
Getting	Started	with	Java

The	thing	that	Java	tries	to	do	and	is	actually	remarkably	successful	at	is	spanning
a	lot	of	different	domains,	so	you	can	do	app	server	work,	you	can	do	cell	phone
work,	you	can	do	scientific	programming,	you	can	write	software,	do	interplanetary
navigation,	all	kinds	of	stuff…

—Java	language	creator	James	Gosling

When	the	Java	programming	language	was	unleashed	on	the	public	in	1995,	it	was	an
inventive	toy	for	the	Web	that	had	the	potential	to	be	more.

The	word	“potential”	is	a	compliment	that	comes	with	an	expiration	date.	Sooner	or	later,
potential	must	be	realized,	or	new	words	and	phrases	are	used	in	its	place,	such	as
“slacker,”	“letdown,”	“waste,”	or	“major	disappointment	to	your	mother	and	me.”

As	you	develop	your	skills	in	this	book’s	21	one-day	tutorials,	you’ll	be	in	a	good	position
to	judge	whether	the	language	has	lived	up	to	more	than	a	decade	of	hype.

You’ll	also	become	a	Java	programmer	with	a	lot	of	potential.

The	Java	Language
Now	in	its	ninth	major	release,	Java	has	lived	up	to	the	expectations	that	accompanied	its
arrival.	More	than	four	million	programmers	have	learned	the	language	and	are	using	it	in
places	such	as	NASA,	IBM,	Kaiser	Permanente,	and	Google.	It’s	a	standard	part	of	the
academic	curriculum	at	many	computer	science	departments	around	the	world.	First	used
to	create	simple	programs	on	web	pages,	Java	can	be	found	today	in	the	following	places
(and	many	more):

	Web	servers

	Relational	databases

	Orbiting	telescopes

	E-book	readers

	Cell	phones

Although	Java	remains	useful	for	web	developers,	its	ambitions	today	extend	far	beyond
the	Web.	Java	has	matured	into	one	of	the	most	popular	general-purpose	programming
languages.

History	of	the	Language
The	story	of	the	Java	language	is	well	known	by	this	point.	James	Gosling	and	a	team	of
developers	were	working	on	an	interactive	TV	project	at	Sun	Microsystems	in	the	mid-
1990s	when	Gosling	became	frustrated	with	the	language	being	used.	C++	was	an	object-
oriented	programming	language	developed	a	decade	earlier	as	an	extension	of	the	C
language.

To	address	some	of	the	things	that	frustrated	him	about	C++,	Gosling	holed	up	in	his

01: Assist. Lec. Dhafer T. Shihab
1

office	and	created	a	new	language	that	was	suitable	for	his	project.

Although	that	interactive	TV	effort	flopped,	Gosling’s	language	had	unforeseen
applicability	to	a	new	medium	that	was	becoming	popular	at	the	same	time:	the	Web.

Java	was	released	to	the	public	for	the	first	time	in	1995.	Although	most	of	the	language’s
features	were	primitive	compared	with	C++	(and	Java	today),	special	Java	programs	called
applets	could	be	run	as	part	of	web	pages	on	the	most	popular	web	browser	at	that	time,
Netscape	Navigator.

This	functionality—the	first	interactive	programming	available	on	the	Web—drew	so
much	attention	to	the	new	language	that	several	hundred	thousand	programmers	learned
Java	in	its	first	six	months.

Even	after	the	novelty	of	Java	web	programming	wore	off,	the	overall	benefits	of	the
language	became	clear,	and	the	programmers	stuck	around.	There	are	more	professional
Java	programmers	today	than	C++	programmers.

Sun	Microsystems	controlled	the	development	of	the	Java	language	from	its	inception
until	2010,	when	the	company	was	acquired	by	the	database	and	enterprise	software	giant
Oracle	in	a	$7.4	billion	deal.	Oracle,	a	longtime	user	of	the	language	on	its	own	products,
has	a	strong	commitment	to	supporting	Java	and	continues	to	increase	its	capabilities	with
each	new	release.

Introduction	to	Java
Java	is	an	object-oriented,	platform-neutral,	secure	language	designed	to	be	easier	to	learn
than	C++	and	harder	to	misuse	than	C	and	C++.

Object-oriented	programming	(OOP)	is	a	software	development	methodology	in	which	a
program	is	conceptualized	as	a	group	of	objects	that	work	together.	Objects	are	created
from	templates	called	classes,	and	they	contain	data	and	the	statements	required	to	use	that
data.	Java	is	primarily	object-oriented,	as	you’ll	see	later	today	when	you	create	your	first
class	and	use	it	to	create	objects.

Platform	neutrality	is	a	program’s	ability	to	run	without	modification	in	different
computing	environments.	Java	programs	are	transformed	into	a	format	called	bytecode
that	can	be	run	by	any	computer	or	device	equipped	with	a	Java	Virtual	Machine	(JVM).
You	can	create	a	Java	program	on	a	Windows	10	machine	that	runs	on	a	Linux	web	server,
an	Apple	Mac	using	OS	10.10,	and	a	Samsung	Android	phone.	As	long	as	a	platform	has	a
JVM,	it	can	run	the	bytecode.

Although	the	relative	ease	of	learning	one	language	over	another	is	always	a	point	of
contention	among	programmers,	Java	was	designed	to	be	easier	than	C++	primarily	in	the
following	ways:

	Java	automatically	takes	care	of	memory	allocation	and	deallocation,	freeing
programmers	from	this	error-prone	and	complex	task.

	Java	doesn’t	include	pointers,	a	powerful	feature	for	experienced	programmers	that
can	be	easily	misused	and	introduce	major	security	vulnerabilities.

	Java	includes	only	single	inheritance	in	object-oriented	programming.

2

The	lack	of	pointers	and	the	presence	of	automatic	memory	management	are	two	key
elements	of	Java	security.

Selecting	a	Development	Tool
Now	that	you’ve	been	introduced	to	Java	as	a	spectator,	it’s	time	to	put	some	of	these
concepts	into	play	and	create	your	first	Java	program.

Before	you	get	started,	you	must	have	software	on	your	computer	that	can	be	used	to	edit,
prepare,	and	run	Java	programs	that	use	the	most	up-to-date	version	of	the	language:	Java
8.

Several	popular	integrated	development	environments	(IDEs)	for	Java	support	version	8,
including	IntelliJ	IDEA	and	the	open	source	software	Eclipse.

