
COMPUTER SYSTEM ARCHITECTURE

REGISTER TRANSFER AND

MICROOPERATIONS

University Of Diyala

College Of Engineering

Computer Engineering Department

Dr. Yasir Amer Abbas

Second stage

2017

CONTENTS

2

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Microoperations

• Logic Microoperations

• Shift Microoperations

• Arithmetic Logic Shift Unit

4-1 REGISTER TRANSFER LANGUAGE (RTL)

Digital System: An interconnection of

hardware modules that do a certain task on

the information.

Registers + Operations performed on the

data stored in them = Digital Module

Modules are interconnected with common

data and control paths to form a digital

computer system

3

4-1 REGISTER TRANSFER LANGUAGE CONT.

Microoperations: operations executed on

data stored in one or more registers.

For any function of the computer, a

sequence of Microoperations is used to

describe it

The result of the operation may be:
 replace the previous binary information of a register or

 transferred to another register

4

101101110011 010110111001
Shift Right Operation

4-1 REGISTER TRANSFER LANGUAGE CONT.

 The internal hardware organization of a digital computer

is defined by specifying:
 The set of registers it contains and their function

 The sequence of microoperations performed on the binary information

stored in the registers

 The control that initiates the sequence of microoperations

Registers + Microoperations Hardware + Control

Functions = Digital Computer

5

4-1 REGISTER TRANSFER LANGUAGE CONT.

 Register Transfer Language (RTL) : a symbolic

notation to describe the Microoperations

transfers among registers

Next steps:

 Define symbols for various types of Microoperations,

 Describe the hardware that implements these

Microoperations

6

4-2 REGISTER TRANSFER (OUR FIRST MICROOPERATION)

 Computer registers are designated by capital letters

(sometimes followed by numerals) to denote the

function of the register
 R1: processor register

 MAR: Memory Address Register (holds an address for a memory

unit)

 PC: Program Counter

 IR: Instruction Register

 SR: Status Register

7

4-2 REGISTER TRANSFER CONT.

 The individual flip-flops in an n-bit register are

numbered in sequence from 0 to n-1 (from the right

position toward the left position)

8

R1 7 6 5 4 3 2 1 0

A block diagram of a register

Register R1 Showing individual bits

4-2 REGISTER TRANSFER CONT.

9

PC

Numbering of bits

Partitioned into two parts

15 0

PC(H) PC(L)

0 7 8 15

Lower byte Upper byte

Other ways of drawing the block diagram of a register:

4-2 REGISTER TRANSFER CONT.

 Information transfer from one register to another is
described by a replacement operator: R2 ← R1

 This statement denotes a transfer of the content of
register R1 into register R2

 The transfer happens in one clock cycle

 The content of the R1 (source) does not change

 The content of the R2 (destination) will be lost and
replaced by the new data transferred from R1

 We are assuming that the circuits are available from the
outputs of the source register to the inputs of the
destination register, and that the destination register has
a parallel load capability

 10

4-2 REGISTER TRANSFER CONT.

 Conditional transfer occurs only under a control condition

 Representation of a (conditional) transfer

 P: R2 ← R1

 A binary condition (P equals to 0 or 1) determines when
the transfer occurs

 The content of R1 is transferred into R2 only if P is 1

11

4-2 REGISTER TRANSFER CONT.

12

n

Clock

R1

R2
Control

Circuit
Load

t t+1

Clock

Load

Transfer occurs here

Synchronized

with the clock

P

Hardware implementation of a controlled transfer:

P: R2 ← R1

Block diagram:

Timing diagram

4-2 REGISTER TRANSFER CONT.

