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Lecture (  )                             Frequency Response 
 
1) Introduction   
In our sinusoidal circuit analysis, we have learned how to find voltages and currents in a 

circuit with a constant frequency source. If we let the amplitude of the sinusoidal source 

remain constant and vary the frequency, we obtain the circuit’s frequency response. The 

frequency response may be regarded as a complete description of the sinusoidal steady 

state behavior of a circuit as a function of frequency.    

The frequency response of a circuit is the variation in its behavior with change in 
signal frequency. 

The sinusoidal steady-state frequency responses of circuits are of significance in many 

applications, especially in communications and control systems. A specific application is 

in electric filters that block out or eliminate signals with unwanted frequencies and pass 

signals of the desired frequencies. Filters are used in radio, TV, and telephone systems to 

separate one broadcast frequency from another. 

 
2) Transfer Function  
The transfer function 𝑯(𝝎) (also called the network function) is a useful analytical tool for 

finding the frequency response of a circuit. In fact, the frequency response of a circuit is 

the plot of the circuit’s transfer function 𝑯(𝝎) versus 𝝎, with 𝝎 varying from 𝝎 = 𝟎 to 

𝝎 = ∞. 
A transfer function is the frequency-dependent ratio of a forced function to a forcing 

function (or of an output to an input). The idea of a transfer function was implicit when we 

used the concepts of impedance and admittance to relate voltage and current. In general, a 

linear network can be represented by the block diagram shown in Fig.2.1. 

The transfer function H(𝝎) of a circuit is the frequency-dependent ratio of a phasor 
output Y(𝝎) (an element voltage or current) to a phasor input X(𝝎) (source voltage 
or current). 

 
Fig.2.1. A block diagram representation of a linear network. 

 

Thus, 
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assuming zero initial conditions. Since the input and output can be either voltage or 

current at any place in the circuit, there are four possible transfer functions: 

 
Being a complex quantity, 𝐻(𝜔) has a magnitude 𝑯(𝝎) and a phase 𝝋; that is, 𝑯(𝝎) = 

𝑯(𝝎)/𝝋. 

To obtain the transfer function using Eq. (2.2), we first obtain the frequency‐domain 

equivalent of the circuit by replacing resistors, inductors, and capacitors with their 

impedances 𝑹, 𝒋𝝎𝑳, and 𝟏/𝒋𝝎𝑪. We then use any circuit technique (s) to obtain the 

appropriate quantity in Eq. (2.2). We can obtain the frequency response of the circuit by 

plotting the magnitude and phase of the transfer function as the frequency varies. The 

transfer function 𝑯(𝝎) can be expressed in terms of its numerator polynomial 𝑵(𝝎) and 

denominator polynomial 𝑫(𝝎) as 

 
The roots of 𝑵(𝝎) = 𝟎 are called the zeros of 𝑯(𝝎) and are usually represented as 𝒋𝝎 =

𝒛𝟏. 𝒛𝟐. …. Similarly, the roots of 𝑫(𝝎) = 𝟎 are the poles of 𝑯(𝝎) and are represented as 

𝒋𝝎 = 𝒑𝟏. 𝒑𝟐. … 

A zero, as a root of the numerator polynomial, is a value that results in a zero 
value of the function. A pole, as a root of the denominator polynomial, is a value 
for which the function is infinite. 

To avoid complex algebra, it is expedient to replace j𝝎 temporarily with 𝒔 when working 

with 𝑯(𝝎) and replace 𝒔 with j𝝎 at the end. 

 

 



University of Diyala                                                                                                  Electrical Circuits               
Engineering College                                                                                     

 

3 
 

Example 1:  For the 𝑅𝐶 circuit in Fig. 1.1(a), obtain the transfer function 𝑽𝒐/𝑽𝒔  and its 

frequency response. Let 𝑣𝑠 = 𝑉𝑚𝑐𝑜𝑠𝜔𝑡. 

