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Analytic Geometry 

Rectangular Coordinates 

The points in a plane may be placed in one-to-one correspondence with pairs of real numbers. A 

common method is to use perpendicular lines that are horizontal and vertical and intersect at a point 

called the origin. These two lines constitute the coordinate axes; the horizontal line is the x-axis and 

the vertical line is the y-axis. The positive direction of the x-axis is to the right, whereas the positive 

direction of the y-axis is up.  

Thus, point P is associated with the pair of real numbers (x1, y1) and is denoted P(x1, y1). The 

coordinate axes divide the plane into quadrants I, II, III, and IV. 

Distance between Two Points; Slope 

The distance d between the two points P1(x1, y1) and P2(x2, y2) is 

                     

In the special case when P1 and P2 are both on one of the coordinate axes, for instance, the x-axis, 

                     

or on the y-axis, 

                    

The midpoint of the line segment P1P2 is 

 
     

 
  

     

 
  

The slope of the line segment P1P2, provided it is not vertical, is denoted by m and is given by 

  
     

     
 

 
The slope is related to the angle of inclination α by 

       

Two lines (or line segments) with slopes m1 and m2 are perpendicular if   m1= -1/m2 

and are parallel if   m1 = m2. 
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Equations of Straight Lines 

A vertical line has an equation of the form 

x = c 

where (c, 0) is its intersection with the x-axis. A line of slope m through point (x1, y1) is given by 

             

Thus, a horizontal line (slope = 0) through point (x1, y1) is given by 

y = y1 

A nonvertical line through the two points P1(x1, y1) and P2(x2, y2) is given by either 

     
     

     
       

Or   

     
     

     
       

Circle 
The general equation of a circle of radius r and center at P(x1, y1) is 

      
             

Conic Sections 

The conic sections are called conics because they result from intersecting a cone with a plane as shown 

in figure 

 

Parabola 
A parabola is the set of all points (x, y) in the plane that are equidistant from a given line called the 

directrix and a given point called the focus. The parabola is symmetric about a line that contains the 

focus and is perpendicular to the directrix. The line of symmetry intersects the parabola at its vertex. 

The eccentricity e = 1. 

We obtain a particularly simple equation for a parabola if we place its vertex at the origin O and its 

directrix parallel to the -axis as in Figure below. If the focus is the point (0, p), then the directrix has 

the equation y = -p. If P(x,y) is any point on the parabola, then the distance from P to the focus is  
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and the distance from P to the directrix is       

The defining property of a parabola is that these distances are 

equal: 

                 

We get an equivalent equation by squaring and simplifying: 

                        

                       

       

An equation of the parabola with focus (0,p) and directrix y = - p is 

x
2
 = 4py 

The distance between the focus and the vertex, or vertex and directrix, is denoted by p (> 0) and leads 

to one of the following equations of a parabola with vertex at the origin.  

 

 

                                                               

 
                                                               

 

For each of the four orientations shown in Figures, the corresponding parabola with vertex (h, k) is 

obtained by replacing x by x – h and y by y – k. Thus, the parabola in Figure below has the equation 
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Example  

Find the focus and directrix of the parabola y
2
 + 10 x = 0 and sketch the graph. 

 

Solution  

 If we write the equation as y
2
 = - 10 x  and compare it with Equation, we see that 4p = - 10  , 

 so p = -5/2. Thus the focus is (p,0) = (-5/2, 0 )and the directrix is x = 5/2 . 

The sketch is shown in Figure below 

 
 

Ellipse 

An ellipse is the set of all points in the plane such that the sum of their distances from two fixed points, 

called foci, is a given constant 2a. The distance between the foci is denoted 2c; the length of the major 

axis is 2a, whereas the length of the minor axis is 2b. The eccentricity of an ellipse, e, is < 1.  
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The x-intercepts are found by setting y = 0. Then x
2
/a

2
 = 1, or       , so      . The 

corresponding points (a,0) and (-a,0) are called the vertices of the ellipse and the line segment joining 

the vertices is called the major axis. To find the y-intercepts we set x = 0 and obtain      , so 

    . The line segment joining (0,b) and (0,-b) is the minor axis. 

 

We summarize this discussion as follows 

1- The ellipse has foci                                           

 

  

  
 

  

  
                  

                                                              

 

 

 

2- The ellipse has foci                                           

 

  

  
 

  

  
                  

 

 

 

 

 

 

 

 

An ellipse with center at point (h, k) and major axis parallel to the x-axis is given by the equation  
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An ellipse with center at (h, k) and major axis parallel to the y-axis is given by the equation  

      

  
 

      

  
            

 

Example   Sketch the graph of               and locate the foci. 

Solution Divide both sides of the equation by 144: 

  

  
 

  

 
   

The equation is now in the standard form for an ellipse, so we have  a
2
 = 16, b

2
 = 9, a = 4, and b = 3. 

Also, c
2
 = a

2
 – b

2
 = 7, so c =    ,   the foci are (      . The graph is sketched as  

 
 

Example    Find an equation of the ellipse with foci (      and vertices (     . 

Solution  we have c = 2 and a = 3. Then we obtain                , so an equation of the 

ellipse is 

  

 
 

  

 
   

Another way of writing the equation is           . 
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Hyperbola  

A hyperbola is the set of all points in the plane such that the difference of its distances from two fixed 

points (foci) is a given positive constant denoted 2a. The distance between the two foci is 2c and that 

between the two vertices is 2a. The eccentricity of a hyperbola is (e > 1). 

 
When we draw a hyperbola it is useful to first draw its asymptotes, which are the dashed lines in 

figures below 

1- The Hyperbola has foci                                                        

  
 

 
    

                
  

   
  

        

 

 

 

 

 

 

 

 

 

2- The Hyperbola has foci                                                        
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When the focal axis is parallel to the y-axis, the equation of the hyperbola with center (h, k) 

      

  
 

      

  
      

If the focal axis is parallel to the x-axis and center (h, k), then 

      

  
 

      

  
      

           
 

Example  Find the foci and asymptotes of the hyperbola              and sketch its graph. 

Solution  

 If we divide both sides of the equation by 144, it becomes  

  

  
 

  

 
   

which is of the form with a = 4 and b = 3. Since c
2
 = 16 + 9 = 25, so c = 5,   the foci are (     . The 

asymptotes are the lines   
 

 
   and    

 

 
  . The graph is shown in Figure 

 
 

Example Find the foci and equation of the hyperbola with vertices (      and asymptote y = 2x 

 

Solution   we see that a = 1 and b = 2. Thus b = a/2 = 1/2 and c
2
 = a

2
+ b

2
 = 5/4. The foci are 

(         and the equation of the hyperbola is           
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Translated conics 

1- Parabolas with vertex (h, k) and axis parallel to x-axis 

(y − k)
2
 = 4p(x − h)           [Opens right] 

(y − k)
2
 = −4p(x − h)         [Opens left] 

2- Parabolas with vertex (h, k) and axis parallel to y-axis 

(x − h)
2
 = 4p(y − k)           [Opens up] 

(x − h)
2
 = −4p(y − k)        [Opens down] 

3- Ellipse with center (h, k) and major axis parallel to x-axis 

      

  
 

      

  
           [b < a] 

4- Ellipse with center (h, k) and major axis parallel to y-axis 

      

  
 

      

  
           [b < a] 

5- Hyperbola with center (h, k) and focal axis parallel to x-axis 

      

  
 

      

  
      

6- Hyperbola with center (h, k) and focal axis parallel to y-axis 

      

  
 

      

  
      

Example Find an equation for the parabola that has its vertex at (1, 2) and its focus at (4, 2). 