Basic Symbols for Register Transfers

Symbol Description Examples

Letters &

numerals

Denotes a register MAR, R2

Parenthesis () Denotes a part of a

register

R2(0-7), R2(L)

Arrow ← Denotes transfer of

information

R2 ← R1

Comma , Separates two

microoperations

R2 ← R1, R1 ← R2
13

4-3 BUS AND MEMORY TRANSFERS

Paths must be provided to transfer information
from one register to another

A Common Bus System is a scheme for
transferring information between registers in a
multiple-register configuration

A bus: set of common lines, one for each bit of a
register, through which binary information is
transferred one at a time

Control signals determine which register is
selected by the bus during each particular
register transfer

14

4-3 BUS AND MEMORY TRANSFERS

15

3 2 1 0

Register D

D3 D2 D1 D0

3 2 1 0

Register C

C3 C2 C1 C0

3 2 1 0

Register B

B3 B2 B1 B0

3 2 1 0

Register A

A3 A2 A1 A0

D3 C3 B3 A3

S0

S1 MUX3

3 2 1 0

D2 C2 B2 A2

S0

S1
MUX2

3 2 1 0

D1 C1 B1 A1

S0

S1
MUX1

3 2 1 0

D0 C0 B0 A0

S0

S1 MUX0

3 2 1 0

4-Line Common Bus

Register A Register B Register C Register D

Bus lines

4-3 BUS AND MEMORY TRANSFERS

The transfer of information from a bus into one of
many destination registers is done:
 By connecting the bus lines to the inputs of all

destination registers and then:

 activating the load control of the particular destination
register selected

We write: R2 ← C to symbolize that the content
of register C is loaded into the register R2 using
the common system bus

 It is equivalent to: BUS ←C, (select C)

 R2 ←BUS (Load R2)

16

4-3 BUS AND MEMORY TRANSFERS:

THREE-STATE BUS BUFFERS

 A bus system can be constructed with three-state

buffer gates instead of multiplexers

 A three-state buffer is a digital circuit that exhibits

three states: logic-0, logic-1, and high-impedance

(Hi-Z)

17

Normal input A

Control input C

Three-State Buffer

Output B

4-3 BUS AND MEMORY TRANSFERS:

THREE-STATE BUS BUFFERS CONT.

18

A

C=1

B A B

A

C=0

B A B

Buffer

Open Circuit

4-3 BUS AND MEMORY TRANSFERS:

THREE-STATE BUS BUFFERS CONT.

19

2×4

Decoder

Select

Enable

0

1

2

3

S1

S0

E

Bus line for bit 0
A0

B0

C0

D0

Bus line with three-state

buffer (replaces MUX0 in the

previous diagram)

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER

Memory read : Transfer from memory

Memory write : Transfer to memory

Data being read or wrote is called a memory
word (called M)- (refer to section 2-7)

 It is necessary to specify the address of M when
writing /reading memory

This is done by enclosing the address in square
brackets following the letter M

Example: M[0016] : the memory contents at
address 0x0016

 20

BUS AND MEMORY TRANSFERS: MEMORY

TRANSFER

 Each register (word) can hold n bits of data

 Assume the RAM contains r = 2k words. It needs

the following

 n data input lines

 n data output lines

 k address lines

 A Read control line

 A Write control line

21

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER CONT.

 Assume that the address of a memory unit is stored

in a register called the Address Register AR

 Lets represent a Data Register with DR, then:

 Read: DR ← M[AR]

 Write: M[AR] ← DR

22

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER CONT.

23

AR

x12
x0C

x0E

x10

x12

x14

x16

x18

19

34

45

66

0

13

22 R1←M[AR]

R1

100

R1

66

RAM

R1

100

SUMMARY OF REGISTER TRANSFER MICROOPERATIONS

24

4-4 ARITHMETIC MICROOPERATIONS

 The microoperations most often encountered in

digital computers are classified into four categories:

 Register transfer microoperations

 Arithmetic microoperations (on numeric data stored in

the registers)

 Logic microoperations (bit manipulations on non-

numeric data)

 Shift microoperations

25

4-4 ARITHMETIC MICROOPERATIONS CONT.

