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Flynn’s Taxonomy 

 SISD - Single instruction stream, single data stream 

  

 SIMD - Single instruction stream, multiple data streams  
 New: SIMT – Single Instruction Multiple Threads (for GPUs) 

 

 MISD - Multiple instruction streams, single data stream 
 No commercial implementation 

 

 MIMD - Multiple instruction streams, multiple data streams  
 Tightly-coupled MIMD 

 Loosely-coupled MIMD 

C
la

s
s
e
s
 o

f C
o
m

p
u
te

rs
 



4 Copyright © 2012, Elsevier Inc. All rights reserved. 

Advantages of SIMD architectures 

1. Can exploit significant data-level parallelism for: 
1. matrix-oriented scientific computing 

2. media-oriented image and sound processors 

2. More energy efficient than MIMD 
1. Only needs to fetch one instruction per multiple data 

operations, rather than one instr. per data op. 

2. Makes SIMD attractive for personal mobile devices 

3. Allows programmers to continue thinking sequentially 

 

 SIMD/MIMD comparison. Potential speedup for SIMD 
twice that from MIMID! 
 x86 processors  expect two additional cores per chip per year 

 SIMD  width to double every four years 
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SIMD parallelism 

 SIMD architectures 
 A. Vector architectures 

 B. SIMD extensions for mobile systems and  multimedia applications 

 C. Graphics Processor Units (GPUs) 
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Figure 4.1 Potential speedup via parallelism from MIMD, SIMD, and both MIMD and SIMD over time for 

x86 computers. This figure assumes that two cores per chip for MIMD will be added every two years and the 

number of operations for SIMD will double every four years.  
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A. Vector architectures 

 Basic idea: 
 Read sets of data elements into “vector registers” 

 Operate on those registers 

 Disperse the results back into memory 

 

 Registers are controlled by compiler 
 Used to hide memory latency 

 Leverage memory bandwidth 
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Example of vector architecture 

 VMIPS  MIPS extended with vector instructions 

 Loosely based on Cray-1 

 Vector registers 
 Each register holds a 64-element, 64 bits/element vector 

 Register file has 16 read ports and 8 write ports 

 Vector functional units – FP add and multiply 
 Fully pipelined 

 Data and control hazards are detected 

 Vector load-store unit 
 Fully pipelined 

 One word per clock cycle after initial latency 

 Scalar registers 
 32 general-purpose registers 

 32 floating-point registers 
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Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like 

MIPS. There are also eight 64-element vector registers, and all the functional units are vector functional units. This 

chapter defines special vector instructions for both arithmetic and memory accesses. The figure shows vector units 

for logical and integer operations so that VMIPS looks like a standard vector processor that usually includes these 

units; however, we will not be discussing these units. The vector and scalar registers have a significant number of 

read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches (thick grey lines) 

connects these ports to the inputs and outputs of the vector functional units.  
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VMIPS instructions 

 ADDVV.D:  add two vectors.  

 ADDVS.D:  add vector to a scalar 

 LV/SV:  vector load and vector store from address 
 Rx  the address of vector X 

 Ry  the address of vector Y 

 Example:  DAXPY (double precision a*X+Y)  6 instructions 

L.D  F0,a  ; load scalar a 

LV   V1,Rx  ; load vector X 

MULVS.D  V2,V1,F0 ; vector-scalar multiply 

LV   V3,Ry  ; load vector Y 

ADDVV  V4,V2,V3 ; add 

SV   Ry,V4  ; store the result 
Assumption: the vector length matches the number of vector operations – no 
loop necessary. 
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DAXPY using MIPS instructions 

Example:  DAXPY (double precision a*X+Y) 

  L.D  F0,a  ; load scalar a 

  DADDIU R4,Rx,#512 ; last address to load 

Loop:  L.D  F2,0(Rx ) ; load X[i] 

  MUL.D  F2,F2,F0 ; a x X[i] 

  L.D  F4,0(Ry) ; load Y[i] 

  ADD.D  F4,F2,F2 ; a x X[i] + Y[i] 

  S.D  F4,9(Ry) ; store into Y[i] 

  DADDIU Rx,Rx,#8 ; increment index to X 

  DADDIU Ry,Ry,#8 ; increment index to Y 

  SUBBU  R20,R4,Rx ; compute bound 

  BNEZ  R20,Loop ; check if done 

 