If	you	are	learning	to	use	these	tools	at	the	same	time	as	you	are	learning	Java,	it	can	be	a
daunting	task.	Most	IDEs	are	aimed	primarily	at	experienced	programmers	who	want	to
be	more	productive,	not	new	people	who	are	taking	their	first	foray	into	a	new	language.

The	simplest	tool	for	Java	development	is	the	Java	Development	Kit,	which	is	free	and
can	be	downloaded	from	www.oracle.com/technetwork/java/javase/downloads.

Whenever	Oracle	releases	a	new	version	of	Java,	it	also	makes	a	free	development	kit
available	over	the	Web	to	support	that	version.	The	current	release	is	Java	SE
Development	Kit	8.

The	drawback	of	developing	Java	programs	with	the	JDK	is	that	it	is	a	set	of	command-
line	tools.	Therefore,	it	has	no	graphical	user	interface	for	editing	programs,	turning	them
into	Java	classes,	and	testing	them.	(A	command	line	is	simply	a	prompt	for	typing	text
commands.	It’s	available	in	Windows	as	the	program	Command	Prompt.)

Oracle	offers	an	excellent	free	IDE	for	Java	programmers	called	NetBeans	on	the	website
www.netbeans.org.	Because	NetBeans	is	easier	to	use	for	most	people	than	the	JDK,	it’s
employed	throughout	this	

As	soon	as	you	have	a	Java	development	tool	on	your	computer	that	supports	Java	8,
you’re	ready	to	dive	into	the	language.

If	you	don’t	have	one	on	your	computer	yet,	now’s	the	time	to	set	one	up—preferably
NetBeans.

(or newer)

lectures.

3

http://www.oracle.com/technetwork/java/javase/downloads
http://www.netbeans.org

Tip

For	more	information	on	the	other	IDEs	for	Java,	visit	the	IDEA	site	at
www.jetbrains.com/idea	and	Eclipse	at	www.eclipse.org.	

Object-Oriented	Programming
The	biggest	challenge	for	a	new	Java	programmer	is	learning	object-oriented
programming	while	learning	the	Java	language.

Although	this	might	sound	daunting	if	you	are	unfamiliar	with	this	style	of	programming,
think	of	it	as	a	two-for-one	discount	for	your	brain.	You	will	learn	object-oriented
programming	by	learning	Java.	There’s	no	other	way	to	make	use	of	the	language.

Object-oriented	programming	is	an	approach	to	building	computer	programs	that	mimics
how	objects	are	assembled	in	the	physical	world.

By	using	this	style	of	development,	you	can	create	programs	that	are	more	reusable,
reliable,	and	understandable.

To	get	to	that	point,	you	first	must	explore	how	Java	embodies	the	principles	of	object-
oriented	programming.

If	you	already	are	familiar	with	object-oriented	programming,	much	of	today’s	material
will	be	a	review	for	you.	Even	if	you	skim	over	the	introductory	material,	you	should
create	the	sample	program	to	get	some	experience	in	developing,	compiling,	and	running
Java	programs.

There	are	many	ways	to	conceptualize	a	computer	program.	One	way	is	to	think	of	a
program	as	a	series	of	instructions	carried	out	in	sequence,	which	commonly	is	called
procedural	programming.	Some	programmers	start	by	learning	a	procedural	language
such	as	a	version	of	BASIC.

Procedural	languages	mirror	how	a	computer	carries	out	instructions,	so	the	programs	you
write	are	tailored	to	the	computer’s	manner	of	doing	things.	One	of	the	first	things	a
procedural	programmer	must	learn	is	how	to	break	a	problem	into	a	series	of	simple	steps
followed	in	order.

Object-oriented	programming	looks	at	a	computer	program	from	a	different	angle,
focusing	on	the	task	the	program	was	created	to	perform,	not	on	how	a	computer	handles
tasks.

In	object-oriented	programming,	a	computer	program	is	conceptualized	as	a	set	of	objects
that	work	together	to	accomplish	a	task.	Each	object	is	a	separate	part	of	the	program,
interacting	with	the	other	parts	in	highly	controlled	ways.

For	a	real-life	example	of	object-oriented	design,	consider	a	stereo	system.	Most	systems
are	built	by	hooking	together	a	bunch	of	different	objects,	which	are	more	commonly
called	components.	If	you	came	back	from	a	stereo	shopping	trip,	you	might	bring	home
all	these	objects:

4

http://www.jetbrains.com/idea
http://www.eclipse.org

	Speaker	components	that	play	midrange	and	high-frequency	sounds.

	A	subwoofer	component	that	plays	low	bass	frequency	sounds.

	A	tuner	component	that	receives	radio	broadcast	signals.

	A	CD	player	component	that	reads	audio	data	from	CDs.

	A	turntable	component	that	reads	audio	data	from	vinyl	records.

These	components	are	designed	to	interact	with	each	other	using	standard	input	and	output
connectors.	Even	if	you	bought	speakers,	subwoofer,	tuner,	CD	player,	and	turntable	made
by	different	companies,	you	could	combine	them	to	form	a	stereo	system—as	long	as	each
component	has	standard	connectors.

Object-oriented	programming	works	under	the	same	principle:	You	put	together	a	program
by	creating	new	objects	and	connecting	them	to	each	other	and	to	existing	objects
provided	by	Oracle	or	another	software	developer.	Each	object	is	a	component	in	the
larger	program,	and	they	are	combined	together	in	a	standard	way.	Each	object	plays	a
specific	role	in	the	larger	program.

An	object	is	a	self-contained	element	of	a	computer	program	that	represents	a	related
group	of	features	and	that	is	designed	to	accomplish	specific	tasks.

Objects	and	Classes
Object-oriented	programming	is	modeled	on	the	observation	that	in	the	physical	world,
objects	are	made	up	of	many	kinds	of	smaller	objects.

The	capability	to	combine	objects	is	only	one	aspect	of	object-oriented	programming.
Another	important	feature	is	the	use	of	classes.

A	class	is	a	template	used	to	create	an	object.	Every	object	created	from	the	same	class	has
similar	features.

Classes	embody	all	features	of	a	particular	set	of	objects.	When	you	write	a	program	in	an
object-oriented	language,	you	don’t	define	individual	objects.	Instead,	you	define	classes
used	to	create	those	objects.

If	you	were	writing	a	networking	program	in	Java,	you	could	create	a
HighSpeedModem	class	that	describes	the	features	of	all	Internet	modems.	These
devices	have	the	following	common	features:

	They	connect	to	a	computer’s	ethernet	port.