 The basic arithmetic microoperations are: addition,

subtraction, increment, decrement, and shift

 Addition Microoperation:

R3 ←R1+R2

 Subtraction Microoperation:

 R3 ←R1-R2 or :

R3 ←R1+ R2 +1

26

4-4 ARITHMETIC MICROOPERATIONS CONT.

 One’s Complement Microoperation:

R2 ←R2

 Two’s Complement Microoperation:

R2 ←R2+1

 Increment Microoperation:

R2 ←R2+1

 Decrement Microoperation:

R2 ←R2-1

27

SUMMARY OF TYPICAL ARITHMETIC MICRO-

OPERATIONS

28

HALF ADDER/FULL ADDER

29

Half Adder

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

cn = xy + xcn-1+ ycn-1
 = xy + (x y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1
 = x y cn-1 = (x y) cn-1

x

y

cn-1

x

y

cn-1

cn s

c = xy s = xy’ + x’y
 = x y

x
y c

s

x
y

cn-1

S

cn

Full Adder

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x y c s

x y cn-1 cn s
0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

0

4-4 ARITHMETIC MICROOPERATIONS BINARY

ADDER

30

FA FA FA FA C0

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

C1 C2 C3

C4

4-bit binary adder

(connection of FAs)

4-4 ARITHMETIC MICROOPERATIONS BINARY

ADDER-SUBTRACTOR

31

FA FA FA FA
C0

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

C1 C2 C3

C4

4-bit adder-subtractor

M

4-4 ARITHMETIC MICROOPERATIONS BINARY

ADDER-SUBTRACTOR

 For unsigned numbers, this gives A – B if A≥B or the 2’s complement of (B – A) if A < B

 (example: 3 – 5 = -2= 1110)

 For signed numbers, the result is A – B provided that there is no overflow. (example : -3 – 5=
-8) 1101

 1011 +

 ـــــــــــــــــــــــــــ

 1000

32

C3

C4
V =

1, if overflow

0, if no overflow

Overflow detector for signed numbers

4-4 ARITHMETIC MICROOPERATIONS BINARY

ADDER-SUBTRACTOR CONT.

 What is the range of unsigned numbers that can be

represented in 4 bits?

 What is the range of signed numbers that can be

represented in 4 bits?

 Repeat for n-bit?!

33

4-4 ARITHMETIC MICROOPERATIONS BINARY

INCREMENTER

34

C S

x y

HA

C S

x y

HA

C S

x y

HA

C S

x y

HA

S0 S1 S2 S3 C4

1 A0 A1 A2 A3

4-bit Binary Incrementer

4-4 ARITHMETIC MICROOPERATIONS BINARY

INCREMENTER

 Binary Incrementer can also be implemented using

a counter

 A binary decrementer can be implemented by

adding 1111 to the desired register each time!

35

4-4 ARITHMETIC MICROOPERATIONS

ARITHMETIC CIRCUIT

 This circuit performs seven distinct arithmetic

operations and the basic component of it is the

parallel adder

 The output of the binary adder is calculated from

the following arithmetic sum:
 D = A + Y + Cin

36

4-4 ARITHMETIC MICROOPERATIONS

ARITHMETIC CIRCUIT CONT.

37

B0

3 2 1 0 S1 S0

4×1 MUX

FA FA FA FA Cin

D0 D1 D2 D3

C1 C2 C3

Cout

B0 1 0 S1 S0 B1

3 2 1 0 S1 S0

4×1 MUX

B1 1 0 S1 S0 B2

3 2 1 0 S1 S0

4×1 MUX

B2 1 0 S1 S0 B3

3 2 1 0 S1 S0

4×1 MUX

B3 1 0 S1 S0

A0 A1 A2 A3

4-bit Arithmetic Circuit

X0 Y0 X1 Y1 X2 Y2 X3 Y3

Figure A

4-5 LOGIC MICROOPERATIONS

THE FOUR BASIC MICROOPERATIONS

OR Microoperation

 Symbol: , +

 Gate:

 Example: 1001102 10101102 = 11101102

P+Q: R1←R2+R3, R4←R5 R6

38

OR

OR

ADD

4-5 LOGIC MICROOPERATIONS

THE FOUR BASIC MICROOPERATIONS
CONT.