 Requires almost 600 MIPS ops when the vectors have 64 

elements 64 elements of a vector x 9 ops  
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Execution time 

 Vector execution time depends on: 
 Length of operand vectors 

 Structural hazards 

 Data dependencies 

 

 VMIPS functional units consume one element per clock cycle 
 Execution time is approximately the vector length 

 

 Convoy  Set of vector instructions that could potentially 
execute together 
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Chaining and chimes 

 Chaining 
 Allows a vector operation to start as soon as the individual 

elements of its vector source operand become available 

 

 Chime 
 Unit of time to execute one convey 

 m conveys executes in m chimes 

 For vector length of n, requires m x n clock cycles 

 

 Sequences with read-after-write dependency hazards 
can be in the same convey via chaining  
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Example 

LV   V1,Rx   ;load vector X 

MULVS.D V2,V1,F0  ;vector-scalar multiply 

LV   V3,Ry   ;load vector Y 

ADDVV.D V4,V2,V3  ;add two vectors 

SV   Ry,V4   ;store the sum 

 

Three convoys: 

1  LV  MULVS.D    first chime 

2  LV  ADDVV.D   second chime 

3  SV                                        third chime 

 

3 chimes, 2 FP ops per result, cycles per FLOP = 1.5 

For 64 element vectors, requires 64 x 3 = 192 clock cycles 
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Challenges 

 The chime model ignores the vector start-up time determined by 

the pipelining latency of vector functional units 

 Latency of vector functional units. Assume the same as Cray-1 

 Floating-point add        6 clock cycles 

 Floating-point multiply  7 clock cycles 

 Floating-point divide     20 clock cycles 

 Vector load                   12 clock cycles 
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Optimizations 

1. Multiple Lanes   processing more than one element per clock cycle 

2. Vector Length Registers  handling non-64 wide vectors 

3. Vector Mask Registers  handling IF statements in vector code 

4. Memory Banks  memory system optimizations to support vector 

processors 

5. Stride   handling multi-dimensional arrays 

6. Scatter-Gather  handling sparse matrices 

7. Programming Vector Architectures  program structures affecting 

performance 
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1. A four lane vector unit 

 VIMPS instructions only allow 

element N of one vector to 

take part in operations 

involving element N from 

other vector registers this 

simplifies the construction of 

a highly parallel vector unit 

 Line  contains one 

portion of the vector 

register file and one 

execution pipeline from 

each functional unit 

 Analog with a highway 

with multiple lanes!! 
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Single versus multiple add pipelines  

 C= A+B 

 One versus four additions per 

clock cycl 

 Each pipe adds the 

corresponding elements of 

the two vectors 

     C(i) = A(i) + B(i) 
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2. VLR and MVL 

 VLR Vector Length Register; MVL  Max Vector Length 

 Vector length: 

  Not known at compile time?  

 Not multiple of 64? 

 Use strip mining for vectors over the maximum length: 

low = 0; 

VL = (n % MVL);                                 /*find odd-size piece using modulo op % */ 

for (j = 0; j <= (n/MVL); j=j+1) {            /*outer loop*/ 

 for (i = low; i < (low+VL); i=i+1)       /*runs for length VL*/ 

  Y[i] = a * X[i] + Y[i] ;                      /*main operation*/ 

 low = low + VL;                               /*start of next vector*/ 

 VL = MVL;                                      /*reset length to maximum vector length*/ 

} 
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3. Vector mask registers 

 Handling IF statements in a loop 

 for (i = 0; i < 64; i=i+1) 

  if (X[i] != 0) 

   X[i] = X[i] – Y[i]; 

 If conversion use vector mask register to “disable/select” 

vector elements  
      LV  V1,Rx  ;load vector X into V1 

 LV  V2,Ry  ;load vector Y into V2 

 L.D  F0,#0  ;load FP zero into F0 

 SNEVS.D V1,F0  ;sets VM(i) to 1 if V1(i)!=F0 

 SUBVV.D V1,V1,V2 ;subtract under vector mask 

 SV  Rx,V1  ;store the result in X 

 GFLOPS rate decreases! 
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4. Memory banks 

 Memory system must be designed to support high 

bandwidth for vector loads and stores 

 Spread accesses across multiple banks 

 Control bank addresses independently 

 Load or store non-sequential words 

 Support multiple vector processors sharing the same memory 

 

 Example: 

 32 processors, each generating 4 loads and 2 stores/cycle 

 Processor cycle time is 2.167 ns, SRAM cycle time is 15 ns 

 How many memory banks needed? 

