickness a.
ong
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T(x,v,t)— T,
T — T rectangular — Hw;.ll{"*: I}Huull(,“** )

I bar

~ Plane we T(x,1)— T,
/ Plane wall 0. (x.1) = ( (X, 7) )plm

I, =T, )] a
' // T(r.t)—T.
h QC},](F. 1= infinite

Tf - T‘" cylinder

— Tx,t)—T.,
// asemi—inf('r* 1 = T.— T semi-infinite

—;— , ) solid
4 //

( 7 Plane wall
~—a —

A long solid bar of rectangular profile
a x b is the intersection of two plane
walls of thicknesses a and b.
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The transient heat transfer for a two-dimensional
geometry formed by the intersection of two one-
dimensional geometries 1 and 2 is

Q}Jl];l‘i total. 2D Qm;l.\; [ Q“N-‘ 2 Q)lmﬁ |

Transient heat transfer for a three-dimensional body
formed by the intersection of three one-dimensional

bodies 1, 2, and 3 Is
+| = — | =
QJH;I.\L 2 QH];L\L | 2

Qm:ﬁ total. 3D Q}m;m ]
" Qnmx 3 T Qm:lx | Q”“'\" 2
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Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and
exposed to convection from all surfaces to a medium at T

=
-

B(r, 1) = Gey(r, 1)
[nfinite cvlinder

H‘:..'L-.. I, il':, = EL_'I.'I. {f‘.. ir:l 'ﬂaeml-]nf [.1-. F]
Semi-infinite cylinder

Blx, r, = 8. (1 1) By (X, 1)
Short evlinder

= ———
kl \k
f ,
/ |
h I"-,'
| =— X Y
“
\\. )
" o

61X, 1) = Bhemiving (X, 1)

sed dEip gmedium

S e

v
e, y.1)= 1'5'3:;,.3111]-1111' (X, 1) H-.;eml-jnf (¥, 1)

QuarfgeAtnirsrdiver4

Bix.y.z.0=
IEI.~'-3ml-i|]f (X, ) Hrsemj-lnf ':..1"~ f) IE":;nfml-jln' (2. 1)
Corner region of a large medinm



Multidimensional solutions expressed as products of one-dimensional
solutions for bodies that are initially at a uniform temperature T, and exposed
to convection from all surfaces to a medium at T

2L
——
o [L X

gI:.'I... F_I = g'n't'i.’II.I.I:'II'-' III_I
Infinite plate (or plane wall)

& (x, v = E,:II.'uall (x.0) gfmi-inr":.“ f)
Semi-infinite plate

Bix,v.z2,1) =
B, (X, 1) 6 v, 1) &

:{EI‘."II.-I.II.I."I:. :,'emi_.i_|1[-'I::~ ”
Quarter-infinite plate

Z

X

I
I
I
I
I
|
I
J - =

#
-

L

Blx,v.0) =8 (x. N8 4, (v 1)

{8iipgrstgmgular bar

Z
= ¥ —
s
- T

B(x,v.2,1) =
tI:II-'call (x, 1) IEII-'uall I:.I‘" ) Il;_IIs-e-mi-inr'I:::-' )
Semi-infinite rectangular bar
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Blx, vzl =
H._.,ﬂ“ (X, ”g'ﬁ:ﬂll (v, 1) E:I._.L.au (z.0)
Rectangular parallelepiped



Summary

*  Lumped System Analysis
v' Criteria for Lumped System Analysis

v' Some Remarks on Heat Transfer in Lumped Systems

« Transient Heat Conduction in Large Plane Walls, Long
Cylinders, and Spheres with Spatial Effects

v" Nondimensionalized One-Dimensional Transient Conduction
Problem

v Exact Solution of One-Dimensional Transient Conduction
Problem

v Approximate Analytical and Graphical Solutions
 Transient Heat Conduction in Semi-Infinite Solids

v' Contact of Two Semi-Infinite Solids

« Transient Heat Conduction in Multidimensional Systems
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