Solution  Since the focus and vertex are on a horizontal line, and since the focus is to the right of the 

vertex, the parabola opens to the right and its equation has the form 

(y − k)
2
 = 4p(x − h) 

Since the vertex and focus are 3 units apart, we have p = 3, and since the vertex is at 

(h, k) = (1, 2), we obtain 

(y − 2)
2
 = 12(x − 1) 

 

Example  Describe the graph of the equation 

y
2
 − 8x − 6y − 23 = 0 

Solution The equation involves quadratic terms in y but none in x, so we first take all of the y-terms to 

one side: 

y
2
 − 6y = 8x + 23 

Next, we complete the square on the y-terms by adding 9 to both sides: 

(y − 3)
2
 = 8x + 32 

Finally, we factor out the coefficient of the x-term to obtain 

(y − 3)
2
 = 8(x + 4) 
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This equation is with h = −4, k = 3, and p = 2, so the graph is a parabola with vertex (−4, 3) opening to 

the right. Since p = 2, the focus is 2 units to the right of the vertex, which places it at the point (−2, 3); 

and the directrix is 2 units to the left of the vertex, which means that its equation is x = −6. 

 

Example  Describe the graph of the equation 

16x
2
 + 9y

2
 − 64x − 54y + 1 = 0 

Solution  This equation involves quadratic terms in both x and y, so we will group the x-terms and the 

y-terms on one side and put the constant on the other: 

(16x
2
 − 64x) + (9y

2
 − 54y) = −1 

Next, factor out the coefficients of x
2
 and y

2
 and complete the squares: 

16(x
2
 − 4x + 4) + 9(y

2
 − 6y + 9) = −1 + 64 + 81 

or 

16(x − 2)
2
 + 9(y − 3)

2
 = 144 

Finally, divide through by 144 to introduce a 1 on the right side: 

      

 
 

      

  
   

This is an equation with h = 2, k = 3, a
2
 = 16, and b

2
 = 9. Thus, the graph of the equation is an ellipse 

with center (2, 3) and major axis parallel to the y-axis. Since a = 4, the major axis extends 4 units 

above and 4 units below the center, so its endpoints are (2, 7) and (2,−1). Since b = 3, the minor axis 

extends 3 units to the left and 3 units to the right of the center, so its endpoints are (−1, 3) and (5, 3). 

Since 

                  

the foci lie    units above and below the center, placing them at the points (2, 3 +    and (2, 3 −  ) 
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Example   Describe the graph of the equation 

x
2
 − y

2
 − 4x + 8y − 21 = 0 

Solution  This equation involves quadratic terms in both x and y, so we will group the x-terms and the 

y-terms on one side and put the constant on the other: 

(x
2
 − 4x) − (y

2
 − 8y) = 21 

by completing the squares that this equation can be written as      
      

 
 

      

 
   

This is an equation with h = 2, k = 4, a
2
 = 9, and b

2
 = 9. Thus, the equation represents a hyperbola with 

center (2, 4) and focal axis parallel to the x-axis. Since a = 3, the vertices are located 3 units to the left 

and 3 units to the right of the center, or at the points (−1, 4) and (5, 4). c =     , so the foci are located 

    units to the left and right of the center, or at the points (2 −        and (2 +        

The equations of the asymptotes may be found  

      

 
 

      

 
   

This can be written as y − 4 = ±(x − 2), which yields the asymptotes 

y = x + 2    and    y = −x + 6 

With the aid of a box extending a = 3 units left and right of the center and b = 3 units above and below 

the center, 
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HYPERBOLIC FUNCTIONS 

 

Definitions of Hyperbolic Functions 

Certain even and odd combinations of the exponential functions    and     arise so frequently in 

mathematics and its applications that they deserve to be given special names. The function    can be 

expressed in the following way as the sum of an even function and an odd function: 

   
      

 
 

      

 
 

                                                                           Even            Odd 

These functions are sufficiently important that there are names and notation associated with them: the 

odd function is called the hyperbolic sine of x and the even function is called the hyperbolic cosine of 

x. They are denoted by 

      
      

 
                                    

      

 
 

 

Where sinh is pronounced “cinch” or "shine" and cosh rhymes with “gosh.” From these two building 

blocks we can create four more functions to produce the following set of six hyperbolic functions. 

Hyperbolic sine                                    
      

 
 

Hyperbolic cosine                               
      

 
  

Hyperbolic tangent                                
    

    
  

      

       

Hyperbolic cotangent                          
    

    
  

       

        

Hyperbolic secant                                
 

      
 

 

        

Hyperbolic cosecant                            
 

      
 

 

        

 

Example    

      
      

 
  

   

 
   

       
      

 
 

   

 
   

      
      

 
        

Note: The term "tanh", "sech", and "csch" are pronounced "tanch", "seech", and "coseech" 

respectively 
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Graphs of the Hyperbolic Functions 

 

Observe that sinh x has a domain         and range of         where cosh x has a domain of 

        and a range of        . 

Hyperbolic Identities 

The hyperbolic functions satisfy various identities that are similar to identities for trigonometric 

functions. The most fundamental of these is  

                which can proved by writing 

                                        

  
      

 
 

      

 
  

      

 
 

      

 
           

The following theorem summarizes some of the more useful hyperbolic identities: 
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Derivative and Integral Formulas 

Derivative formulas for sinh x and cosh x can be obtained by expressing these functions in terms of e
x
 

and e
−x

: 

 

  
        

 

  
 
      

 
  

      

 
       

 

 

  
        

 

  
 
      

 
  

      

 
       

 

  
        

 

  
 
     

     
  

     
 
               

 
         

      
 

             

      
 

 
 

      
        

The following theorem provides a complete list of the generalized derivative formulas and 

corresponding integration formulas for the hyperbolic functions. 
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Example 

1- 
 

  
                    

 

  
                    

  
 

  
            

 

     
 
 

  
        

      

     
  

 

    
 

  
                

 

  
     

      

   
 

 

   
 

  
                       

 

  
                 

 

     
 

 

     
            

 

Example 

                     
 

 
          

 

               
     

     
                         

 

               
 

 

 
        

 
  

 

 

 
 

 
              

 

 
 
      

 
   

 

 
 

     

 
 

 

 
       

 

 

 

                    
      

 
   

   

 

   

 

                     
   

 
                            

   

 

                

 

Inverses of Hyperbolic Functions 

The graphs of the six inverse hyperbolic functions in Figure below were obtained by reflecting the 

graphs of the hyperbolic functions (with the appropriate restrictions) about the line y = x. 