 32 processors x 6 =192 accesses,  

 15ns SDRAM cycle /2.167ns processor cycle≈7 processor cycles  

 7 x 192 1344! 
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5. Stride  multiple dimensional arrays 

 Technique to fetch vector elements that are not adjacent in memory 

 Stride  the distance between elements to be gathered in one register. 

 Example (recall that in C an array is stored in major row order!!) 

 for (i = 0; i < 100; i=i+1) 

  for (j = 0; j < 100; j=j+1) { 

   A[i][j] = 0.0; 

   for (k = 0; k < 100; k=k+1) 

   A[i][j] = A[i][j] + B[i][k] * D[k][j]; 

  } 

 Must vectorize multiplication of rows of B with columns of D 

 Use non-unit stride;  D’s stride is 100 double words (800 bytes); B’s 

stride is one double word (8 bytes) 

 Bank conflict (stall) occurs when the same bank is hit faster than bank 

busy time: 

 #banks / LCM(stride, #banks) < bank busy time (in # of cycles) 
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Stride example 

 Given  

 8 memory banks 

 bank busy time of 6 cycles 

 total memory latency of 12 cycles.  

 Questions: How long will it take to complete a 64-element vector load  

1. With a stride of 1? 

2. With a stride of 32? 

 Answers: 

1. Stride of 1: number of banks is greater than the bank busy time, so it takes      

12 + 64 = 76 clock cycles  76/64 = 1.2 cycle for each vector element 

2. Stride of 32: the worst case scenario happens when the stride value is a 

multiple of the number of banks, which this is! Every access to memory will 

collide with the previous one! Thus, the total time will be: 

12 + 1 + 6 * 63 = 391 clock cycles 391/64 = 6.1 clock cycles per vector 

element! 
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6 Scatter-gather 

 Consider sparse vectors A & C and vector indices K & M. 

A and C have the same number (n) of non-zeros: 

 for (i = 0; i < n; i=i+1) 

  A[K[i]] = A[K[i]] + C[M[i]];    

Ra, Rc, Rk and Rm the starting addresses of vectors 

 Use index vector: 

 LV  Vk, Rk   ;load K 

 LVI  Va, (Ra+Vk)  ;load A[K[]] 

 LV  Vm, Rm  ;load M 

 LVI  Vc, (Rc+Vm)  ;load C[M[]] 

 ADDVV.D Va, Va, Vc  ;add them 

 SVI  (Ra+Vk), Va  ;store A[K[]] 
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7 Programming vector architectures 

 Compilers can provide feedback to programmers 

 Programmers can provide hints to compiler 
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Summary of vector architecture 

 Optimizations: 

 Multiple Lanes: > 1 element per clock cycle 

 Vector Length Registers: Non-64 wide vectors 

 Vector Mask Registers: IF statements in vector code 

 Memory Banks: Memory system optimizations to 

support vector processors 

 Stride: Multiple dimensional matrices 

 Scatter-Gather: Sparse matrices 

 Programming Vector Architectures: Program 

structures affecting performance 
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Exercise 

Consider the following code, which multiplies two vectors of length 300 that 

contain single-precision complex values: 

 

For (i=0; i<300; i++) { 

 c_re[i] = a_re[i] * b_re[i]  – a_im[i] * b_im[i]; 

 c_im[i] = a_re[i] * b_im[i] + a_im[i] * b_re[i]; 

      

The processor runs at 700 MHz and has a maximum vector length of 64. 

  

A. What is the arithmetic intensity of this kernel (i.e., the ratio of 

floating-point operations per byte of memory accessed)? 

B. Convert this loop into VMIPS assembly code using strip mining. 

C. Assuming chaining and a single memory pipeline, how many 

chimes are required?  
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Exercise – arithmetic intensity 

Copyright © 2012, Elsevier Inc. All rights reserved. 

This code reads four 

floats (4 lv) and writes 

two floats (2 sv) for 

every six FLOPs (4 

mulvv.s + 1 subvv.s + 

1 addvv.s). 

Arithmetic intensity = 

(4+2)/6 = 1. 