	They	send	and	receive	information.

	They	communicate	with	Internet	servers.

The	HighSpeedModem	class	serves	as	an	abstract	model	for	the	concept	of	such	a
modem.	To	have	something	concrete	you	can	manipulate	in	a	program,	you	need	an
object.	You	must	use	the	HighSpeedModem	class	to	create	a	HighSpeedModem
object.	The	process	of	creating	an	object	from	a	class	is	called	instantiation,	which	is	why
objects	also	are	called	instances.

5

A	HighSpeedModem	class	can	be	used	to	create	different	HighSpeedModem	objects
in	a	program,	each	with	different	features,	such	as	the	following:

	Some	function	as	a	wireless	Internet	gateway,	whereas	others	do	not.

	Some	can	be	used	as	a	network	router.

	They	support	different	connection	speeds.

Even	with	these	differences,	two	HighSpeedModem	objects	still	have	enough	in
common	to	be	recognizable	as	related	objects.

Here’s	another	example:	Using	Java,	you	could	create	a	class	to	represent	all	command
buttons—the	clickable	rectangles	that	appear	on	windows,	dialogs,	and	other	parts	of	a
program’s	graphical	user	interface.

When	the	CommandButton	class	is	developed,	it	could	define	these	features:

	The	text	displayed	on	the	button

	The	size	of	the	button

	Aspects	of	its	appearance,	such	as	whether	it	has	a	3D	shadow

The	CommandButton	class	also	could	define	how	a	button	behaves	when	it	is	clicked.

After	you	define	the	CommandButton	class,	you	can	create	instances	of	that	button—in
other	words,	CommandButton	objects.	The	objects	all	take	on	the	basic	features	of	a
button	as	defined	by	the	class.	But	each	one	could	have	a	different	appearance	and	slightly
different	behavior,	depending	on	what	you	need	that	object	to	do.

By	creating	a	CommandButton	class,	you	don’t	have	to	keep	rewriting	the	code	for	each
button	you	want	to	use	in	your	programs.	In	addition,	you	can	reuse	the
CommandButton	class	to	create	different	kinds	of	buttons	as	you	need	them,	both	in	this
program	and	in	others.

When	you	write	a	Java	program,	you	design	and	construct	a	set	of	classes.	When	your
program	runs,	objects	are	created	from	those	classes	and	used	as	needed.	Your	task	as	a
Java	programmer	is	to	create	the	right	set	of	classes	to	accomplish	what	your	program
needs	to	accomplish.

Fortunately,	you	don’t	have	to	start	from	scratch.	The	Java	language	includes	the	Java
Class	Library,	more	than	4,000	classes	that	implement	most	of	the	functionality	you	will
need.	These	classes	are	installed	along	with	a	development	tool	such	as	the	JDK.

When	you’re	talking	about	programming	in	the	Java	language,	you’re	actually	talking
about	using	this	class	library	and	some	standard	keywords	and	operators	defined	in	Java.

The	class	library	handles	numerous	tasks,	such	as	mathematical	functions,	text,	graphics,
user	interaction,	and	networking.	Working	with	these	classes	is	no	different	from	working
with	the	Java	classes	you	create.

For	complicated	Java	programs,	you	might	create	a	whole	set	of	new	classes	that	form
their	own	class	library	for	use	in	other	programs.

Reuse	is	one	of	the	fundamental	benefits	of	object-oriented	programming.

6

Note

In	the	Java	Class	Library,	one	of	Java’s	standard	classes,	JButton	in	the
javax.swing	package,	encompasses	all	the	functionality	of	this	hypothetical
CommandButton	example,	along	with	a	lot	more.	

Attributes	and	Behavior
A	Java	class	consists	of	two	distinct	types	of	information:	attributes	and	behavior.

Both	of	these	are	present	in	MarsRobot,	a	project	you	will	implement	today	as	a	class.
This	project,	a	simple	simulation	of	a	planetary	exploration	vehicle,	is	inspired	by	the
Mars	Exploration	Rovers	used	by	NASA’s	Jet	Propulsion	Laboratory	program	to	do
research	on	the	surface	and	geology	of	the	planet	Mars.

Before	you	create	the	program,	you	need	to	learn	some	things	about	how	object-oriented
programs	are	designed	in	Java.	The	concepts	may	be	difficult	to	understand	as	you’re
introduced	to	them,	but	you’ll	get	plenty	of	practice	with	them	throughout	the	

Attributes	of	a	Class	of	Objects
Attributes	are	the	data	that	differentiate	one	object	from	another.	They	can	be	used	to
determine	the	appearance,	state,	and	other	qualities	of	objects	that	belong	to	that	class.

An	exploration	vehicle	could	have	the	following	attributes:

	Status—Exploring,	moving,	returning	home

	Speed—Measured	in	miles	per	hour

	Temperature—Measured	in	degrees	Fahrenheit

In	a	class,	attributes	are	defined	by	variables—places	to	store	information	in	a	computer
program.	Instance	variables	are	attributes	that	have	values	that	differ	from	one	object	to
another.

An	instance	variable	defines	an	attribute	of	one	particular	object.	The	object’s	class
defines	what	kind	of	attribute	it	is,	and	each	instance	stores	its	own	value	for	that	attribute.
Instance	variables	also	are	called	object	variables	or	member	variables.

Each	class	attribute	has	a	single	corresponding	variable.	You	change	that	attribute	of	the
object	by	changing	the	value	of	the	variable.

For	example,	the	MarsRobot	class	defines	a	speed	instance	variable.	This	must	be	an
instance	variable	because	each	robot	travels	at	a	different	speed.	The	value	of	a	robot’s
speed	instance	variable	could	be	changed	to	make	the	robot	move	more	quickly	or
slowly.

Instance	variables	can	be	given	a	value	when	an	object	is	created	and	then	stay	constant
throughout	the	life	of	the	object.	They	also	can	be	given	different	values	as	the	object	is
used	in	a	running	program.

lectures.

7

For	other	variables,	it	makes	more	sense	to	have	one	value	that	is	shared	by	all	objects	of
that	class.	These	attributes	are	called	class	variables.

A	class	variable	defines	an	attribute	of	an	entire	class.	The	variable	applies	to	the	class
itself	and	to	all	its	instances,	so	only	one	value	is	stored,	no	matter	how	many	objects	of
that	class	have	been	created.