Useful Identities 

1-                

 
                      2-                

 
                    3-                

 
 

Example               Prove                
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Table below summarizes the basic properties of the inverse Hyperbolic Functions. 
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Logarithmic Forms of Inverse Hyperbolic Functions 

Because the hyperbolic functions are expressible in terms of ex , it should not be surprising that the 

inverse hyperbolic functions are expressible in terms of natural logarithms; the next theorem shows 

that this is so. 

 

Example  

Prove                       

          

        
      

 
 

                                                             

And applying the quadratic formula yields 

   
         

 
                                         

Taking natural logarithms yields 

                                     

Example 

                                     

       
 

 
  

 

 
   

  
 
 

  
 
 

  
 

 
           

H.W: Find               
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Derivatives and Integrals Involving Inverse Hyperbolic Functions 

The following two theorems list the generalized derivative formulas and corresponding integration 

formulas for the inverse hyperbolic functions. 

 

 

Example Show that  
 

  
          

 

     

 

  
 

 
 

  
          

 

  
             

 

       
   

 

     
  

       

                
 

 

     
 

H.W: Prove above theorem as Example  
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Example:  

1- Find 
 

  
               

 

         
 

 

  
     

 

       
     

    

     
      

 

 2- Evaluate  
  

      
    

 

 
  

Let                       

 
  

      
 

 

 
 

   

      
 

 

 
 

  

      
 

 

 
       

 

 
    

 

 
       

  

 
    

 

3-   
  

        
  

  

            
  

  

          
  

  

         
   

Let u = x-2    du = dx 

  
  

     
                           

 

4-  
  

      
  

 

 
 

  

 

 
     

 

 
  

 

 

 

 
  

 

 
       

 
   

 
                 

 
  

 

Hanging Cables  

Hyperbolic functions arise in vibratory motions inside elastic solids and more generally in many 

problems where mechanical energy is gradually absorbed by a surrounding medium. They also occur 

when a homogeneous, flexible cable is suspended between two points, as with a telephone line 

hanging between two poles. Such a cable forms a curve, called a catenary (from the Latin catena, 

meaning “chain”). If, as in Figure, a coordinate system is introduced so that the low point of the cable 

lies on the y-axis, then it can be shown using principles of physics that the cable has an equation of the 

form  

        
 

 
    

Where the parameters a and c are determined by the distance between the poles and the composition of 

the cable. 
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Example: 

A 100 ft wire is attached at its ends to the tops of two 50 ft poles that are positioned 90 ft apart. How 

high above the ground is the middle of the wire? 

Solution  From above, the wire forms a catenary curve with equation 

        
 

 
    

Where the origin is on the ground midway between the poles. Using Formula for the length of the 

catenary, we have 

         
  

  
 

 

  
  

   

       
  

  
 

 

  
  

 

                          

            
 

 
   

  

 

        
 

 
           

 

 
  

  

 

  

 

        
  

 
  

Using a calculating utility's numeric solver to solve  

           
  

 
                             

                   
  

     
                            

Thus, the middle of the wire is                                              
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PARTIAL DERIVATIVES 

 
Definition 

If is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, 

where b is a constant. Then we are really considering a function of a single variable x, namely, 

           . If   has a derivative at a, then we call it the partial derivative of f with respect to x 

at (a,b) and denote it by        .  

Similarly, the partial derivative of f with respect to y at (a,b), denoted by        , is obtained by 

keeping x fixed (x = a) and finding the ordinary derivative at b of the function            . 

  

If   is a function of two variables, its partial derivatives are the functions                       

 

           
   

               

 
 

           
   

               

 
 

 

 

Example 1:  If                    , find                    
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Example 2: Find  
  

  
  and  

  

  
  if                

  

  
                                                     

  

  
                                           

Example 3: If            
 

   
            

  

  
     

  

  
 

  

  
     

 

   
   

 

   
  

  

  
      

 

   
 

 

      
 

Example 4: Find                  
  

      
 

   
                     

         
 

        

         
 

   
                 

         
 

Example 5: Find 
  

  
     

  

  
                                                                  

                

To find 
  

  
 , we differentiate implicitly with respect to x, being careful to treat y as a constant: 

       
  

  
        

  

  
   

Solving this equation for 
  

  
  , we obtain 

  

  
  

      

      
 

Similarly, implicit differentiation with respect to y gives 
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Example 6: If             show that  

 
  

  
  

  

  
      

  

  
                   

  

  
          

                                 

                                

                   

 

Functions of More Than Two Variables 

Partial derivatives can also be defined for functions of three or more variables. For example, if f is a 

function of three variables x, y , and z , then its partial derivative with respect to x is defined as 

 

             
   

                   

 
 

 

Example:  

1- Find                                 

                                                                                     
   

 
 

 

2- If                                

                     

                    

                    

3- If                           
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Higher Derivatives 

If f  is a function of two variables, then its partial derivatives    and     are also functions of two 

variables, so we can consider their partial derivatives     ,       ,       , and      , which are called 

the second partial derivatives of f. If         , we use the following notation: 

          
 

  
 
  

  
  

   

   
 

   

   
 

          
 

  
 
  

  
  

   

     
 

   

    
 

          
 

  
 
  

  
  

   

     
 

   

    
 

          
 

  
 
  

  
  

   

   
 

   

   
 

Warning: Observe that the two notations for the mixed second partials have opposite conventions for 

the order of differentiation. In the “∂” notation the derivatives are taken right to left, and in the 

“subscript” notation they are taken left to right. The conventions are logical if you insert parentheses: 

   

     
 

 

  
 
  

  
                                                                

 

                                                                           

 

Third-order, fourth-order, and higher-order partial derivatives can be obtained by successive 

differentiation. Some possibilities are 

 

 
Using Clairaut’s Theorem it can be shown that                if these functions are continuous. 
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Example: Find the second partial derivatives of                    

                 

                 

                                           

                                                  

Example: Find the second –order partial derivatives of                 

  

  
                                    

  

  
           

 

  
 
  

  
  

   

   
           

 

  
 
  

  
  

   

   
      

 

  
 
  

  
  

   

     
          

 

  
 
  

  
  

   

     
          

 

Example:     

1- Let                            

     
   

     
     

2- Calculate                              
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Interpretations of Partial Derivatives 

To give a geometric interpretation of partial derivatives, we recall that the equation          

represents a surface S (the graph of f). If         , then the point P (a,b,c) lies on S. By fixing    , 

we are restricting our attention to the curve    in which the vertical plane     intersects S. (In other 

words, C1 is the trace of S in the plane    .) Likewise, the vertical plane     intersects S in a 

curve C2. Both of the curves C1 and C2 pass through the point P. (See Figure) 

 Notice that the curve C1 is the graph of the function           , so the slope of its tangent T1 at P 

is              . The curve C2 is the graph of the function            , so the slope of its 

tangent T2 at P is                . Thus the partial derivatives         and         can be 

interpreted geometrically as the slopes of the tangent lines at P(a,b,c) to the traces C1 and C2 of S in 

the planes     and    . 