Solution: 

The frequency‐domain equivalent of the circuit is in Fig. 1.1(b). By voltage division, the 

transfer function is given by 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑠
=

1/𝑗𝜔𝐶

𝑅 + 1/𝑗𝜔𝐶
=

1

1 + 𝑗𝜔𝑅𝐶
 

We obtain the magnitude and phase of 𝐻(𝜔) as 

𝐻 =
1

√1+(𝜔/𝜔0)2
,  𝜑 = −tan−1 𝜔

𝜔0
 

where 𝝎𝟎 = 𝟏/𝑹𝑪. To plot 𝑯 and 𝜑 for 𝟎 < 𝝎 < ∞, we obtain their values at some 

critical points and then sketch. 

At 𝝎 = 𝟎. 𝑯 = 𝟏 and 𝝋 = 𝟎. At 𝝎 = ∞. 𝑯 = 𝟎 and 𝝋 = −𝟗𝟎𝒐. Also, at 𝝎 = 𝝎𝟎. 𝑯 =

𝟏/√𝟐 and 𝝋 = −𝟒𝟓𝒐. With these and a few more points as shown in Table 1.1, we find 

that the frequency response is as shown in Fig. 1.2. 

 

 
Fig. 1.1 (a) time-domain RC circuit, (b) frequency-domain RC circuit. 
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Fig. 1.2 Frequency response of the RC circuit: (a) amplitude response, (b) phase response. 

 
 

H.W.1:  Obtain the transfer function 𝑉𝑜/𝑉𝑠 of the 𝑅𝐿 circuit 

in Fig. 1.1, assuming 𝑣𝑠 = 𝑉𝑚𝑐𝑜𝑠𝜔𝑡.. Sketch its frequency 

response. 

 

 

Answer: 𝒋𝝎𝑳/(𝑹 + 𝒋𝝎𝑳), see Fig. 1.2 for the response. 

 

 

Fig. 1.2 Frequency response of the RL circuit in Fig. 1.1. 
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Example 2:  For the circuit in Fig. 2.1, calculate the gain 𝑰𝒐(𝝎)/𝑰𝒔(𝝎)  and its poles and 

zeros. 

Solution: 

By current division, 

𝐼𝑜(𝜔) =
4 + 𝑗2𝜔

4 + 𝑗2𝜔 + 1/𝑗0.5𝜔
𝐼𝑖(𝜔) 

or         

𝐼𝑜(𝜔)

𝐼𝑖(𝜔)
=

𝑗0.5𝜔(4 + 𝑗2𝜔)

1 + 𝑗2𝜔 + (𝑗𝜔)2
=

𝑠(𝑠 + 2)

𝑠2 + 2𝑠 + 1
,    𝑠 = 𝑗𝜔                           Fig. 2 ∙ 1 

The zeros are at 

𝑠(𝑠 + 2) = 0 ⇒  𝑧1 = 0, 𝑧2 = −2 

The poles are at 

𝑠2 + 2𝑠 + 1 = (𝑠 + 1)2 = 0 

Thus, there is a repeated pole (or double pole) at 𝑝 = −1. 

 

H.W.2: Find the transfer function 𝑉𝑜(𝜔)/𝐼𝑖(𝜔) for the circuit shown below. Obtain its 

zeros and poles. 

 

 

 

 

 

 

 

 

 

 

Answer: 
𝟏𝟎(𝒔+𝟏)(𝒔+𝟑)

𝒔𝟐+𝟖𝒔+𝟓
, 𝒔 = 𝒋𝝎; zeros: −𝟏, −𝟑; poles: −𝟎. 𝟔𝟖𝟑, −𝟕. 𝟑𝟏𝟕 
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3) Decibel Scale 

It is not always easy to get a quick plot of the magnitude and phase of the transfer function 

as did above. A more systematic way of obtaining the frequency response is to use Bode 

plots. Before begin to construct Bode plots, it should take care of two important issues: the 

use of logarithms and decibels in expressing gain. 