 

Assume MVL = 64  

300 mod 64 = 44 

          

V
e
c
to

r A
rc

h
ite

c
tu

re
s
 



29 Copyright © 2012, Elsevier Inc. All rights reserved. 

Exercise - convoys 
 

1. mulvv.s lv      # a_re * b_re  

                                  # (assume already loaded),  

                                  # load a_im 

2. lv       mulvv.s       # load b_im, a_im * b_im 

3. subvv.s sv      # subtract and store c_re 

4. mulvv.s lv       # a_re * b_re,  

                                   # load next a_re vector 

5. mulvv.s lv       # a_im * b_re,  

                                   # load next b_re vector 

6. addvv.s sv       # add and store c_im 

 

6 chimes 
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B. SIMD extensions for media apps 

 Media applications operate on data types narrower than the 

native word size.  

 Graphics: 3x8-bit colors, 8-bit for transparency 

 Audio: 8/16/24 bit/sample 

 Disconnect carry chains to “partition” adder. 

 Example: a 256 adder can be partitioned to perform simultaneously: 

 32 x   8-bit additions 

 16 x  16-bit additions 

 8   x  32-bit additions  

 4   x  64-bit additions    

 Limitations, compared to vector instructions: 

 Number of data operands encoded into op code 

 No sophisticated addressing modes (strided, scatter-gather) 

 No mask registers 
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SIMD extension to x86-64 implementations 
 Intel MMX (1996) 

 Eight 8-bit integer ops or four 16-bit integer ops 

 Streaming SIMD Extensions: (SSE) (1999), SSE3 (2004),SSE4 (2007) 

 Eight 16-bit integer ops 

 Four 32-bit integer/fp ops or two 64-bit integer/fp ops 

 Advanced Vector Extensions (AVE) (2010) 

 Four 64-bit integer/fp ops 

 Operands must be consecutive and at aligned memory locations 

 Generally designed to accelerate carefully written libraries rather  

     than for compilers. 

 Advantages over vector architecture:  
 Cost little to add to the standard ALU  

 Easy to implement 

 Require little extra state  easy for context-switching 

 Require little extra memory bandwidth 

 No virtual memory problem of cross-page access and page-fault 
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Example: SIMD code for DXPY; Y = Y + a X 

 256 – bit SIMD multimedia instructions added to MIPS.  

 .4D  instructions operating on 4 double precision operands at once.  

 L.D  F0,a  ;load scalar a 

 MOV  F1, F0  ;copy a into F1 for SIMD MUL 

 MOV  F2, F0  ;copy a into F2 for SIMD MUL 

 MOV  F3, F0  ;copy a into F3 for SIMD MUL 

 DADDIU R4,Rx,#512 ;last address to load 

Loop:  L.4D F4,0[Rx] ;load X[i], X[i+1], X[i+2], X[i+3] 

 MUL.4D F4,F4,F0 ;a×X[i],a×X[i+1],a×X[i+2],a×X[i+3] 

 L.4D  F8,0[Ry]  ;load Y[i], Y[i+1], Y[i+2], Y[i+3] 

 ADD.4D F8,F8,F4 ;a×X[i]+Y[i], ..., a×X[i+3]+Y[i+3] 

 S.4D  F8,0[Ry]  ;store into Y[i], Y[i+1], Y[i+2], Y[i+3] 

 DADDIU Rx,Rx,#32 ;increment index to X 

 DADDIU Ry,Ry,#32 ;increment index to Y 

 DSUBU R20,R4,Rx ;compute bound 

 BNEZ R20,Loop ;check if done 
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Roofline performance model 

 Basic idea: 

 Peak floating-point throughput as a function of arithmetic intensity 

 Ties together floating-point performance and memory performance  

 Roofline: on the sloped portion of the roof the performance is limited 

by the memory bandwidth, on the flat portion it is limited by arithmetic 

intensity 

 Arithmetic intensity  Floating-point operations per byte 

read 

 

 

 

 

 Dense matrix operations scale with problem size but sparse matrix 

operations do not!!  
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Examples 

 Attainable GFLOPs/sec  

    Min = (Peak Memory BW × Arithmetic Intensity, Peak  

               Floating Point Performance) 
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C. Graphical Processing Unit - GPU 

 Given the hardware invested to do graphics well, how can it 

be supplemented to improve performance of a wider range 

of applications? 