 

As we have seen in the case of the heat index function, partial derivatives can also be interpreted as 

rates of change. If           , then 
  

  
 represents the rate of change of z with respect to x when y is 

fixed. Similarly, 
  

  
  represents the rate of change of z with respect to y when x is fixed. 

Example:  If                                          and interpret these numbers slopes. 

       

        

            

             

The graph of f is the paraboloid            and the vertical plane     intersects it in the 

parabola           . The slope of the tangent line to this parabola at the point (1,1,1) is 

          . Similarly, the curve    in which the plane     intersects the paraboloid is the 

parabola           , and the slope of the tangent line at (1,1,1) is           . 

. 
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Example: 

Recall that the wind chill temperature index is given by the formula 

                                     

Compute the partial derivative of W with respect to v at the point (T , v) = (25, 10) and interpret this 

partial derivative as a rate of change. 

  

  
                                                                   

Substituting T = 25 and v = 10 gives 

  

  
                            

 

    
 

Example: 

Let                

a- Find the slope of the surface          in the x-direction at the point (1,-2). 

b- Find the slope of the surface          in the y-direction at the point (1,-2). 

 

a- Differentiating f with respect to x with y held fixed yields 

 

            

 

Thus, the slope in the x-direction is fx(1,−2) = −4; that is, z is decreasing at the rate of 4 units per unit 

increase in x. 

b- Differentiating f with respect to y with x held fixed yields 

 

                

 

Thus, the slope in the y-direction is fy(1,−2) = 61; that is, z is increasing at the rate of 61 units per unit 

increase in y. 
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Example: Suppose that          is the length of the diagonal of a rectangle whose sides have 

lengths x and y that are allowed to vary. Find a formula for the rate of change of D with respect to x if 

x varies with y held constant, and use this formula to find the rate of change of D with respect to x at 

the point where x = 3 and y = 4. 

Solution. Differentiating both sides of the equation D
2
 = x

2
 + y

2
 with respect to x yields 

  
  

  
    

 
  

  
   

Since D = 5 when x = 3 and y = 4, it follows that 

 
  

  
                   

  

  
 

 

 
 

 

Thus, D is increasing at a rate of 
 

 
 unit per unit increase in x at the point (3, 4). 

 

Total Differential 

Definition:  

If we move from (xo,yo) to a point (xo+dx,yo+dy) nearby the resulting change  

 

                           

 

In the linearization of f is called the total differential of f 

Often we take                           

 

Example: Estimating Change in Volume 

Suppose that a cylindrical can is designed to have a radius of 1 in and a height of 5 in. but that the 

radius and height are off by the amounts dr = +0.03 and dh = - 0.1. Estimate the resulting absolute 

change in the volume of the can. 

 Solution: 

                                                    

                                 

               
    

                          

                          

The relative change is estimated by 

  

        
 

  

        
 

    

      
 

    

        
      

Giving 4 % as an estimate of the percentage change. 
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Example: Sensitivity to Change 

Your company manufactures right circular cylindrical molasses storage tanks that are 25 ft high with a 

radius of 5 ft. how sensitive are the tanks volumes to small variations in height and radius? 

                                               

                            

              

Thus a 1 unit change in r will change V by about      units. A 1 unit change in h will change V by 

about     units. The tanks volume is 10 times more sensitive to a small change in r than it is to a 

small change of equal size in h. 

 

The Chain Rule 
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Example: 

1- Suppose that                             Find 
  

  
 

  

  
 

  

  

  

  
 

  

  

  

  
 

                                             

 

Alternatively, we can express z directly as a function of t, 

                   

 

2- Suppose that                                                               

Use the chain rule to find 
  

  
         

 

 
 

  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
 

 
 

 
           

 
            

 
 

 
           

 
            

 

 
           

 
              

When      
 

 
                   

 

 
                        

 

 
   

  

  
    

 

Chain Rules For Partial Derivatives 
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Example: Given that                                                  
 

 
 

Find 
  

  
          

  

  
   

  

  
 

  

  

  

  
 

  

  

  

  
                  

 

 
      

 

 
     

  
  

 
 

    

 
         

 
 

   
  

 
           

 
 

 
 

 

  

  
 

  

  

  

  
 

  

  

  

  
                   

 

  
       

 

  
      

  
 

 
        

 

  
          

 
 

                   
 
 

 
 

 

H.W: Suppose that                                                 

Find 
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Example: Suppose that                 

                                                 

Find 
  

  
         

  

  
 

  

  
                                 

                                         

                                 

                           

  

  
                                                                          

 

Example: Suppose that                                            

Find       

  

  
                                         

This result can also be first expressing w explicitly in terms of x as  
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Implicit Differentiation 

1- If the equation 

                                                                         
  

  
        

  

  
  

     

     
 

2- If the equation 

                                                                                 
  

  
        

  

  
  

     

     
            

  

  
   

     

     
         

 

Example:  

1- Given that             Find 
  

  
 

  

  
  

     

     
  

      

   
 

Alternatively, differentiating implicitly yields 

           
  

  
                  

  

  
  

      

   
 

2- Consider the sphere            Find                    at the point  
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Maxima and Minima of Functions of Two Variables 

 

 

 

Extreme-value theorem:  

                                                                                          

                      

 

 

:Definition 

:Definition 

:Definition 

:Definition 
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Example: Locate all relative extrema and saddle points of  

                     

                          

The critical points of f satisfy the equations 

                       

           

                                             

                                                    

                        
                        

                                                      

 

Example : Locate all relative extrema and saddle points of 

                 

                                     

The critical points of f satisfy the equations 

                       

                  

                                                   

             

                                                           

:Definition 
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Critical points 

(xo,yo) 
                                            

  
 Notes 

(0,0) 

(1,1) 

(-1,-1) 

0 

-12 

-12 

0 

-12 

-12 

4 

4 

4 

-16 

128 

128 

Saddle point 

Relative Maximum 

Relative Maximum 

 

                        

Finding Absolute Extrema On Closed And Bounded Sets 

 

 

Example  Find the absolute maximum and minimum values of 

f(x, y) = 3xy − 6x − 3y + 7 

on the closed triangular region R with vertices (0, 0), (3, 0), and 

(0, 5).  

 The region R is shown in Figure ,We have 

  

  
              

  

  
       

So all critical points occur where 
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Solving these equations yields 

           ,       So (1,2) is the critical point 

* The line segment between (0, 0) and (3, 0): On this line segment we have y = 0, so        simplifies 

to a function of the single variable x, 

u(x) = f(x, 0) = −6x + 7,      0 ≤ x ≤ 3 

This function has no critical points because u'(x) = −6 is nonzero for all x. Thus the extreme values of 

u(x) occur at the endpoints x = 0 and x = 3, which correspond to the points (0, 0) and (3, 0) of R. 