An	example	of	a	class	variable	for	the	MarsRobot	class	would	be	a	topSpeed	variable
that	holds	the	maximum	speed	any	robot	is	capable	of	traveling.	If	an	instance	variable
were	created	to	hold	the	speed,	each	object	could	have	a	different	value	for	this	variable.
That	could	cause	problems	because	no	robot	is	capable	of	exceeding	it.

Using	a	class	variable	prevents	this	problem	because	all	objects	of	that	class	share	the
same	value	automatically.	Each	MarsRobot	object	would	have	access	to	that	variable.

Behavior	of	a	Class	of	Objects
Behavior	refers	to	the	things	that	a	class	of	objects	can	do—both	to	themselves	and	to
other	objects.	Behavior	can	be	used	to	change	an	object’s	attributes,	receive	information
from	other	objects,	and	send	messages	to	other	objects,	asking	them	to	perform	tasks.

A	Mars	robot	could	have	the	following	behavior:

	Check	the	current	temperature

	Begin	a	survey

	Accelerate	or	decelerate	its	speed

	Report	its	current	location

Behavior	for	a	class	of	objects	is	implemented	using	methods.

Methods	are	groups	of	related	statements	in	a	class	that	perform	a	specific	task.	They	are
used	to	accomplish	specific	tasks	on	their	own	objects	and	on	other	objects	and	are
comparable	to	functions	and	subroutines	in	other	programming	languages.	A	well-
designed	method	performs	only	one	task.

Objects	communicate	with	each	other	using	methods.	A	class	or	object	can	call	methods	in
another	class	or	object	for	many	reasons,	including	the	following:

	To	report	a	change	to	another	object

	To	tell	the	other	object	to	change	something	about	itself

	To	ask	another	object	to	do	something

For	example,	two	Mars	robots	could	use	methods	to	report	their	locations	to	each	other
and	avoid	collisions,	and	one	robot	could	tell	another	to	stop	so	that	it	can	pass	by	safely.

Just	as	there	are	instance	and	class	variables,	there	also	are	instance	and	class	methods.
Instance	methods,	which	are	usually	just	called	methods,	are	used	when	you	are	working
with	an	object	of	the	class.	If	a	method	changes	an	individual	object,	it	must	be	an	instance
method.	Class	methods	apply	to	a	class	itself.

8

Creating	a	Class
To	see	classes,	objects,	attributes,	and	behavior	in	action,	you	will	develop	a	MarsRobot
class,	create	objects	from	that	class,	and	work	with	them	in	a	running	program.

Note

The	main	purpose	of	this	project	is	to	explore	object-oriented	programming.	

This	book	uses	NetBeans	as	its	primary	development	tool	for	creating	Java	programs.
NetBeans	organizes	Java	classes	into	projects.	It	will	be	useful	to	have	a	project	to	hold
the	classes	you	create	in	this	book.	If	you	have	not	done	so	already,	create	a	project:

1.	Choose	the	menu	command	File,	New	Project.	The	New	Project	dialog	appears.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	Projects	pane,	choose	Java	Application	and	click	Next.	The	New	Java
Application	dialog	opens.

4.	In	the	Project	Name	text	field,	enter	the	name	of	the	project	(I	used	Java21).	The
Project	Folder	field	is	updated	as	you	type	the	name.	Make	a	note	of	this	folder—it’s
where	your	Java	programs	can	be	found	on	your	computer.

5.	Deselect	the	check	box	Create	Main	Class.

6.	Click	Finish.

The	project	is	created.	You	can	use	it	throughout	the	 	for	the	programs	you	work	on.

If	you	created	a	project	earlier,	it	probably	will	be	open	in	NetBeans.	(If	not,	choose	the
menu	command	File,	Open	Recent	Project	to	select	it.)	A	new	class	you	create	will	be
added	to	this	project.

To	begin	your	first	class,	run	NetBeans	and	start	a	new	program:

1.	Choose	the	menu	command	File,	New	File.	The	New	File	dialog	opens.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	File	Types	pane,	choose	Empty	Java	File	and	click	Next.	The	Empty	Java	File
dialog	opens.

4.	In	the	Class	Name	text	field,	enter	MarsRobot.	The	file	you’re	creating	is	shown
in	the	Created	File	field,	which	can’t	be	edited.	This	file	has	the	name
MarsRobot.java.

5.	Click	Finish.

The	NetBeans	source	code	editor	opens	with	nothing	in	it.	Fill	it	with	the	code	in	Listing
1.1.	When	you’re	done,	save	the	file	using	the	menu	command	File,	Save.	The	file
MarsRobot.java	will	be	saved.

lectures

9

Note

Don’t	type	the	numbers	at	the	beginning	of	each	line	in	the	listing.	They’re	not	part
of	the	program.	They	are	included	so	that	individual	lines	can	be	described	for
instructive	purposes	in	this	book.

LISTING	1.1	The	Full	Text	of	MarsRobot.java.

	1:	class	MarsRobot	{
	2:					String	status;
	3:					int	speed;
	4:					float	temperature;
	5:
	6:					void	checkTemperature()	{
	7:									if	(temperature	<	-80)	{
	8:													status	=	“returning	home”;
	9:													speed	=	5;
10:									}
11:					}
12:
13:					void	showAttributes()	{
14:									System.out.println(“Status:	“	+	status);
15:									System.out.println(“Speed:	“	+	speed);
16:									System.out.println(“Temperature:	“	+	temperature);
17:					}
18:	}

When	you	save	this	file,	if	it	has	no	errors,	NetBeans	automatically	creates	a	MarsRobot
class.	This	process	is	called	compiling	the	class,	and	it	uses	a	tool	called	a	compiler.	The
compiler	turns	the	lines	of	source	code	into	bytecode	that	the	Java	Virtual	Machine	can
run.

The	class	statement	in	line	1	of	Listing	1.1	defines	and	names	the	MarsRobot	class.
Everything	contained	between	the	opening	brace	{	on	line	1	and	the	closing	brace	}	on
line	18	is	part	of	this	class.

The	MarsRobot	class	contains	three	instance	variables	and	two	instance	methods.

The	instance	variables	are	defined	in	lines	2–4:
String	status;
int	speed;
float	temperature;

The	variables	are	named	status,	speed,	and	temperature.	Each	is	used	to	store	a
different	type	of	information:

	status	holds	a	String	object—a	group	of	letters,	numbers,	punctuation,	and
other	characters.

	speed	holds	an	int,	a	numeric	integer	value.

	temperature	holds	a	float,	a	floating-point	number.

10

String	objects	are	created	from	the	String	class,	which	is	part	of	the	Java	Class
Library.

