

Log-Power Spectrum Method

- Spectral estimation $S_g(w_1, w_2)$
 - Divide the image (intensity domain) into N×N blocks (typically N=128)
 - Compute $|G_k(w_1, w_2)|^2$ over each block
 - Compute the average of the results
- Compute $\log S_g(w_1, w_2)$
 - the zeros of the power spectrum are mapped to minus infinity
- Detect the DFT sample where the first zero of the power spectrum occurs

Noise Power Spectrum Estimation

Use the same steps to compute the noise power spectrum, however, use only blocks with uniform intensity.

23