* The line segment between (0, 0) and (0, 5): On this line segment we have x = 0, so        simplifies 

to a function of the single variable y, 

v(y) = f(0, y) = −3y + 7,      0 ≤ y ≤ 5 

This function has no critical points because v'(y) = −3 is nonzero for all y. Thus, the extreme values of 

v(y) occur at the endpoints y = 0 and y = 5, which correspond to the points (0, 0) and (0, 5) of R. 

* The line segment between (3, 0) and (0, 5): In the xy-plane, an equation for this line segment is 

     
 

 
              0 ≤ x ≤ 3 

so        simplifies to a function of the single variable x, 

            
 

 
            

 

 
                

 

 
          

                                   

Since 

                 , the                             
 

 
 as the only critical point of w. Thus, 

the extreme values of w occur either at the critical point    
 

 
 or at the endpoints x = 0 and x = 3. The 

endpoints correspond to the points (0, 5) and (3, 0) of R, and from the critical point corresponds to 

  
 

 
 
 

 
   

                         
 

 
 
 

 
        

                
 

 
   

 
Absolute 

Maximum 

Absolute 

Minimum 
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Example: Determine the dimensions of a rectangular box, open at the top, having a volume of 32 ft
3
, 

and requiring the least amount of material for its construction. 

Solution: Let 

x = length of the box (in feet) 

y = width of the box (in feet) 

z = height of the box (in feet) 

S = surface area of the box (in square feet) 

We may reasonably assume that the box with least surface area requires the least amount of material, 

so our objective is to minimize the surface area 

                    

The volume requirement               

We obtain          , so S can be rewritten as 

        
  

 
 

  

 
 

  

  
   

  

  
              

  

  
   

  

  
 

  
  

  
                  

  

  
   

  
  

  
 

  
  

           

    
  

  
    

                           

If                      

So the box using the last material has a height of 2 ft and a square base whose edges are 4 ft long. 
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Lagrange Multipliers 

Joseph Louis Lagrange (1736–1813) French–Italian mathematician and astronomer. Lagrange, the 

son of a public official, was born in Turin, Italy. (Baptismal records list his name as Giuseppe 

Lodovico Lagrangia.) Although his father wanted him to be a lawyer, Lagrange was attracted to 

mathematics and astronomy after reading a memoir by the astronomer Halley. At age 16 he began to 

study mathematics on his own and by age 19 was appointed to a professorship at the Royal Artillery 

School in Turin. The following year Lagrange sent Euler solutions to some famous problems using 

new methods that eventually blossomed into a branch of mathematics called calculus of variations. 

 

 

Let us assume that a constrained relative maximum or minimum occurs at the point (x0, y0), and for 

simplicity let us further assume that the equation g(x, y) = 0 can be smoothly parametrized as  

x = x(s),          y = y(s) 

where s is an arc length parameter with reference point (x0, y0) at s = 0. Thus, the quantity 

z = f(x(s), y(s)) 

has a relative maximum or minimum at s = 0, and this implies that dz/ds = 0 at that point. 

From the chain rule, this equation can be expressed as 

  

  
 

  

  

  

  
 

  

  

  

  
  

  

  
  

  

  
    

  

  
  

  

  
      

It then follows that there is some scalar λ such that 

∇ f(x0, y0) = λ∇ g(x0, y0) 

This scalar is called a Lagrange multiplier. Thus, the method of Lagrange multipliers for finding 

constrained relative extrema is to look for points on the constraint curve g(x, y) = 0 at which Equation 

above is satisfied for some scalar λ. 

The notation    is read "grad f" as well as "gradient of f" and "del f". The symbol ∇ by itself is read 

"del". Another notation for the gradient is grad f, read the way it is written.  

 

Theorem (Constrained-Extremum Principle for Two Variables and One Constraint) Let f and g be 

functions of two variables with continuous first partial derivatives on some open set containing the 

constraint curve g(x, y) = 0, and assume that ∇ g   0 at any point on this curve. If f has a constrained 

relative extremum, then this extremum occurs at a point (x0, y0) on the constraint curve at which the 

gradient vectors ∇ f(x0, y0) and ∇ g(x0, y0) are parallel; that is, there is some number λ such that 

 

                       

Definition

: 

Definition

: 
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Example: At what point or points on the circle                              have an absolute 

maximum, and what is that maximum? 

 

Solution: The circle x
2
 + y

2
 = 1 is a closed and bounded set and f(x, y) = xy is a continuous function, so 

it follows from the Extreme-Value Theorem, that f has an absolute maximum and an absolute 

minimum on the circle. To find these extrema, we will use Lagrange multipliers to find the constrained 

relative extrema, and then we will evaluate f at those relative extrema to find the absolute extrema. 

We want to maximize f(x, y) = xy subject to the constraint 

g(x, y) = x
2
 + y

2
 − 1 = 0  

First we will look for constrained relative extrema. For this purpose we will need the gradients  

∇ f                and     ∇ g              

From the formula for ∇ g we see that ∇ g = 0 if and only if x = 0 and y = 0, so ∇ g   0 at any point on 

the circle x
2
 + y

2
 = 1. Thus, at a constrained relative extremum we must have  

∇ f = λ∇ g                                     

Which is equivalent to the pair of equations                   y = 2xλ        and       x = 2yλ 

It follows from these equations that if x = 0, then y = 0, and if y = 0, then x = 0. In either case we have 

x
2 

+ y
2
 = 0, so the constraint equation x

2
 + y

2
 = 1 is not satisfied. Thus, we can assume that x and y are 

nonzero, and we can rewrite the equations as 

   
 

  
                   

 

  
 

From which we obtain 
 

  
 

 

  
                           

 

Substituting this yields         

            

 

From which we obtain         . Each of these values, when substituted in Equation, produces y 

values of        . Thus, constrained relative extrema occur at the points 

 
 

  
 

 

  
   

 

  
  

 

  
    

 

  
 

 

  
        

 

  
  

 

  
 . The values of xy at these points are as follows: 

                                                          

   1/2 -1/2 -1/2 1/2 

Point Absolute Maximum Absolute Minimum Absolute Minimum Absolute Maximum 
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Example: Use the method of Lagrange multipliers to find the dimensions of a rectangle with perimeter 

p and maximum area. 

Solution: Let 

x = length of the rectangle,       

y = width of the rectangle, 

A = area of the rectangle 

We want to maximize        on the line segment 

                                

that corresponds to the perimeter constraint. This segment is a closed and bounded set, and since 

             is a continuous function, it follows from the Extreme-Value Theorem. That f has an 

absolute maximum on this segment. This absolute maximum must also be a constrained relative 

maximum since f is 0 at the endpoints of the segment and positive elsewhere on the segment. 

 If g(x, y) = 2x + 2y, then we have 

∇ f                 and       ∇ g           

Noting that ∇ g   0, it follows that 

                      

at a constrained relative maximum. This is equivalent to the two equations 

                          

Eliminating λ from these equations we obtain        which shows that the rectangle is actually a 

square. Using this condition and constraint, we obtain                  

 

 

Theorem (Constrained-Extremum Principle for Three Variables and One Constraint) Let f and g be 

functions of three variables with continuous first partial derivatives on some open set containing the 

constraint surface g(x, y, z) = 0, and assume that ∇ g   0 at any point on this surface. If f has a 

constrained relative extremum, then this extremum occurs at a point            on the constraint 

surface at which the gradient vectors ∇ f           and ∇ g           are parallel; that is, there is 

some number λ such that 

                              

 

 

Example: Find the points on the sphere                    that are closest to and farthest from 

the point (1, 2, 2). 