Since Bode plots are based on logarithms, it is important to keep the following properties 

of logarithms in mind: 

1. log 𝑃1𝑃2 =  log 𝑃1 +  log 𝑃2  

2. log 𝑃1/𝑃2 =  log 𝑃1 −  log 𝑃2  

3. log 𝑃𝑛 = 𝑛 log 𝑃 

4. log 1 = 0 

In communications systems, gain is measured in bels. Historically, the bel is used to 

measure the ratio of two levels of power or power gain 𝑮; that is,  

𝐺 = Number of bels = log10
𝑃2

𝑃1
                                                                                   …(3.1) 

The decibel (𝒅𝑩) provides us with a unit of less magnitude. It is 1/l0th of a bel  & given by 

𝐺𝑑𝐵 = 10log10
𝑃2

𝑃1
                                                                                                         …(3.2) 

When 𝑃1 = 𝑃2, there is no change in power and the gain is 0𝑑𝐵. If 𝑃2 = 2𝑃1, the gain is, 

𝐺𝑑𝐵 = 10log102 = 3𝑑𝐵                                                                                              …(3.3) 

and when 𝑃2 = 0.5𝑃1, the gain is 

𝐺𝑑𝐵 = 10log100 ∙ 5 = −3𝑑𝐵                                                                                      …(3.4) 

Equations (3.3) and (3.4) show another reason why logarithms are greatly used: The 

logarithm of the reciprocal of a quantity is simply 

negative the logarithm of that quantity. Alternatively, the 

gain 𝐺 can be expressed in terms of voltage or current 

ratio. To do so, consider the network shown in Fig. 3.1. 

If 𝑃1 is the input power, 𝑃2 is the output (load) power, 𝑅1 

is the input resistance, and 𝑅2 is the load resistance, then 

𝑃1 = 0.5𝑉1
2/𝑅1 and 𝑃2 = 0.5𝑉2

2/𝑅2, and Eq. (3.2) 

becomes,                                                                      Fig. 3.1 Voltage-current relationships   

                                                                                                   for a four terminal network. 
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𝐺𝑑𝐵 = 10log10
𝑃2

𝑃1
= 10log10

𝑉2
2/𝑅2

𝑉1
2/𝑅1

= 10log10(
𝑉2

𝑉1
)2 + 10log10

𝑅1

𝑅2
                              …(3.5) 

𝐺𝑑𝐵 = 20log10
𝑉2

𝑉1
− 10log10

𝑅1

𝑅1
                                                                                   …(3.6) 

For the case when 𝑅2 = 𝑅1, a condition that is often assumed when comparing voltage 

levels, Eq. (3.6) becomes 

𝐺𝑑𝐵 = 20log10
𝑉2

𝑉1
                                                                                                         …(3.7) 

Instead, if 𝑃1 = 𝐼1
2𝑅1 and 𝑃2 = 𝐼2

2𝑅2, for 𝑅1 = 𝑅2, obtain 

𝐺𝑑𝐵 = 20log10
𝐼2

𝐼1
                                                                                                             (3.8) 

Three things are important to note from Eqs. (3.2), (3.7), and (3.8): 

1. That 10log10 is used for power, while 20log10 is used for voltage or current, because of 

the square relationship between them 

(𝑃 = 𝑉2/𝑅 = 𝐼2𝑅) . 

2. That the 𝑑𝐵 value is a logarithmic measurement ofthe ratio of one variable to another of 

the same type. Therefore, it applies in expressing the transfer function 𝐻 in Eqs. (2.2a) and 

(2.2b), which are dimensionless quantities, but not in expressing 𝐻 in Eqs. (2.2c) and 

(2.2d). 

3. It is important to note that, only use voltage and current magnitudes in Eqs. (3.7) and 

(3.8). Negative signs and angles will be handled independently. 
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4) Bode Plots 

Obtaining the frequency response from the transfer function is an uphill task. The 

frequency range required in frequency response is often so wide that it is inconvenient to 

use a linear scale for the frequency axis. Also, there is a more systematic way of locating 

the important features of the magnitude and phase plots of the transfer function. For these 

reasons, it has become standard practice to plot the transfer function on a pair of 

semilogarithmic plots: the magnitude in decibels is plotted against the logarithm of the 

frequency; on a separate plot, the phase in degrees is plotted against the logarithm of the 

frequency. Such semilogarithmic plots of the transfer function—known as Bode plots—

have become the industry standard. 