AND Microoperation

 Symbol:

 Gate:

 Example: 1001102 10101102 = 00001102

39

4-5 LOGIC MICROOPERATIONS

THE FOUR BASIC MICROOPERATIONS CONT.

Complement (NOT) Microoperation

 Symbol:

 Gate:

 Example: 10101102 = 01010012

40

4-5 LOGIC MICROOPERATIONS

THE FOUR BASIC MICROOPERATIONS
CONT.

XOR (Exclusive-OR) Microoperation

 Symbol:

 Gate:

 Example: 1001102 10101102 = 11100002

41

4-5 LOGIC MICROOPERATIONS

OTHER LOGIC MICROOPERATIONS

Selective-set Operation

 Used to force selected bits of a register into logic-1

by using the OR operation

 Example: 01002 10002 = 11002

42

In a processor register
Loaded into a register from

memory to perform the

selective-set operation

4-5 LOGIC MICROOPERATIONS

OTHER LOGIC MICROOPERATIONS CONT.

Selective-complement (toggling) Operation

Used to force selected bits of a register to

be complemented by using the XOR

operation

Example: 00012 10002 = 10012

43

In a processor register
Loaded into a register from

memory to perform the

selective-complement operation

4-5 LOGIC MICROOPERATIONS

OTHER LOGIC MICROOPERATIONS CONT.

Insert Operation

Step1: mask the desired bits

Step2: OR them with the desired value

Example: suppose R1 = 0110 1010, and we
desire to replace the leftmost 4 bits (0110)
with 1001 then:

 Step1: 0110 1010 0000 1111

 Step2: 0000 1010 1001 0000

 R1 = 1001 1010

 44

4-5 LOGIC MICROOPERATIONS

 OTHER LOGIC MICROOPERATIONS CONT.

NAND Microoperation

 Symbols: and

 Gate:

 Example: 1001102 10101102 = 11110012

45

4-5 LOGIC MICROOPERATIONS

 OTHER LOGIC MICROOPERATIONS CONT.

NOR Microoperation

 Symbols: and

 Gate:

 Example: 1001102 10101102 = 00010012

46

4-5 LOGIC MICROOPERATIONS

 OTHER LOGIC MICROOPERATIONS CONT.

Set (Preset) Microoperation

Force all bits into 1’s by ORing them with a value

in which all its bits are being assigned to logic-1

Example: 1001102 1111112 = 1111112

Clear (Reset) Microoperation

Force all bits into 0’s by ANDing them with a

value in which all its bits are being assigned to

logic-0

Example: 1001102 0000002 = 0000002

 47

4-5 LOGIC MICROOPERATIONS

HARDWARE IMPLEMENTATION

 The hardware implementation of logic

microoperations requires that logic gates be

inserted for each bit or pair of bits in the registers to

perform the required logic function

 Most computers use only four (AND, OR, XOR, and

NOT) from which all others can be derived.

48

4-5 LOGIC MICROOPERATIONS

HARDWARE IMPLEMENTATION CONT.

S1 S0 Output

Operatio

n

0 0 E = A B XOR

0 1 E = A B OR

1 0 E = A B AND

1 1 E = A Complem

ent

49

S1

S0

0

1

2

3

4×1

MUX

Ei

Ai

Bi

This is for one bit i

Figure B

4-6 SHIFT MICROOPERATIONS
Used for serial transfer of data

Also used in conjunction with arithmetic, logic,

and other data-processing operations

The contents of the register can be shifted to the

left or to the right

As being shifted, the first flip-flop receives its

binary information from the serial input

Three types of shift: Logical, Circular, and

Arithmetic

50

4-6 SHIFT MICROOPERATIONS CONT.