Tip

As	you	might	have	noticed	from	the	use	of	String	in	this	program,	a	class	can	use
an	object	as	an	instance	variable.

The	first	instance	method	in	the	MarsRobot	class	is	defined	in	lines	6–11:

void	checkTemperature()	{
				if	(temperature	<	-80)	{
								status	=	“returning	home”;
								speed	=	5;
				}
}

Methods	are	defined	in	a	manner	similar	to	a	class.	They	begin	with	a	statement	that
names	the	method,	identifies	the	type	of	information	the	method	produces,	and	defines
other	things.

The	checkTemperature()	method	is	contained	within	the	opening	brace	on	line	6	of
Listing	1.1	and	the	closing	brace	on	line	11.	This	method	can	be	called	on	a	MarsRobot
object	to	find	out	its	temperature.

This	method	checks	to	see	whether	the	object’s	temperature	instance	variable	has	a
value	less	than	–80.	If	it	does,	two	other	instance	variables	are	changed:

	The	status	variable	is	changed	to	the	text	“returning	home,”	indicating	that	the
temperature	is	too	cold,	and	the	robot	is	heading	back	to	its	base.

	The	speed	is	changed	to	5.	(Presumably,	this	is	as	fast	as	the	robot	can	travel.)

The	second	instance	method,	showAttributes(),	is	defined	in	lines	13–17:

void	showAttributes()	{
				System.out.println(“Status:	“	+	status);
				System.out.println(“Speed:	“	+	speed);
				System.out.println(“Temperature:	“	+	temperature);
}

This	method	calls	the	method	System.out.println()	to	display	the	values	of	three
instance	variables,	along	with	some	text	explaining	what	each	value	represents.

If	you	haven’t	saved	this	file	yet,	choose	File,	Save.	This	command	is	disabled	if	the	file
hasn’t	been	changed	since	the	last	time	you	saved	it.

Running	the	Program
Even	if	you	typed	the	MarsRobot	program	in	Listing	1.1	correctly	and	compiled	it	into	a
class,	you	can’t	do	anything	with	it.	The	class	you	have	created	defines	what	a
MarsRobot	object	is	like,	but	it	doesn’t	actually	create	one	of	these	objects.

11

There	are	two	ways	to	put	the	MarsRobot	class	to	use:

	Create	a	separate	Java	program	that	creates	an	object	belonging	to	that	class.

	Add	a	special	class	method	called	main()	to	the	MarsRobot	class	so	that	it	can
be	run	as	an	application.	Create	an	object	of	that	class	in	that	method.

The	first	option	is	chosen	for	this	exercise.

Listing	1.2	contains	the	source	code	for	MarsApplication,	a	Java	class	that	creates	a
MarsRobot	object,	sets	its	instance	variables,	and	calls	methods.	Following	the	same
steps	as	in	the	preceding	listing,	create	a	new	Java	file	in	NetBeans	and	name	it
MarsApplication.

To	begin	this	second	class,	follow	these	steps	in	NetBeans:

1.	Choose	File,	New	File	from	the	menu.	The	New	File	dialog	opens.

2.	In	the	Categories	pane,	choose	Java.

3.	In	the	File	Types	pane,	choose	Empty	Java	File	and	click	Next.	The	Empty	Java	File
dialog	opens.

4.	In	the	Class	Name	text	field,	enter	MarsApplication.	The	file	you’re	creating	is
shown	in	the	Created	File	field	and	has	the	name	MarsApplication.java.

5.	Click	Finish.

Enter	the	code	shown	in	Listing	1.2	into	the	NetBeans	source	code	editor.

LISTING	1.2	The	Full	Text	of	MarsApplication.java

	1:	class	MarsApplication	{
	2:					public	static	void	main(String[]	arguments)	{
	3:									MarsRobot	spirit	=	new	MarsRobot();
	4:									spirit.status	=	“exploring”;
	5:									spirit.speed	=	2;
	6:									spirit.temperature	=	-60;
	7:
	8:									spirit.showAttributes();
	9:									System.out.println(“Increasing	speed	to	3.”);
10:									spirit.speed	=	3;
11:									spirit.showAttributes();
12:									System.out.println(“Changing	temperature	to	-90.”);
13:									spirit.temperature	=	-90;
14:									spirit.showAttributes();
15:									System.out.println(“Checking	the	temperature.”);
16:									spirit.checkTemperature();
17:									spirit.showAttributes();
18:					}
19:	}

When	you	choose	File,	Save	to	save	the	file,	NetBeans	automatically	compiles	it	into	the
MarsApplication	class,	which	contains	bytecode	for	the	JVM	to	run.

12

After	you	have	compiled	the	application,	run	the	program	by	choosing	the	menu	command
Run,	Run	File.	The	output	displayed	by	the	MarsApplication	class	appears	in	an
Output	pane	in	NetBeans,	as	shown	in	Figure	1.1.

FIGURE	1.1	The	output	of	the	MarsApplication	class.

Using	Listing	1.2	as	a	guide,	you	can	see	the	following	things	taking	place	in	the	main()
class	method	of	this	application:

	Line	2—The	main()	method	is	created	and	named.	All	main()	methods	take
this	format,	as	you’ll	see	later. ”	For	now,
the	most	important	thing	to	note	is	the	static	keyword,	which	indicates	that	the
method	is	a	class	method	shared	by	all	MarsRobot	objects.

	Line	3—A	new	MarsRobot	object	is	created	using	the	class	as	a	template.	The
object	is	given	the	name	spirit.

	Lines	4–6—Three	instance	variables	of	the	spirit	object	are	given	values:
status	is	set	to	the	text	“exploring,”	speed	is	set	to	2,	and	temperature	is	set
to	–60.

	Line	8—On	this	line	and	several	that	follow,	the	showAttributes()	method	of
the	spirit	object	is	called.	This	method	displays	the	current	values	of	the	instance
variables	status,	speed,	and	temperature.

13

http://www.java21days.com

	Line	9—On	this	line	and	others	that	follow,	a	call	to	the
System.out.println()	method	displays	the	text	within	parentheses	to	the
output	device	(your	monitor).

	Line	10—The	speed	instance	variable	is	set	to	the	value	3.

	Line	13—The	temperature	instance	variable	is	set	to	the	value	–90.

	Line	16—The	checkTemperature()	method	of	the	spirit	object	is	called.
This	method	checks	to	see	whether	the	temperature	instance	variable	is	less	than
–80.	If	it	is,	status	and	speed	are	assigned	new	values.