Bode plots are semilog plots of the magnitude (in decibels) and phase (in 

degrees) of a transfer function versus frequency. 

Bode plots contain the same information as the nonlogarithmic plots discussed in the 

previous section. 

The transfer function can be written as 

𝐻 = 𝐻/𝜑 = 𝐻𝑒𝑗𝜑                                                                                                       …(4.1) 

Taking the natural logarithm of both sides, 

𝑙𝑛 𝐻 = In 𝐻 + 𝑙𝑛𝑒𝑗𝜑 = 𝑙𝑛𝐻 + 𝑗𝜑                                                                              …(4.2) 

Thus, the real part of 𝑙𝑛𝐻 is a function of the magnitude while the imaginary part is the 

phase. In a Bode magnitude plot, the gain 

𝐻𝑑𝐵 = 20log10𝐻                                                                                                          …(4.3) 

is plotted in decibels (𝑑𝐵) versus frequency. 

In a Bode phase plot, 𝜑 is plotted in degrees versus frequency. Both magnitude and phase 

plots are made on semilog graph paper. 

A transfer function in the form of Eq. (2.3) may be written in terms of factors that have 

real and imaginary parts. One such representation might be, 

𝐻(𝜔) =
𝐾(𝑗𝜔)±1(1+𝑗𝜔/𝑧1)[1+𝑗2𝜁1𝜔/𝜔𝑘+(𝑗𝜔/𝜔𝑘)2]

(1+𝑗𝜔/𝑝1)[1+𝑗2𝜁2𝜔/𝜔𝑛+(𝑗𝜔/𝜔𝑛)2]
                                     …(4.4) 
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which is obtained by dividing out the poles and zeros in 𝐻(𝜔) . The representation of 

𝐻(𝜔) as in Eq. (4.4) is called the standard form. 𝐻(𝜔) may include up to seven types of 

different factors that can appear in various combinations in a transfer function. These are: 

1. A gain 𝐾. 

2. A pole (𝑗𝜔)−1 or zero (𝑗𝜔) at the origin. 

3. A simple pole 1/(1 + 𝑗𝜔/𝑝1) or zero (1 + 𝑗𝜔/𝑧1) 

4. A quadratic pole 1/[1 + 𝐽2𝜁2𝜔/𝜔𝑛 + (𝑗𝜔/𝜔𝑛)2] or zero [1 + 𝑗2𝜁1𝜔/𝜔𝑘 + (𝑗𝜔/𝜔𝑘)2] 

In constructing a Bode plot, we plot each factor separately and then add them graphically. 

The factors can be considered one at a time and then combined additively because of the 

logarithms involved. It is this mathematical convenience of the logarithm that makes Bode 

plots a powerful engineering tool. We will now make straight‐line plots of the factors 

listed above. We shall find that these straight‐line plots known as Bode plots approximate 

the actual plots to a reasonable degree of accuracy. 

 

Constant term: For the gain 𝐾, the magnitude is 20log10𝐾 and the phase is 0𝑜; both are 

constant with frequency. Thus, the magnitude and phase plots of the gain are shown in Fig. 

4.1. If 𝐾 is negative, the magnitude remains 20log10|𝐾| but the phase is ±180𝑜. 

 

Fig. 4.1. Bode plots for gain K: (a) magnitude plot, (b) phase plot. 

Notes:  

1) The origin is where 𝜔 = 1 or log𝜔 = 0 and the gain is zero. 