51

r0 r1 r3 rn-1

r0 r1 r2 r3 rn-1

Shift Right

Shift Left

Serial Input Serial Output

Serial Output Serial Input

Determines

the “shift”

type

r2

**Note that the bit ri is the bit at position (i) of the register

4-6 SHIFT MICROOPERATIONS:

LOGICAL SHIFTS

 Transfers 0 through the serial input

 Logical Shift Right: R1←shr R1

 Logical Shift Left: R2←shl R2

52

The same

The same

Logical Shift Left

? 0 r0 r1 r2 r3 rn-1

4-6 SHIFT MICROOPERATIONS:
CIRCULAR SHIFTS (ROTATE OPERATION)

 Circulates the bits of the register around the two ends

without loss of information

 Circular Shift Right: R1←cir R1

 Circular Shift Left: R2←cil R2

53

The same

The same

Circular Shift Left

r0 r1 r2 r3 rn-1

4-6 SHIFT MICROOPERATIONS

 ARITHMETIC SHIFTS

Shifts a signed binary number to the left or

right

An arithmetic shift-left multiplies a signed

binary number by 2: ashl (00100): 01000

An arithmetic shift-right divides the number

by 2

 ashr (00100) : 00010

An overflow may occur in arithmetic shift-

left, and occurs when the sign bit is changed

(sign reversal) 54

4-6 SHIFT MICROOPERATIONS

 ARITHMETIC SHIFTS CONT.

55

Arithmetic Shift Right
Sign

Bit

Arithmetic Shift Left
Sign

Bit

?

0 ?

r0 r1 r2 r3 rn-1

r0 r1 r2 r3 rn-1

4-6 SHIFT MICROOPERATIONS

 ARITHMETIC SHIFTS CONT.

 An overflow flip-flop Vs can be used to detect an

arithmetic shift-left overflow

Vs = Rn-1 Rn-2

56

Rn-2
Vs=

Rn-1 1 overflow

0 no overflow

4-6 SHIFT MICROOPERATIONS CONT.

Example: Assume R1=11001110, then:

 Arithmetic shift right once : R1 = 11100111

 Arithmetic shift right twice : R1 = 11110011

 Arithmetic shift left once : R1 = 10011100

 Arithmetic shift left twice : R1 = 00111000

 Logical shift right once : R1 = 01100111

 Logical shift left once : R1 = 10011100

 Circular shift right once : R1 = 01100111

 Circular shift left once : R1 = 10011101

57

4-6 SHIFT MICROOPERATIONS

HARDWARE IMPLEMENTATION CONT.

 A possible choice for a shift unit would be a bidirectional

shift register with parallel load (refer to Fig 2-9). Has

drawbacks:

 Needs two pulses (the clock and the shift signal pulse)

 Not efficient in a processor unit where multiple number of

registers share a common bus

 It is more efficient to implement the shift operation with a

combinational circuit

58

4-6 SHIFT MICROOPERATIONS

HARDWARE IMPLEMENTATION CONT.

59

S 1 0 S 1 0 S 1 0 S 1 0

A3 A2 A1 A0

Serial Input IR Serial Input IL

Select

0 for shift right

1 for shift left

H3 H2 H1 H0

MUX MUX MUX MUX

4-bit Combinational Circuit Shifter

4-7 ARITHMETIC LOGIC SHIFT UNIT

 Instead of having individual registers performing the

microoperations directly, computer systems employ

a number of storage registers connected to a

common operational unit called an Arithmetic Logic

Unit (ALU)

60

4-7 ARITHMETIC LOGIC SHIFT UNIT CONT.

61

0

1

2

3

S3

S2

S1

S0

Bi

Ai

Ai+1

Ai-1

Select

4×1

MUX

Ci

Ci+1

One stage of

arithmetic

circuit (Fig.A)

One stage of

logic circuit

(Fig.B)

Di

Ei

Fi

shr

shl

One stage of

ALU