Organizing	Classes	and	Class	Behavior
Object-oriented	programming	in	Java	also	requires	three	more	concepts:	inheritance,
interfaces,	and	packages.	All	three	are	mechanisms	for	organizing	classes	and	class
behavior.

Inheritance
Inheritance,	one	of	the	most	crucial	concepts	in	object-oriented	programming,	has	a	direct
impact	on	how	you	design	and	write	your	own	Java	classes.

Inheritance	is	a	mechanism	that	enables	one	class	to	inherit	the	behavior	and	attributes	of
another	class.

Through	inheritance,	a	class	automatically	picks	up	the	functionality	of	an	existing	class.
The	new	class	must	only	define	how	it	is	different	from	that	existing	class.

With	inheritance,	all	classes—including	those	you	create	and	the	ones	in	the	Java	Class
Library—are	arranged	in	a	strict	hierarchy.

A	class	that	inherits	from	another	class	is	called	a	subclass.	The	class	that	gives	the
inheritance	is	called	a	superclass.

A	class	can	have	only	one	superclass,	but	it	can	have	an	unlimited	number	of	subclasses.
Subclasses	inherit	all	the	attributes	and	behavior	of	their	superclass.

In	practical	terms,	this	means	that	if	the	superclass	has	behavior	and	attributes	that	your
class	needs,	you	don’t	have	to	redefine	the	behavior	or	copy	that	code	to	have	the	same
behavior	and	attributes.	Your	class	automatically	receives	these	things	from	its	superclass,
the	superclass	gets	them	from	its	superclass,	and	so	on,	all	the	way	up	the	hierarchy.	Your
class	becomes	a	combination	of	its	own	features	and	all	the	features	of	the	classes	above	it
in	the	hierarchy.

14

The	situation	is	comparable	to	how	you	inherited	traits	from	your	parents,	such	as	your
height,	hair	color,	and	love	of	peanut-butter-and-banana	sandwiches.	They	inherited	some
of	these	things	from	their	parents,	who	inherited	from	theirs,	and	backward	through	time
to	the	Garden	of	Eden,	Big	Bang,	giant	spaghetti	monster,	or	[insert	personal	belief	here].

Figure	1.2	shows	how	a	hierarchy	of	classes	is	arranged.

FIGURE	1.2	A	class	hierarchy.

At	the	top	of	the	Java	class	hierarchy	is	the	class	Object.

All	classes	inherit	from	this	superclass.	Object	is	the	most	general	class	in	the	hierarchy.
It	defines	behavior	inherited	by	all	the	classes	in	the	Java	Class	Library.

Each	class	further	down	the	hierarchy	becomes	more	tailored	to	a	specific	purpose.	A	class
hierarchy	defines	abstract	concepts	at	the	top	of	the	hierarchy.	Those	concepts	become
more	concrete	further	down	the	line	of	subclasses.

Often	when	you	create	a	new	class	in	Java,	you	want	all	the	functionality	of	an	existing
class	except	for	some	additions	or	modifications	of	your	own	creation.	For	example,	you
might	want	a	new	version	of	CommandButton	that	makes	a	sound	when	clicked.

To	receive	all	the	CommandButton	functionality	without	doing	any	work	to	re-create	it,
you	can	define	your	new	class	as	a	subclass	of	CommandButton.

Because	of	inheritance,	your	class	automatically	inherits	behavior	and	attributes	defined	in
CommandButton	as	well	as	the	behavior	and	attributes	defined	in	the	superclasses	of
CommandButton.	All	you	have	to	worry	about	are	the	things	that	make	your	new	class
different	from	CommandButton	itself.	Subclassing	is	the	mechanism	for	defining	new
classes	as	the	differences	between	those	classes	and	their	superclass.

Subclassing	is	the	creation	of	a	new	class	that	inherits	from	an	existing	class.	The	only
task	in	the	subclass	is	to	indicate	the	differences	in	behavior	and	attributes	between	the
subclass	and	its	superclass.

15

If	your	class	defines	entirely	new	behavior	and	isn’t	a	subclass	of	another	class,	you	can
inherit	directly	from	the	Object	class.

If	you	create	a	class	that	doesn’t	indicate	a	superclass,	Java	assumes	that	the	new	class
inherits	directly	from	Object.	The	MarsRobot	class	you	created	earlier	today	did	not
specify	a	superclass,	so	it’s	a	subclass	of	Object.

Creating	a	Class	Hierarchy
If	you’re	creating	a	large	set	of	classes,	it	makes	sense	for	your	classes	to	inherit	from	the
existing	class	hierarchy	and	to	make	up	a	hierarchy	themselves.	This	gives	your	classes
several	advantages:

	Functionality	common	to	multiple	classes	can	be	put	into	a	superclass,	which
enables	it	to	be	used	repeatedly	in	all	classes	below	it	in	the	hierarchy.

	Changes	to	a	superclass	automatically	are	reflected	in	all	its	subclasses,	their
subclasses,	and	so	on.	There	is	no	need	to	change	or	recompile	any	of	the	lower
classes;	they	receive	the	new	information	through	inheritance.

For	example,	imagine	that	you	have	created	a	Java	class	to	implement	all	the	features	of
an	exploratory	robot.	(This	shouldn’t	take	much	imagination.)

The	MarsRobot	class	is	completed	and	works	successfully.	Your	boss	at	NASA	asks	you
to	create	a	Java	class	called	MercuryRobot.

These	two	kinds	of	robots	have	similar	features.	Both	are	research	robots	that	work	in
hostile	environments	and	conduct	research.	Both	keep	track	of	their	current	temperature
and	speed.

Your	first	impulse	might	be	to	open	the	MarsRobot.java	source	file,	copy	it	into	a
new	source	file	called	MercuryRobot.java,	and	then	make	the	necessary	changes	for
the	new	robot	to	do	its	job.

A	better	plan	is	to	figure	out	the	common	functionality	of	MercuryRobot	and
MarsRobot	and	organize	it	into	a	more	general	class	hierarchy.	This	might	be	a	lot	of
work	just	for	the	classes	MarsRobot	and	MercuryRobot,	but	what	if	you	also	want	to
add	MoonRobot,	UnderseaRobot,	and	DesertRobot?	Factoring	common
behavior	into	one	or	more	reusable	superclasses	significantly	reduces	the	overall	amount
of	work	you	must	do.

To	design	a	class	hierarchy	that	might	serve	this	purpose,	start	at	the	top	with	the	class
Object,	the	pinnacle	of	all	Java	classes.