 Basic idea: 

 Heterogeneous execution model 

 CPU is the host, GPU is the device 

 Develop a C-like programming language for GPU 

 Compute Unified Device Architecture (CUDA) 

 OpenCL for vendor-independent language 

 Unify all forms of GPU parallelism as CUDA thread 

 Programming model: “Single Instruction Multiple Thread” 

(SIMT) 
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Threads, blocks, and grid 

 A thread is associated with each data element 
 CUDA threads  thousands of threads are utilized to various styles of 

parallelism: multithreading, SIMD, MIMD, ILP 

 Threads are organized into blocks 
 Thread Blocks: groups of up to 512 elements 

 Multithreaded SIMD Processor: hardware that executes a whole thread 

block (32 elements executed per thread at a time) 

 Blocks are organized into a grid 
 Blocks are executed independently and in any order 

 Different blocks cannot communicate directly but can coordinate using 

atomic memory operations in Global Memory 

 Thread management handled by  GPU hardware not by 

applications or OS 
 A multiprocessor composed of multithreaded SIMD processors 

 A Thread Block Scheduler 
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NVIDIA GPU architecture 

 Similarities to vector machines: 

 Works well with data-level parallel problems 

 Scatter-gather transfers 

 Mask registers 

 Large register files 

 

 Differences: 

 No scalar processor 

 Uses multithreading to hide memory latency 

 Has many functional units, as opposed to a few deeply pipelined 

units like a vector processor 
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Example: multiply two vectors of length 8192 

 Grid  Code that works over all elements  

 Thread block analogous to a strip-mined vector loop with 

vector length of 32. Breaks down the vector into  

manageable set of vector elements 

32 elements/thread x 16 SIMD threads/block  512 elements/block   

SIMD instruction executes 32 elements at a time 

Grid size = 8192vector elements / 512 elements/block = 16 blocks 

 

 Thread block scheduler   assigns a thread block  to a 

multithreaded SIMD processor  

 Current-generation GPUs (Fermi) have 7-15 multithreaded 

SIMD processors 
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Threads, blocks, and grid example 

Copyright © 2012, Elsevier Inc. All rights reserved. 
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Figure 4.16 Scheduling of threads of SIMD instructions. The scheduler selects a 

ready thread of SIMD instructions and issues an instruction synchronously to all the 

SIMD Lanes executing the SIMD thread. Because threads of SIMD instructions are 

independent, the scheduler may select a different SIMD thread each time.  
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NVIDIA GPU memory structures 

• Each SIMD Lane has private section of off-chip DRAM 

– “Private memory”, not shared by any other lanes 

– Contains stack frame, spilling registers, and private variables 

– Recent GPUs cache  in L1 and L2 caches 

• Each multithreaded SIMD processor also has local memory that 

is on-chip 

– Shared by SIMD lanes / threads within a block only 

• The off-chip memory shared by SIMD processors is GPU 

Memory 

– Host can read and write GPU memory 
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Terminology 

 Threads of SIMD instructions 
 Each has its own PC 

 Thread scheduler uses scoreboard to dispatch 

 No data dependencies between threads! 

 Keeps track of up to 48 threads of SIMD instructions 

 Hides memory latency 

 Thread block scheduler  schedules thread blocks 

to SIMD processors 

 Within each SIMD processor: 

 32 SIMD lanes 

 Wide and shallow compared to vector processors 
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Example 

 NVIDIA GPU has 32,768 registers 

 Divided into lanes 

 A SIMD thread has up to: 

 64 vector registers of 32 32-bit elements 

 32 vector registers of 32 64-bit elements 

 Fermi has 16 physical SIMD lanes, each containing 2048 

registers (2048 x 16 = 32,768) 
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Figure 4.14 Simplified block diagram of a Multithreaded SIMD Processor with 16 

SIMD lanes. The SIMD Thread Scheduler has, say, 48 independent threads of SIMD 

instructions that it schedules with a table of 48 PCs.  
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NVIDIA  ISA -- PTX 

 PTX  Parallel Thread Execution 

 A PTX instruction describes the operation of a single CUDA thread!! 

 Like x86 instructions  PTX instructions translate to an internal format 

 X86  translation done by hardware at execution time 

 PTX  translation done by software at compile time. 

 The format of a PTX instruction:     opcode.type  d,a,b,c 

 d  destination operand 

 a, b, c  source operands 

 

 

 

 

 

 Use virtual registers 

 NVIDIA act as co-processors.  Similar to I/O units 
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PTX arithmetic instructions 
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PTX logical, memory access, and control flow 
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Parallel Thread Execution (PTX) example 

 

 One CUDA thread, 8192 of these created! 