Solution: To avoid radicals, we will find points on the sphere that minimize and maximize the square 

of the distance to (1, 2, 2). Thus, we want to find the relative extrema of 
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Subject to the constraint 

                  

If we let                          then ∇ g                     Thus, ∇ g = 0 if and only if x 

= y = z = 0. It follows that ∇ g   0 at any point of the sphere, and hence the constrained relative 

extrema must occur at points where 

            λ∇ g        

That is, 

                                                         

Which leads to the equations 

                                                                

We may assume that x, y, and z are nonzero since x = 0 does not satisfy the first equation, y = 0 does 

not satisfy the second, and z = 0 does not satisfy the third. Thus, we can rewrite 

   

 
           

   

 
            

      

 
    

The first two equations imply that 

   

 
 

   

 
 

from which it follows that 

                        

Substituting, we obtain 

                            

Substituting these values in equation yields two points: 

                       

Since f                                , it follows that          is the point on the sphere 

closest to (1, 2, 2), and (−2,−4,−4) is the point that is farthest. 

 

 



Applied Mathematics – I 
 

43 
 

Example: Use Lagrange multipliers to determine the dimensions of a rectangular box, open at the top, 

having a volume of 32 ft
3
, and requiring the least amount of material for its construction. 

Solution: the problem is to minimize the surface area 

                   

subject to the volume constraint 

         

If we let                                               then 

∇ f                                                       ∇ g                   

It follows that∇ g   0 at any point on the surface                          are all nonzero on this 

surface. Thus, at a constrained relative extremum we must have ∇ f = λ∇ g, that is, 

                                                        

This condition yields the three equations 

                                                              

Because x, y, and z are nonzero, these equations can be rewritten as 

 

 
 

 

 
                   

 

 
 

 

 
                  

 

 
 

 

 
    

From the first two equations, 

       

and from the first and third equations, 

   
 

 
  

Substituting             in the volume constraint yields 
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MULTIPLE INTEGRALS 
 

Double Integrals 

DEFINITION (Volume Under a Surface) If f is a function of two variables that is continuous and 

nonnegative on a region R in the xy-plane, then the volume of the solid enclosed between the surface   

z = f(x, y) and the region R is defined by 

     
    

                      

 

 

 

   

 

 

The partial derivatives of a function f(x, y) are calculated by holding one of the variables fixed and 

differentiating with respect to the other variable. Let us consider the reverse of this process, partial 

integration. The symbols 

                                       
 

 

 

 

 

denote partial definite integrals; the first integral, called the partial definite integral with respect to x, 

is evaluated by holding y fixed and integrating with respect to x, and the second integral, called the 

partial definite integral with respect to y, is evaluated by holding x fixed and integrating with respect 

to y. As the following example shows, the partial definite integral with respect to x is a function of y, 

and the partial definite integral with respect to y is a function of x. 

A partial definite integral with respect to x is a function of y and hence can be integrated with respect 

to y; similarly, a partial definite integral with respect to y can be integrated with respect to x. This two-

stage integration process is called iterated (or repeated) integration. We introduce the following 

notation: 
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Example   

a: 

                
 

 

              
 

 

                   
     

 

 

 

 

 

 

 

                                                
     

 

 

 

 

 

 

b:  

                
 

 

              
 

 

                   
    

 

 

 

 

 

 

 

                                            
     

 

 

 

 

 

Theorem (Fubini’s Theorem) Let R be the rectangle defined by the inequalities 

a ≤ x ≤ b, c ≤ y ≤ d 

If f(x, y) is continuous on this rectangle, then 

                                     
 

 

 

 

 

 

 

 

 

 

 

Example Use a double integral to find the volume of the solid that is bounded above by the plane  

z = 4 − x − y and below by the rectangle R = [0, 1] × [0, 2]                                                                                                                               

Solution:         

                                             
 

 

 

 

 

 

 

 
 

V=                    
  

 
    

   

  

 

 

 
   

 

 

  
 

 
       

 

 
  

  

 
  
   

 

 
 

H.w check this result by evaluating the second integrals  

Example  Evaluate the double integral 

       

 

 

 

Over the rectangle                         
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Properties of Double Integrals 

 

It is evident intuitively that if f(x, y) is nonnegative on a region R, then subdividing R into 

two regionsR1 andR2 has the effect of subdividing the solid between R and z = f(x, y) 

into two solids, the sum of whose volumes is the volume of the entire solid. 

This suggests the following result, which holds even if f has negative values: 

 

Double Integrals over Nonrectangular Regions 

Iterated Integrals with Nonconstant Limits Of Integration 

Later in this section we will see that double integrals over nonrectangular regions can often be 

evaluated as iterated integrals of the following types: 

 

Example: Evaluate 

(a)            
  

  

 

 
                             (b)              

    

 

   

 
  

Solution:   (a)            
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(b)              
    

 

   

 
     

    

 
           

   

 
  

  

 

   

 
     

   
        

  
 

 
         

   

 
      

 

 
      

 
    

 

  
 

Double Integrals over Nonrectangular Regions 

Definition 

(a) A type I region is bounded on the left and right by vertical lines x = a and x = b and is bounded 

below and above by continuous curves y = g1(x) and y = g2(x), 

where g1(x) ≤ g2(x) for a ≤ x ≤ b  

(b) A type II region is bounded below and above by horizontal lines y = c and y = d and is bounded on 

the left and right by continuous curves x = h1(y) and x = h2(y) satisfying h1(y) ≤ h2(y) for c ≤ y ≤ d 

                  

 
 

 

The integral in Example (a) is the double integral of the function f(x, y) = y
2
x over the type I region R 

bounded on the left and right by the vertical lines x = 0 and x = 1 and bounded below and above by the 

curves y = −x and y = x
2
.  

The integral in Example (b) is the double integral of the function f(x, y) = x sin y over the type II region 

R bounded below and above by the horizontal lines y = 0 and y = π/3 and bounded on the left and right 

by the curves x = 0 and x = cos y 
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Determining Limits of Integration: Type I Region 

Step 1. Since x is held fixed for the first integration, we draw a vertical line through the region R at an 

arbitrary fixed value x. This line crosses the boundary of R twice. The lower point of intersection is on 

the curve y = g1(x) and the higher point is on the curve y = g2(x). These two intersections determine the 

lower and upper y-limits of integration. 

Step 2. Imagine moving the line drawn in Step 1 first to the left and then to the right. The leftmost 

position where the line intersects the region R is x = a, and the rightmost position where the line 

intersects the region R is x = b. This yields the limits for the x-integration. 