The	most	general	class	to	which	these	robots	belong	might	be	called	Robot.	A	robot,
generally,	could	be	defined	as	a	self-controlled	exploration	device.	In	the	Robot	class,
you	define	only	the	behavior	that	qualifies	something	to	be	a	device,	to	be	self-controlled,
and	to	be	designed	for	exploration.

There	could	be	two	classes	below	Robot:	WalkingRobot	and	DrivingRobot.	The
obvious	thing	that	differentiates	these	classes	is	that	one	travels	by	foot	and	the	other	by
wheel.	The	behavior	of	walking	robots	might	include	bending	over	to	pick	up	something,

16

ducking,	running,	and	the	like.	Driving	robots	would	behave	differently.	Figure	1.3	shows
what	you	have	so	far.

FIGURE	1.3	The	basic	Robot	hierarchy.

Now,	the	hierarchy	can	become	even	more	specific.

With	WalkingRobot,	you	might	have	several	classes:	ScienceRobot,
GuardRobot,	SearchRobot,	and	so	on.	As	an	alternative,	you	could	factor	out	still
more	functionality	and	have	intermediate	classes	for	TwoLegged	and	FourLegged
robots,	with	different	behaviors	for	each	(see	Figure	1.4).

FIGURE	1.4	Two-legged	and	four-legged	walking	robots.

Finally,	the	hierarchy	is	done,	and	you	have	a	place	for	MarsRobot.	It	can	be	a	subclass
of	ScienceRobot,	which	is	a	subclass	of	WalkingRobot,	which	is	a	subclass	of
Robot,	which	is	a	subclass	of	Object.

Where	do	attributes	such	as	status,	temperature,	and	speed	come	in?	At	the	place	they	fit

17

into	the	class	hierarchy	most	naturally.	Because	all	robots	need	to	keep	track	of	the
temperature	of	their	environment,	it	makes	sense	to	define	temperature	as	an	instance
variable	in	Robot.	All	subclasses	would	have	that	instance	variable	as	well.	Remember
that	you	need	to	define	a	behavior	or	attribute	only	once	in	the	hierarchy,	and	it	is
inherited	automatically	by	each	subclass.

Note

Designing	an	effective	class	hierarchy	involves	a	lot	of	planning	and	revision.	As
you	attempt	to	put	attributes	and	behavior	into	a	hierarchy,	you’re	likely	to	find
reasons	to	move	some	classes	to	different	spots	in	the	hierarchy.	The	goal	is	to
reduce	the	number	of	repetitive	features	(and	redundant	code)	needed.

Inheritance	in	Action
Inheritance	in	Java	works	much	more	simply	than	it	does	in	the	real	world.	No	wills	or
courts	are	required	when	inheriting	from	a	parent.

When	you	create	a	new	object,	Java	keeps	track	of	each	variable	defined	for	that	object
and	each	variable	defined	for	each	superclass	of	the	object.	In	this	way,	all	the	classes
combine	to	form	a	template	for	the	current	object,	and	each	object	fills	in	the	information
appropriate	to	its	situation.

Methods	operate	similarly.	A	new	object	has	access	to	all	method	names	of	its	class	and
superclass.	This	is	determined	dynamically	when	a	method	is	used	in	a	running	program.
If	you	call	a	method	of	a	particular	object,	the	Java	virtual	machine	first	checks	the
object’s	class	for	that	method.	If	the	method	isn’t	found,	the	virtual	machine	looks	for	it	in
the	superclass	of	that	class,	and	so	on,	until	the	method	definition	is	found.	This	is
illustrated	in	Figure	1.5.

18

FIGURE	1.5	How	methods	are	located	in	a	class	hierarchy.

Things	get	complicated	when	a	subclass	defines	a	method	that	matches	a	method	defined
in	a	superclass	in	name	and	other	aspects.	In	this	case,	the	method	definition	found	first
(starting	at	the	bottom	of	the	hierarchy	and	working	upward)	is	the	one	that	is	used.

Because	of	this,	you	can	create	a	method	in	a	subclass	that	prevents	a	method	in	a
superclass	from	being	used.	To	do	this,	you	give	the	method	the	same	name,	return	type,
and	arguments	as	the	method	in	the	superclass.	This	procedure,	shown	in	Figure	1.6,	is
called	overriding.

19

FIGURE	1.6	Overriding	methods.

Note

Java’s	form	of	inheritance	is	called	single	inheritance	because	each	Java	class	can
have	only	one	superclass,	although	any	given	superclass	can	have	multiple
subclasses.

In	other	object-oriented	programming	languages	such	as	C++,	classes	can	have
more	than	one	superclass,	and	they	inherit	combined	variables	and	methods	from	all
those	superclasses.	This	is	called	multiple	inheritance.	Java	makes	inheritance
simpler	by	allowing	only	single	inheritance.

Interfaces
Single	inheritance	makes	the	relationship	between	classes	and	the	functionality	they
implement	easier	to	understand	and	design.	However,	it	also	can	be	restrictive,	especially
when	you	have	similar	behavior	that	needs	to	be	duplicated	across	different	branches	of	a
class	hierarchy.	Java	solves	the	problem	of	shared	behavior	by	using	interfaces.

An	interface	is	a	collection	of	methods	that	indicate	a	class	has	some	behavior	in	addition
to	what	it	inherits	from	its	superclasses.	The	methods	included	in	an	interface	do	not
define	this	behavior;	that	task	is	left	for	the	classes	that	implement	the	interface.

For	example,	the	Comparable	interface	contains	a	method	that	compares	two	objects	of
the	same	class	to	see	which	one	should	appear	first	in	a	sorted	list.	Any	class	that
implements	this	interface	shows	other	objects	that	it	knows	how	to	determine	the	sorting
order	for	objects	of	that	class.	This	behavior	would	be	unavailable	to	the	class	without	the
interface.

You’ll	learn	 about	interfaces	more in the next lectures.

20

Packages
Packages	in	Java	are	a	way	to	group	related	classes	and	interfaces.	Packages	enable
groups	of	classes	to	be	referenced	more	easily	in	other	classes.	They	also	eliminate
potential	naming	conflicts	among	classes.

Classes	in	Java	can	be	referred	to	by	a	short	name	such	as	Object	or	a	full	name	such	as
java.lang.Object.