 

2) A decade is an interval between two frequencies with a ratio of 10; e.g., between 

𝜔0 and 10𝜔0, or between 10 and 100 Hz. Thus, 20 dB/decade means that the 

magnitude changes 20 dB whenever the frequency changes tenfold or one decade. 
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𝑷𝒐𝒍𝒆/zero at the origin: For the zero (𝑗𝜔)  at the origin, the magnitude is 20log10𝜔 and 

the phase is is 900. These are plotted in Fig. 4.2, where we notice that the slope of the 

magnitude plot is 20 dB/decade, while the phase is constant with frequency. The Bode 

plots for the pole (𝑗𝜔)−1 are similar except that the slope of the magnitude plot is 

−20𝑑𝐵/decade while the phase is −90𝑜. In general, for (𝑗𝜔)𝑁 , where 𝑁 is an integer, the 

magnitude plot will have a slope of 20𝑁𝑑𝐵/decade, while the phase is 90𝑁 degrees. 

 
Fig. 4.2. Bode plots for a zero (𝑗𝜔) at the origin: (a) magnitude plot, (b) phase plot. 

 

Simple 𝒑𝒐𝒍𝒆/𝒛𝒆𝒓𝒐: For the simple zero (1 + 𝑗𝜔/𝑧1) , the magnitude is 20log10|1 +

𝑗𝜔/𝑧1| and the phase is tan−1𝜔/𝑧1. We notice that ,  

𝐻𝑑𝐵 = 20log10|1 +
𝑗𝜔

𝑧1
| ⇒ 20log101 = 0                                                                  …(4.5)  

                                             as 𝜔 → 0 

𝐻𝑑𝐵 = 20log10|1 +
𝑗𝜔

𝑍1
| ⇒ 20log10

𝜔

𝑍1
                                                                        …(4.6) 

                                             as 𝜔 → ∞ 

showing that we can approximate the magnitude as zero (a straight line with zero slope) 

for small values of 𝜔 and by a straight line with slope 20 𝑑𝐵/decade for large values of 𝜔. 

The frequency 𝜔 = 𝑧1 where the two asymptotic lines meet is called the corner frequency or 

break frequency. Thus the approximate magnitude plot is shown in Fig. 4.3(a), where the 

actual plot is also shown. Notice that the approximate plot is close to the actual plot except 

at the break frequency, where 𝜔 = 𝑧1 and the deviation is 20log10|(1 + 𝑗1)| =

20log10√2 ≅ 3𝑑𝐵. 

The phase tan−1(𝜔/𝑧1) can be expressed as 

𝜑 = tan−1(
𝜔

𝑧1
) = {

0 𝜔 = 0
45𝑜 𝜔 = 𝑧1

90𝑜 𝜔 → ∞

                                                                               …(4.7) 
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As a straight‐line approximation, let 𝜑 ≅ 0 for 𝜔 ≤ 𝑧1/10, 𝜑 ≅ 45𝑜 for 𝜔 = 𝑧1, and 𝜑 =

90𝑜 for 𝜔 ≥ 10𝑧1. As shown in Fig. 4.3 (b) along with the actual plot, the straight‐line 

plot has a slope of 45𝑜 per decade. 

The Bode plots for the pole 1/(1 + 𝑗𝜔/𝑝1) are similar to those in Fig. 4.3 except that the 

corner frequency is at 𝜔 = 𝑝1, the magnitude has a slope of −20 𝑑𝐵/decade, and the phase 

has a slope 𝑜𝑓 − 45𝑜 per decade.  

 

Fig. 4.3. Bode plots for a zero (1 + 
𝑗𝜔

𝑧1
): (a) magnitude plot, (b) phase plot. 

 

Quadratic 𝒑𝒐𝒍𝒆/𝒛𝒆𝒓𝒐: The magnitude of the quadratic pole 1/[1 + 𝑗2𝜁2𝜔/𝜔𝑛 +

(𝑗𝜔/𝜔𝑛)2] is −20log10|1 + 𝑗2𝜁2𝜔/𝜔𝑛 + (𝑗𝜔/𝜔𝑛)2| and the phase is −tan−1(2𝜁2𝜔/

𝜔𝑛)/(1 − 𝜔2/𝜔𝑛
2) . But 

𝐻𝑑𝐵 = −20log10|1 +
𝑗2𝜁2𝜔

𝜔𝑛
+ (

𝑗𝜔

𝜔𝑛
)2| ⇒ 0                                                                 …(4.8) 

