University of Diyala

College of Engineering

Mechanical Engineering Dep

Class: Third Class

Turbomachinery

Energy Transfer in Terms of lift & Drag coefficients

Assistant Lecturer
Layth Abed Hassnawe

the static condition of the fluid at inlet is determined by state 1 with state (<u>01 as the corresponding stagnation state</u>). the final static properties are determined by the state 2 with (<u>02 as the corresponding stagnation state</u>). If the process were reversible, the fluid static state would be <u>2s</u> and the stagnation state be

02s.

Process 1-2: is the actual expansion process.

Process 1-2s: is the isentropic or ideal expansion process.

The figure shows two blades of a cascade having chord C, and Pitch S. At sections 1 and 2.

The total pressures are P_{01} and P_{02} respectively with corresponding velocities of C_1 and C_2

The static pressure change across the cascade is given by :-

(P1- P2)=
$$\Delta P = \frac{\rho (c_{1}^{2} - c_{2}^{2})}{2-(P_{01} - P_{02}) m}$$

(P1- P2)=
$$\Delta P = \frac{\rho (c^2_1 - c^2_2)}{2 - (P_{01} - P_{02}) m}$$

Where the difference ($P_{01} - P_{02}$) is obtained from cascade test, it should be noted that $P_{01} > P_{02}$, Because no work is in the cascade and the flow is proceeded irreversible.

$$(P_{01} - P_{02})m = P_0 m$$

$$(P1-P2)=\Delta P = \frac{\rho (c^2_1 - c^2_2)}{2 - P_0 m}$$

Pressure loss coefficient = $(P_{om})/(0.5 \rho C_1^2)$

$$P_{o m}$$
 = stagnation pressure loss = mmHG
 $P_{o m}$ = N/m².

To convert from mmHG to N/m²

$$10^{3} * 9.81 * (P_{om} / 10^{3})$$

= 9.81 * P_{om}

COMPRESSOR

Going back to the main law to force of (Lift and drag)

$$C_D = \frac{D}{(0.5 \rho W_m^2 A)}$$

$$\Rightarrow$$
 D= S * P_om * Cos α_m

$$\alpha_{\rm m} = \tan^{-1} \left[\left(\tan \alpha_1 + \tan \alpha_2 \right) \right] / 2$$

$$P_0 m = (P_{01} - P_{02}) m$$
, m=Kg/s

$$\Rightarrow$$
 m=0.23(2a/c) +0.1(α 2/50)

 C_D = Drag coefficient = 2(s/c) * (P_{om} / ρ C_m^2) * ($Cos \alpha_m$)

compressor

$$C_m = C_a / Cos \alpha_m$$

$$C_a = C_1 * Cos \alpha_1$$
Inlet Absolute velocities m/s

D= Drag force =
$$C_D * \rho * (c/2) * A$$

A = (Chord length * span of moves @ velocity)

C (meter)

(meter)

Q: How can we calculate:

The power required to drive the aerofoil = ?

Power required = D *C

Consider a rotor blade shown in the figure with : W1,W2 = relative velocity vectors at inlet & outlet , W α = resultant velocity β_1 = relative inlet air angle , β_2 = relative outlet air angle , $\beta\alpha$ = mean flow angle =45°

Ratio (s/c) can be calculated through the following chart (which gives in question)

in Figure can be find the value of (s/c) s/c @ Point 1 = 1.5

@ Point 2 = 0.5@ Point 3 = 0.8

 $C_D = Drag coefficient = 2(s/c) * (P_{om} / \rho C_1^2) * (cos_{\alpha m}^3 / cos_{\alpha 1}^2)$

compressor cascade

 $C_L = Lift coefficient = 2(s/c)*(Cos \alpha_m)*(tan \alpha_1 - tan \alpha_2) - C_D tan \alpha_m$

Q: How can we calculate:

weight carried by the aerofoil should be equal to the lift force =weight which the wing carries

$$C_L$$
 = Lift coefficient = $L/0.5 \rho W_{\alpha}^2 A$

$$W_{\alpha} = C_{a}/\cos \beta_{\alpha}$$

 $\beta\alpha$ = mean flow angle =0° Cos 0 = 1

$$W_{\alpha} = C_{a}$$

weight which the wing carries

$$L = C_L * \rho * (c^2/2) * A$$

Resolving blade forces into the direction of rotation

TURBINE

$$C_L = Lift coefficient = 2(s/c) * (Cos $\alpha_m) * (tan \alpha_1 + tan \alpha_2) + C_D tan \alpha_m$$$

cascade

$$C_D = Drag coefficient = 2(s/c) * (P_{om} / \rho C_{1}^2)_* (cos^3 \alpha_m / cos^2 \alpha_2)$$

$$\alpha_{\rm m} = \tan^{-1} \left[\left(\tan \alpha_1 - \tan \alpha_2 \right) \right] / 2$$

C1= inlet or enters velocity @Cascade tunnel = m/s

The total drage cofficient is given by

$$C_{DT} = C_{D} + C_{DA} + C_{DS}$$

 C_{DA} = Annulus drag coefficients C_{DA} = 0.002*(s/I)

L=span of moves @ velocity = blade height

$$C_{Ds}$$
 = Secondary drag coefficients C_{Ds} = 0.018* C_{L^2}

C₁ = Lift coefficient