Republic of Iraq The Ministry Of Higher Education & Scientific Research

بسم الله الرحمن الرحيم

University: Diyala College: Engineering Department: Chemical

Stage: Third

Lecturer name: Mustafa S. Mahdi Qualification: M.Tech. thermal eng. Place of work: University of Diyala

Flow up of implementation celli pass play

Course Instructor	Mustafa Sabah Mahdi Abd				
E-mail	Mustafa.sabah@yahoo.com				
Title	Heat Transfer				
Course Coordinator	Annually				
Course Objective	This course is intended to serve as an introduction to the heat transfer laws and the basic to design heat transfer equipment				
Course Description	Illustrated in the attached tables				
Textbook	P. Holman, "Heat Transfer", McGraw - Hill, ^,th Ed., ١٩٩٧.				
Course Assessments	Term Tests	Laboratory	Quizzes	Project	Final Exam
Godi Se 7155e55iTierres	۲۰٪	1.%	1.%	-	٦٠٪
General Notes					

Republic of Iraq

The Ministry Of Higher Education

& Scientific Research

University: Diyala
College: Engineering
Department: Chemical

Stage: Third

Lecturer name: Mustafa S. Mahdi Qualification: M.Tech. thermal eng. Place of work: University of Diyala

Course Weekly Outline

Week	Date	Topes Covered	Lab. Experiment Assignments	Notes
١	TT and TT, Sep. T.15	Introduction		
۲	Ya and T. Sep. Y. 15	General differential equation for heat conduction in Cartesian coordinates		
٣	· 7 and V, Oct. Y · Y ·	General differential equation for heat conduction in cylindrical and spherical coordinates		
٤	17 and 12, Oct. 7.12	One-dimensional steady state conduction		
0	Y and YI, Oct. Y . I &	One-dimensional steady state conduction, radial systems (cylinder and sphere)		
٦	YV and YA, Oct. Y.15	Heat flow through composite slabs		
٧	^π and ^ε , Nov. Υ· \ ε	Overall heat transfer coefficient		
٨	1. and 11, Nov. 7.15	Critical thickness of insulation		
٩	Y and YA, Nov.	One-dimensional, steady state heat conduction, with internal heat generation for plane slab		
١.	Yé and Yo, Nov.	One-dimensional, steady state heat conduction, with internal heat generation for cylinder and sphere		
11	• 1 and 7, Dec. 7•12	Heat transfer from extended surfaces (fins)		
17	• A and 9, Dec. Y•15	Infinitely long fin. Fin of finite length		
15	10 and 17, Dec. 7.15	Performance of fins		
١٤	TT and TT, Dec.	Lumped-heat-capacity system		
10	Ya and Ya, Dec.	Transient conduction in large plane walls, long cylinders and spheres		
١٦	o and Jun. You	Transient heat flow in a semi- infinite solid		

Half – year break					
١٧	17 and 17, Feb. 7.10	Velocity and thermal boundary	Measurement of		
		layer	thermal conductance		
١٨	Υ٣ and Υ٤, Feb. Υ·١ο	Exact Solutions of Boundary	Heat transfer by force		
		Layer Equations	convection		
۱۹	· Y and · T, Mar.	Relation between the fluid	Heat transfer by		
	7.10	friction and heat transfer	natural convection		
		coefficient in laminar flow for a			
۲.	• and • Mar.	flat plate. Force convection	Heat evelopeen		
1 *	7.10	Force convection	Heat exchanger		
71	TT and YE, Mar.	Force convection equations			
77	"• and "1 Mar. "• 10				
		natural convection			
74	· and · V, April				
7 £	1π and 1ξ, April	radiation			
70	Y. and YI, April	boiling			
	7.10	- Commig			
77	۲۷ and ۲۸, April,	condensation			
	7.10				
77	• £ and • •, May,	Heat exchanger			
۲۸	11 and 17, May,	LMTD and NTU			
	7.10				
۲٩	۱۸ and ۱۹, May,	Performance of Heat exchanger			
	7.10				
٣٠	Yo and YI, May,	Heat exchanger design			
	7.10				

INSTRUCTOR Signature:	Dean Signature
•	U