                                                     as 𝜔 → 0 

and 

𝐻𝑑𝐵 = −20log10|1 +
𝑗2𝜁2𝜔

𝜔𝑛
+ (

𝑗𝜔

𝜔𝑛
)2|  ⇒  −40log10

𝜔

𝜔𝑛
                                              …(4.9) 

                                                                        as 𝜔 → ∞ 

Thus, the amplitude plot consists of two straight asymptotic lines: one with zero slope for 

𝜔 < 𝜔𝑛 and the other with slope −40𝑑𝐵/ decade for 𝜔 > 𝜔𝑛, with 𝜔𝑛 as the corner 

frequency. Fig. 4.4(a) shows the approximate and actual amplitude plots. Note that the 

actual plot depends on the damping factor 𝜁2 as well as the corner frequency 𝜔𝑛. The 

significant peaking in the neighborhood of the corner frequency should be added to the 

straight‐line approximation if a high level of accuracy is desired. However, we will use the 

straight‐line approximation for the sake of simplicity. 
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Fig. 4.4. Bode plots of quadratic pole [1 + 𝑗2𝜁𝜔/𝜔𝑛 − 𝜔2/𝜔𝑛

2]−1: (𝑎) magnitude plot, (b) 

phase plot. 
 

The phase can be expressed as 

𝜑 = −tan−1 2𝜁2𝜔/𝜔𝑛

1−𝜔2/𝜔𝑛
2 = {

0. 𝜔 = 0
−90𝑜. 𝜔 = 𝜔𝑛

−180𝑜. 𝜔 → ∞

                                                            …(4.10) 

The phase plot is a straight line with a slope 𝑜𝑓 − 90𝑜 per decade starting at 𝜔𝑛/10 and 

ending at 10𝜔𝑛, as shown in Fig. 4.4. (b). We see again that the difference between the 

actual plot and the straight‐line plot is due to the damping factor. Notice that the 

straight‐line approximations for both magnitude and phase plots for the quadratic pole are 

the same as those for a double pole, i.e. (1 + 𝑗𝜔/𝜔𝑛)−2. We should expect this because 

the double pole (1 + 𝑗𝜔/𝜔𝑛)−2 equals the quadratic pole 1/[1 + 𝑗2𝜁2𝜔/𝜔𝑛 + (𝑗𝜔/𝜔𝑛)2] 

when 𝜁2 = 1. Thus, the quadratic pole can be treated as a double pole as far as straight‐line 

approximation is concerned. For the quadratic zero [1 + 𝑗2𝜁1𝜔/𝜔𝑘 + (𝑗𝜔/𝜔𝑘)2], the 

plots in Fig. 4.4. are inverted because the magnitude plot has a slope of 40 𝑑𝐵/decade 

while the phase plot has a slope of 90𝑜 per decade. 

Table 4.1 presents a summary of Bode plots for the seven factors. Of course, not every 

transfer function has all seven factors. To sketch the Bode plots for a function 𝐻(𝜔) in the 

form of Eq. (4.4), for example, we first record the corner frequencies on the semilog graph 

paper, sketch the factors one at a time as discussed above, and then combine 
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additively the graphs of the factors. The combined graph is often drawn from left to right, 

changing slopes appropriately each time a corner frequency is encountered. The following 

examples illustrate this procedure. 
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Example 3:  Construct the Bode plots for the transfer function  

𝐻(𝜔) =
200𝑗𝜔

(𝑗𝜔 + 2)(𝑗𝜔 + 10)
 

Solution: 

We first put 𝐻(𝜔) in the standard form by dividing out the poles and zeros. Thus, 

𝐻(𝜔) =
10𝑗𝜔

(1 + 𝑗𝜔/2)(1 + 𝑗𝜔/10)
=

10|𝑗𝜔|

|1 + 𝑗𝜔/2||1 + 𝑗𝜔/10|
∠90𝑜 − tan−1𝜔/2 − tan−1𝜔/10 

Hence, the magnitude and phase are 

𝐻𝑑𝐵 = 20log1010 + 20log10|𝑗𝜔| − 20log10|1 +
𝑗𝜔

2
| 

−20log10|1 +
𝑗𝜔

10
| 

𝜑 = 90𝑜 − tan−1
𝜔

2
− tan−1

𝜔

10
 

We notice that there are two corner frequencies at 𝜔 = 2.10. For both the magnitude and 

phase plots, we sketch each term as shown by the dotted lines in Fig. below. We add them 

up graphically to obtain the overall plots shown by the solid curves. 