By	default,	your	Java	classes	can	refer	to	the	classes	in	the	java.lang	package	using
only	short	names.	The	java.lang	package	provides	basic	language	features	such	as
string	handling	and	mathematical	operations.	To	use	classes	from	any	other	package,	you
must	refer	to	them	explicitly	using	their	full	package	name	or	use	an	import	command
to	import	the	package	in	your	source	code	file.

Because	the	Color	class	is	contained	in	the	java.awt	package,	you	normally	refer	to	it
in	your	programs	with	the	notation	java.awt.Color.

If	the	entire	java.awt	package	has	been	imported	using	import,	the	class	can	be
referred	to	as	Color.

The	package	for	a	class	is	determined	by	the	package	statement.	Many	of	the	classes
you	create	in	this	book	are	put	in	the	com.java24hours	package,	like	so:

package	com.java24hours;

This	statement	must	be	the	first	line	of	the	program.	When	it	is	omitted,	as	it	was	in	the
MarsRobot	and	MarsApplication	programs	you	created	today,	the	class	belongs	to
an	unnamed	package	called	the	default	package.

Summary
If	today	was	your	first	exposure	to	object-oriented	programming,	it	probably	seemed
theoretical	and	a	bit	overwhelming.

Because	your	brain	has	been	stuffed	with	object-oriented	programming	concepts	and
terminology	for	the	first	time,	you	might	be	worried	that	no	room	is	left	for	the	

lessons.	

Don’t	panic.	Keep	calm	and	carry	on.

At	this	point,	you	should	have	a	basic	understanding	of	classes,	objects,	attributes,	and
behavior.	You	also	should	be	familiar	with	instance	variables	and	methods.	You’ll	use
these	right	away	

The	other	aspects	of	object-oriented	programming,	such	as	inheritance	and	packages,	will
be	covered	in	more	detail	in	upcoming	days.

You’ll	work	with	object-oriented	programming	in	every	remaining	lectures.
There’s	no	other	way	to	create	programs	in	Java.

By	the	time	you	finish	the	first	lectures, you’ll	have	working	experience	with	objects,

remaining java

in the next lecture.

21

classes,	inheritance,	and	all	other	aspects	of	the	methodology.

Q&A
Q	Methods	are	functions	defined	inside	classes.	If	they	look	like	functions	and	act
like	functions,	why	aren’t	they	called	functions?

A	Some	object-oriented	programming	languages	do	call	them	functions.	(C++	calls
them	member	functions.)	Other	object-oriented	languages	differentiate	between
functions	inside	and	outside	the	body	of	a	class	or	object	because	in	those	languages
the	use	of	the	separate	terms	is	important	to	understanding	how	each	function	works.
Because	the	difference	is	relevant	in	other	languages	and	because	the	term	method
now	is	in	common	use	in	object-oriented	terminology,	Java	uses	the	term	as	well.

Q	What’s	the	distinction	between	instance	variables	and	methods	and	their
counterparts,	class	variables	and	methods?

A	Almost	everything	you	do	in	a	Java	program	involves	instances	(also	called	objects)
rather	than	classes.	However,	some	behavior	and	attributes	make	more	sense	if
stored	in	the	class	itself	rather	than	in	the	object.

For	example,	the	Math	class	in	the	java.lang	package	includes	a	class	variable
called	PI	that	holds	the	approximate	value	of	pi.	This	value	does	not	change,	so
there’s	no	reason	why	different	objects	of	that	class	would	need	their	own	individual
copy	of	the	PI	variable.	On	the	other	hand,	every	String	object	contains	a	method
called	length()	that	reveals	the	number	of	characters	in	that	String.	This	value
can	be	different	for	each	object	of	that	class,	so	it	must	be	an	instance	method.

Class	variables	occupy	memory	until	a	Java	program	is	finished	running,	so	they
should	be	used	with	care.	If	a	class	variable	references	an	object,	that	object	will
remain	in	memory	as	well.	This	is	a	common	problem	causing	a	program	to	take	up
too	much	memory	and	run	slowly.

Q	When	a	Java	class	imports	an	entire	package,	does	it	increase	the	compiled	size
of	that	class?

A	No.	The	use	of	the	term	“import”	is	a	bit	misleading.	The	import	keyword	does
not	add	the	bytecode	of	one	class	or	one	package	to	the	class	you	are	creating.
Instead,	it	makes	it	easier	to	refer	to	classes	within	another	class.

The	sole	purpose	of	importing	is	to	shorten	the	class	names	when	they’re	used	in
Java	statements.	It	would	be	cumbersome	to	always	have	to	refer	to	full	class	names
such	as	javax.swing.JButton	and	java.awt.Graphics	in	your	code
instead	of	calling	them	JButton	and	Graphics.

Quiz
Review	today’s	material	by	taking	this	three-question	quiz.

Questions
1.	What	is	another	word	for	a	class?

22

A.	Object

B.	Template

C.	Instance

2.	When	you	create	a	subclass,	what	must	you	define	about	that	class?

A.	Nothing.	Everything	is	defined	already.

B.	Things	that	are	different	from	its	superclass

C.	Everything	about	the	class

3.	What	does	an	instance	method	of	a	class	represent?

A.	The	attributes	of	that	class

B.	The	behavior	of	that	class

C.	The	behavior	of	an	object	created	from	that	class

Answer	it 	without	looking	at	today’s	material.

Which	of	the	following	statements	is	true?

A.	All	objects	created	from	the	same	class	must	be	identical.

B.	All	objects	created	from	the	same	class	can	have	different	attributes	than	each
other.

C.	An	object	inherits	attributes	and	behavior	from	the	class	used	to	create	it.

D.	A	class	inherits	attributes	and	behavior	from	its	subclass.

Exercises
To	extend	your	knowledge	of	the	subjects	covered	today,	try	the	following	exercises:

1.	In	the	main()	method	of	the	MarsRobot	class,	create	a	second	MarsRobot

the following questions

robot named opportunity, set up its instance variables, and display them.

23

http://www.java21days.com

	Week I: The Java Language
	Day 1. Getting Started with Java
	The Java Language
	History of the Language
	Introduction to Java
	Selecting a Development Tool

	Object-Oriented Programming
	Objects and Classes
	Attributes and Behavior
	Attributes of a Class of Objects
	Behavior of a Class of Objects
	Creating a Class
	Running the Program

	Organizing Classes and Class Behavior
	Inheritance
	Creating a Class Hierarchy
	Inheritance in Action
	Interfaces
	Packages

	Summary
	Q&A
	Quiz
	Questions
	Answers

	Certification Practice
	Exercises