 

shl.s32 R8, blockIdx, 9 ; Thread Block ID * Block size (512 or 29) 

add.s32 R8, R8, threadIdx ; R8 = i = my CUDA thread ID 

ld.global.f64RD0, [X+R8] ; RD0 = X[i] 

ld.global.f64RD2, [Y+R8] ; RD2 = Y[i] 

mul.f64 R0D, RD0, RD4 ; Product in RD0 = RD0 * RD4 (scalar a) 

add.f64 R0D, RD0, RD2 ; Sum in RD0 = RD0 + RD2 (Y[i]) 

st.global.f64 [Y+R8], RD0 ; Y[i] = sum (X[i]*a + Y[i]) 
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Conditional branching 

 GPU branch hardware uses: 

 Internal masks 

 Branch synchronization stack 

 Entries consist of masks for each SIMD lane 

 i.e. which threads commit their results (all threads execute) 

 Instruction markers to manage when a branch diverges into multiple 

execution paths 

 Push on divergent branch 

 …and when paths converge 

 Act as barriers 

 Pops stack 

 Per-thread-lane 1-bit predicate register, specified by 

programmer 

G
ra

p
h
ic

a
l P

ro
c
e
s
s
in

g
 U

n
its

 



53 Copyright © 2012, Elsevier Inc. All rights reserved. 

Example 

 if (X[i] != 0)  

  X[i] = X[i] – Y[i]; 

 else X[i] = Z[i]; 

 

 ld.global.f64 RD0, [X+R8]  ; RD0 = X[i] 

 setp.neq.s32 P1, RD0, #0  ; P1 is predicate register 1 

 @!P1, bra ELSE1, *Push  ; Push old mask, set new mask bits 

      ; if P1 false, go to ELSE1 

 ld.global.f64 RD2, [Y+R8]  ; RD2 = Y[i] 

 sub.f64 RD0, RD0, RD2  ; Difference in RD0 

 st.global.f64 [X+R8], RD0  ; X[i] = RD0 

 @P1, bra ENDIF1, *Comp  ; complement mask bits 

      ; if P1 true, go to ENDIF1 

ELSE1:  ld.global.f64 RD0, [Z+R8] ; RD0 = Z[i] 

   st.global.f64 [X+R8], RD0 ; X[i] = RD0 

ENDIF1:  <next instruction>, *Pop ; pop to restore old mask 

 

Note: a thread has 64 vector components, each a 32  bit floating point 
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NVIDIA GPU memory structures 

 Each SIMD Lane has private section of off-chip DRAM 

 “Private memory”, not shared by any other lanes 

 Contains stack frame, spilling registers, and private variables 

 Recent GPUs cache  in L1 and L2 caches 

 Each multithreaded SIMD processor also has local 

memory that is on-chip 

 Shared by SIMD lanes / threads within a block only 

 The off-chip memory shared by SIMD processors is GPU 

Memory 

 Host can read and write GPU memory 
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Figure 4.18 GPU Memory structures.  

• GPU Memory  shared by all Grids (vectorized loops),  

• Local Memory  shared by all threads of SIMD instructions within a thread 

block (body of a vectorized loop).  

• Private Memory private to a single CUDA thread.  
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Fermi architecture innovations 

 Each SIMD processor has 

 Two SIMD thread schedulers, two instruction dispatch units 

 Two sets of 16 SIMD lanes (SIMD width=32, chime=2 cycles), 16 

load-store units, 4 special function units 

 Thus, two threads of SIMD instructions are scheduled every two 

clock cycles 

 Fast double precision: gen- 78 515 GFLOPs for DAXPY 

 Caches for GPU memory: I/D L1 per SIMD processor and shared L2 

 64-bit addressing and unified address space: C/C++ ptrs 

 Error correcting codes: dependability for long-running apps 

 Faster context switching: hardware support, 10X faster 

 Faster atomic instructions: 5-20X faster than gen- 
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Figure 4.19 Block Diagram of Fermi’s Dual SIMD Thread Scheduler.  