Example:  Evaluate 

      

 

 

 

over the region R enclosed between   
 

 
       and  

x = 2 and x = 4                                                                                             
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Determining Limits of Integration: Type II Region 

Step 1. Since y is held fixed for the first integration, we draw a horizontal line through the region R at 

a fixed value y. This line crosses the boundary of R twice. The leftmost point of intersection is on the 

curve x = h1(y) and the rightmost point is on the curve x = h2(y). These intersections determine the x-

limits of integration. 

Step 2. Imagine moving the line drawn in Step 1 first down and then up. The lowest position where the 

line intersects the region R is y = c, and the highest position where the line intersects the region R is y = 

d. This yields the y-limits of integration. 

                                                                                               

Example: Evaluate  

          

 

 

 

Over the triangle region R enclosed between the lines 

                        

 

We view R as a type II region. The region R and a horizontal line corresponding to a fixed y are shown 

in Figure. This line meets the region R at its left-hand boundary x = 1 − y and its right-hand boundary x 

= y − 1. These are the x-limits of integration. 

Moving this line first down and then up yields the y-limits, y = 1 and y = 3. Thus, 

          

 

 

          

   

   

 

 

        

 

 

             
   

   

                             

 

 

               
   

 
 

  

 
 
 

 

  
  

 

 

 

 

H.W Resolve above example as type I region 
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Example: Use a double integral to find the volume of the tetrahedron bounded by the coordinate 

planes and the plane z = 4 − 4x − 2y. 

Solution. The tetrahedron in question is bounded above by the plane 

                 

and below by the triangular region R shown in Figure. Thus, the volume is given by 

                  

 

 

    

The region R is bounded by the x-axis, the y-axis, and the line y = 2 − 2x [set z = 0], so that treating R 

as a type I region yields 

                  
 

 
                     

    

 

 

 
 

               
    

 

 

                 
 

 

 

 

 

 

 

 

 

Example: Find the volume of the solid bounded by the cylinder            and the planes 

                   . 

Solution. The solid shown in Figure is bounded above by the plane 

z = 4 − y and below by the region R within the circle x
2
 + y

2
 = 4. 

The volume is given by 

          

 

 

    

Treating R as a type I region we obtain 
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Reversing the Order of Integration 

Sometimes the evaluation of an iterated integral can be simplified by reversing the order of integration. 

The next example illustrates how this is done. 

Example: Since there is no elementary antiderivative of    
, the integral 

     

 

   

 

 

      

cannot be evaluated by performing the x-integration first. Evaluate this integral by expressing it as an 

equivalent iterated integral with the order of integration reversed. 

Solution:  For the inside integration, y is fixed and x varies from the line         to the line x = 1. 

For the outside integration, y varies from 0 to 2, so the given iterated integral is equal to a double 

integral over the triangular region R. 

To reverse the order of integration, we treat R as a type I region, which enables us to write the given 

integral as 

     

 

 
 

 

 

          

 

 

   

      

  

 

     

 

 

      
  

   

  

 

 

  

       
      

  
     

 

 

 

 

 

Area Calculated as a Double Integral 

We stated that the volume V of a right cylinder with cross-sectional area A and height h is 

           

Now suppose that we are interested in finding the area A of a region R in the xy-plane. If we translate 

the region R upward 1 unit, then the resulting solid will be a right cylinder that has cross-sectional area 

A, base R, and the plane z = 1 as its top. Thus, it follows that 

                   

 

 

 

Which we can rewrite as  
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Example: Use a double integral to find the area of the region R enclosed between the parabola 

   
 

 
   and the line       . 

Solution:  The region R may be treated equally well as type I or type II.  

(a) Treating R as type I yields  

              

 

 

        

  

    

 

 

     
  

  

 

  

 

 

    

      
 

 
          

  

 
 
 

 

 
  

 

 

 

 

 

(b) Treating R as type II yields 

              

 

 

        

   

   

 

 

     
  

 
 

   

 

 

   

       
 

 
      

   

 
     

  

 
 
 

 

     
 

 

 

 

    

Hint  
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Double Integrals in Polar Coordinates 

Such integrals are important for two reasons: first, they arise naturally in many applications, and 

second, many double integrals in rectangular coordinates can be evaluated more easily if they are 

converted to polar coordinates. 

Some double integrals are easier to evaluate if the region of integration is expressed in polar 

coordinates. This is usually true if the region is bounded by a cardioid, a rose curve, a spiral, or, more 

generally, by any curve whose equation is simpler in polar coordinates than in rectangular coordinates. 

Recall from Figure shown that the polar coordinates of a point are related to the rectangular 

coordinates by the equations 

                                                         

                                                                            

A region R in a polar coordinate system that is enclosed between two 

rays, θ = α and θ = β, and two polar curves, r = r1(θ) and r = r2(θ). 

 

 

 

 

 

 

 

Definition A simple polar region in a polar coordinate system is a region that is enclosed between two 

rays, θ = α and θ = β, and two continuous polar curves, r = r1(θ) and r = r2(θ), where the equations of 

the rays and the polar curves satisfy the following conditions: 

(i) α ≤ β        (ii) β − α ≤ 2π                (iii) 0 ≤ r1(θ) ≤ r2(θ) 

The volume problem in polar coordinates Given a function f(r, θ) that is continuous and 

nonnegative on a simple polar region R, find the volume of the solid that is enclosed between the 

region R and the surface whose equation in cylindrical coordinates is z = f(r, θ) 
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Which is called the polar double integral of f(r, θ) over R. If f(r, θ) is continuous and  nonnegative on 

R, then the volume can be expressed as 

               
   

     
    

     

 

   

 

 

 

The volume V can be expressed as the iterated integral 

                           
     

     

 

 

 

 

 

Determining Limits of Integration for a Polar Double Integral: Simple Polar Region 

Step 1. Since θ is held fixed for the first integration, draw a radial line from the origin through the 

region R at a fixed angle θ. This line crosses the boundary of R at most twice. The innermost point of 

intersection is on the inner boundary curve r = r1(θ) and the outermost point is on the outer boundary 

curve r = r2(θ). These intersections determine the r-limits of integration. 

Step 2. Imagine rotating the radial line from Step 1 about the origin, thus sweeping out the region R. 

The least angle at which the radial line intersects the region R is θ = α and the greatest angle is θ = β. 

This determines the θ-limits of integration. 

 

Example: Evaluate  

        
 

 
 

Where R is the region in the first quadrant that is outside the 

circle r = 2 and inside the cardioid                    
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Solution:  

        

 

 

                
         

 

 
 

 

   
 

 
        

   

            

 

  

                              
 

 
                 

 
 

   

 

    
 

 
   

 

 
   

 

 
 

  Example: 

The sphere of radius a centered at the origin is expressed in rectangular coordinates as 

 x
2
 + y

2
 + z

2
 = a

2
, and hence its equation in cylindrical coordinates is r

2
 + z

2
 = a

2
. Use this equation and 

a polar double integral to find the volume of the sphere.                                            

Solution:   

In cylindrical coordinates the upper hemisphere is given by the 

equation 

           

So the volume enclosed by the entire sphere is 

              

 

 

    

Where R is the circular region shown in figure. Thus, 

              

 

 

    

           
 

 

  

 

         

    
 

 
       

 
  

   

   

 

    
 

 
    

  

 

  
 

 
    

  

  

 
 

 
    

Finding Areas Using Polar Double Integrals  
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Example: Use a polar double integral to find the area enclosed by the three-petaled rose r = sin 3θ. 