Compare this design to the single SIMD Thread Design in Figure 4.16.  
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Fermi multithreaded SIMD processor 
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Loop-level parallelism 

 Focuses on determining whether data accesses in later 

iterations are dependent on data values produced in earlier 

iterations 

 Loop-carried dependence 

 

 Example 1: 

 for (i=999; i>=0; i=i-1) 

  x[i] = x[i] + s; 

 

    No loop-carried dependence 
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Loop-level parallelism example 2 

  

    for (i=0; i<100; i=i+1) { 

  A[i+1] = A[i] + C[i]; /* S1 */ 

  B[i+1] = B[i] + A[i+1]; /* S2 */ 

 } 

  

 S1 and S2 use values computed by S1 in previous iteration 

 S2 uses value computed by S1 in same iteration 
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Loop-level parallelism example 3 

 for (i=0; i<100; i=i+1) { 

  A[i] = A[i] + B[i]; /* S1 */ 

  B[i+1] = C[i] + D[i]; /* S2 */ 

 } 

 

     S1 uses value computed by S2 in previous iteration but dependence 

     is not circular so loop is parallel. Transform to: 

 

 A[0] = A[0] + B[0]; 

 for (i=0; i<99; i=i+1) { 

  B[i+1] = C[i] + D[i]; 

  A[i+1] = A[i+1] + B[i+1]; 

 } 

 B[100] = C[99] + D[99]; 
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Loop-level parallelism examples 4 and 5 

 for (i=0;i<100;i=i+1)  { 

  A[i] = B[i] + C[i]; 

  D[i] = A[i] * E[i]; 

 } 

 No loop-carried dependence 

 

 

 for (i=1;i<100;i=i+1)  { 

  Y[i] = Y[i-1] + Y[i]; 

 } 

 Loop-carried dependence in the form of recurrence 

D
e
te

c
tin

g
 a

n
d
 E

n
h
a
n
c
in

g
 L

o
o
p

-L
e
v
e
l P

a
ra

lle
lis

m
 



66 Copyright © 2012, Elsevier Inc. All rights reserved. 

Finding dependencies 

 Assume that a 1-D array index i is affine: 

 a x i + b (with constants a and b) 

 An n-D array index is affine if it is affine in each dimension 

 Assume: 

 Store to a x i + b, then 

 Load from c x i + d 

 i runs from m to n 

 Dependence exists if: 

 Given j, k such that m ≤ j ≤ n, m ≤ k ≤ n 

 Store to a x j + b, load from a x k + d, and a x j + b = c x k + d 
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Finding dependencies 

 Generally cannot determine at compile time 

 Test for absence of a dependence: 

 GCD test: 

 If a dependency exists, GCD(c,a) must evenly divide (d-b) 

 

 Example: 

for (i=0; i<100; i=i+1) { 

 X[2*i+3] = X[2*i] * 5.0; 

} 

 Answer: a=2, b=3, c=2, d=0 GCD(c,a)=2, d-b=-3  no 

dependence possible. 
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Finding dependencies example 2 

for (i=0; i<100; i=i+1) { 

 Y[i] = X[i] / c; /* S1 */ 

 X[i] = X[i] + c; /* S2 */ 

 Z[i] = Y[i] + c; /* S3 */ 

 Y[i] = c - Y[i]; /* S4 */ 

} 

 

 Watch for antidependencies and output 

dependencies: 
 RAW: S1S3, S1S4 on Y[i], not loop-carried 

 WAR: S1S2 on X[i]; S3S4 on Y[i] 

 WAW: S1S4 on Y[i] 
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Reductions 

 Reduction Operation: 

 for (i=9999; i>=0; i=i-1) 

  sum = sum + x[i] * y[i]; 

 

 Transform to… 

 for (i=9999; i>=0; i=i-1) 

  sum [i] = x[i] * y[i]; 

 for (i=9999; i>=0; i=i-1) 

  finalsum = finalsum + sum[i]; 

 

 Do on p processors: 

 for (i=999; i>=0; i=i-1) 

  finalsum[p] = finalsum[p] + sum[i+1000*p]; 

 Note:  assumes associativity! 
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Fallacies 

1. GPUs suffer from being co-processors. 

The I/O device nature of GPUs creates a level of indirection between 

the compiler and the hardware and gives more flexibility to GPU 

architects who can try new innovations and drop them if not successful. 

For example, the Fermi architecture changed the hardware instruction 

set  without disturbing the NVIDIA software stack:  

(1) from memory-oriented as x86 to register-oriented like MIPS;  

(2) from 32-bit to 64-bit addressing 

2. One can get good performance without providing good 

memory bandwidth. 

3. Add more threads to improve performance. 

If memory accesses of CUDA threads are scattered or not correlated  

the memory system will get progressively slower. The CUDA threads 

must enjoy locality of memory access.   
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