Solution: The rose is sketched in Figure. We will calculate the area of the petal R in the first quadrant 

and multiply by three. 

      
 

 
           

     

 

 

 
 

  

 

 
        

 
 

 

    

 

 
          

   

 

   
 

 
   

     

 
 
 

   

 
 

 
  

 

Example: Use polar coordinates to evaluate 

                 
     

 

 

  

 

 

Solution: In this problem we are starting with an iterated integral in rectangular coordinates rather than 

a double integral, so before we can make the conversion to polar coordinates we will have to identify 

the region of integration. To do this, we observe that for fixed x the y-integration runs from y = 0 to 

          which tells us that the lower boundary of the region is the x-axis and the upper 

boundary is a semicircle of radius 1 centered at the origin. From the x-integration we see that x varies 

from −1 to 1, so we conclude that the region of integration is as shown in Figure. In polar coordinates, 

this is the region swept out as r varies between 0 and 1 and θ varies between 0 and π. Thus, 

 

         
 
      

     

 

 

  

         
 
 

 

 

   

              
 

 

 

 

  
 

 
  

 

 

 
 

 
 

 

 

 

Hint: 
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Example: Evaluate  

         

 

 

   

, where R is the region in the upper half-plane bounded by the circles          and         . 

Solution The region R can be described as 

                          

 It is the half-ring shown in Figure, and in polar coordinates it is given by             . 

Therefore,  

         

 

 

                               
 

 

 

 

 

                      
     

 

 
 

           
  

 
             

 

 

 

         
   

 
 

  

 
         

  
   

 
 

 

Example: Use a double integral to find the area enclosed by one loop of the four leaved rose  

     . 

Solution: From the sketch of the curve in Figure, we see that a loop 

is given by the region  
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Centers of Gravity Using Multiple Integrals 

Moments and Centers of Mass 

An idealized flat object that is thin enough to be viewed as a two-dimensional plane region is called a 

lamina. A lamina is called homogeneous if its composition is uniform throughout and 

inhomogeneous otherwise. The density of a homogeneous lamina was defined to be its mass per unit 

area. Thus, the density δ of a homogeneous lamina of mass M and area A is given by δ = M/A. 

The density at a point (x, y) can be specified by a function δ(x, y), called the density function, 

                                   

Mass of a lamina If a lamina with a continuous density function δ(x, y) occupies a region R in the xy-

plane, then its total mass M is given by 

     
    

     
    

      

 

   

         

 

 

 

Example:  A triangular lamina with vertices (0, 0), (0, 1), and (1, 0) has density function 

              Find its total mass. 

Solution:  the mass M of the lamina is 
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The Center of Gravity of a lamina occupying a region R in the horizontal xy-plane is the point         

such that the effect of gravity on the lamina is “equivalent” to that of a single force acting at       . If 

        is in R, then the lamina will balance horizontally on a point of support placed at        . 

                                                                                                  

Suppose that a lamina with a continuous density function δ(x, y) occupies a region R in a horizontal 

xy-plane. Find the coordinates         of the center of gravity. 

                                      

   
           

 

  

         
 

 

                       
            

 

 

         
 

 

                    

 

Alternative Formulas for Center of Gravity         of a Lamina 

   
  

 
 

 

         
           

 

  

                       
  

 
 

 

         
           

 

  

                    

 

My is called the first moment of the lamina about the y-axis  

Mx is called the first moment of the lamina about the x-axis. 

Example: Find the center of gravity of the triangular lamina with vertices (0, 0), (0, 1), and (1, 0) and 

density function δ(x, y) = xy. 

Solution: The lamina is shown in previous Example, we found the mass of the lamina to be 

           

 

 

    

 

 

   
 

  
 

The moment of the lamina about the y-axis is 
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The moment of the lamina about the x-axis is 

               

 

  

        

 

  

       
    

 

 

 

      

   
 

 
    

   

    

  
 

 

    
 

 
         

 

 
    

 

 

 
 

  
 

   
  

 
 

    

    
 

 

 
            

  

 
 

    

    
 

 

 
  

So the center of gravity is  
 

 
 
 

 
  

the center of gravity of a homogeneous lamina is called the centroid of the lamina or sometimes the 

centroid of the region R. Because the density function δ is constant for a homogeneous lamina, the 

factor δ may be moved through the integral and canceled. The centroid         is a geometric property 

of the region R and is given by the following formulas: 

   
     

 

  

    
 

  

 
 

         
      

 

  

 

   
     

 

  

    
 

  

 
 

         
      

 

  

 

Example: Find the centroid of the semicircular region in Figure. 

Solution: By symmetry,        since the y-axis is obviously a line of balance. 
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Example: Find the mass and center of mass of a triangular lamina with vertices (0,0), (1,0), and (0,2) 

if the density function is              . 

Solution: The triangle is shown in Figure. (Note that the equation of the upper boundary is 

       ) The mass of the lamina is 

           

 

 

          

 

 

   

                 
    

 

 

 

         
  

 
 
   

      

  
 

 

 

           
 

 

     
  

 
  

 

 
                

 

   
 

 
           

 

  

 
 

 
            

    

 

 

 

      

 
 

 
           

  

 
 
   

    

  
 

 

 
 

 
         

 

 

 
 

 
 
  

 
 

  

 
 
 

 

 
 

 
 

 

   
 

 
           

 

  

 
 

 
            

    

 

 

 

      

 
 

 
  

  

 
   

  

 
 

  

 
 
   

    

  
 

 

 
 

 
                 

 

 

 

 
 

 
     

  

 
     

  

 
 
 

 

 
  

  
 

The center of mass is at the point  
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Example: The density at any point on a semicircular lamina is proportional to the distance from the 

center of the circle. Find the center of mass of the lamina. 

Solution: Let’s place the lamina as the upper half of the circle         . Then the distance from a 

point (x,y) to the center of the circle (the origin) is       . Therefore the density function is  

               

Where K is some constant. Both the density function and the shape of the lamina suggest that we 

convert to polar coordinates. Then          and the region R is given by            . 

Thus the mass of the lamina is 

           

 

 

   

 

 

         

              
 

 

 

 

     
 

 

     
 

 

   
  

 
   

  
    

 
 

 

Both the lamina and the density function are symmetric with respect to the -axis, so the center of mass 

must lie on the y-axis, that is     . The y-coordinate is given by                                                                                                

   
 

 
           

 

  

 
 

    
             

 

 

 

 

      

 
 

   
       

 

 

     
 

 

 
 

   
        

  
  

 
 
 

 

 

 
 

   

   

 
 

  

  
 

Therefore the center of mass is located at the point    
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