 
(a) magnitude plot, 

 
(b) phase plot. 
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H.W.3:  Draw the Bode plots for the transfer function    𝐻(𝜔) =
5(𝑗𝜔+2)

𝑗𝜔(𝑗𝜔+10)
 

Answer: 

 
(a) magnitude plot,  

 
(b) phase plot. 

 

Example 4:  Obtain the Bode plots for     𝐻(𝜔) =
𝑗𝜔+10

𝑗𝜔(𝑗𝜔+5)2
 

Solution: 

Putting 𝐻(𝜔) in the standard form, we get 

𝐻(𝜔) =
0.4(1 + 𝑗𝜔/10)

𝑗𝜔(1 + 𝑗𝜔/5)2
 

From this, we obtain the magnitude and phase as 

𝐻𝑑𝐵 = 20log100.4 + 20log10|1 +
𝑗𝜔

10
| − 20log10|𝑗𝜔| 

−40log10|1 +
𝑗𝜔

5
| 

𝜑 = 0𝑜 + tan−1
𝜔

10
− 900 − 2tan−1

𝜔

5
 

There are two comer frequencies at 𝜔 = 5.10𝑟𝑎𝑑/𝑠. For the pole with corner frequency at 

𝜔 = 5, the slope ofthe magnitude plot is−40 𝑑𝐵/decade and that of the phase plot is −900 

per decade due to the power of 2. The magnitude and the phase plots for the individual 

terms (in dotted lines) and the entire 𝐻(𝑗𝜔) (in solid lines) are in Fig. below. 
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(a) magnitude plot, 

 
(b) phase plot. 

H.W.4:  Sketch the Bode plots for     𝐻(𝜔) =
50𝑗𝜔

(𝑗𝜔+4)(𝑗𝜔+10)2
 

Answer: 

 
(a) magnitude plot, 

 
 (b) phase plot. 
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Example 5:  Draw the Bode plots for  𝐻(𝑠) =
𝑠+1

𝑠2+12𝑠+100
 

Solution: 

We express 𝐻(𝑠) as 

𝐻(𝜔) =
1/100(1 + 𝑗𝜔)

1 + 𝑗𝜔1.2/10 + (𝑗𝜔/10)2
 

For the quadratic pole, 𝜔𝑛 = 10𝑟𝑎𝑑/𝑠, which serves as the corner frequency. The 

magnitude and phase are 

𝐻𝑑𝐵 = −20log10100 + 20log10|1 + 𝑗𝜔| 

−20log10|1 +
𝑗𝜔1.2

10
−

𝜔2

100
| 

𝜑 = 0𝑜 + tan−1𝜔 − tan−1[
𝜔1.2/10

1 − 𝜔2/100
] 

Notice that the quadratic pole is treated as a repeated pole at 𝜔𝑘, that is, (1 + 𝑗𝜔/𝜔𝑘)2. 
which is an approximation. 

 
(a) magnitude plot, 

 
(b) phase plot. 

H.W.5:  Construct the Bode plots for  𝐻(𝑠) =
10

𝑠(𝑠2+80𝑠+400)
 

Answer: 
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(a) magnitude plot, 

 
(b) phase plot. 

 

Example 6: Given the Bode plot in Fig. below, obtain the transfer function 𝐻(𝜔) . 

Solution: 

To obtain 𝐻(𝜔) ffom the Bode plot, we keep in 

mind that a zero always causes an upward turn at a 

corner frequency, while a pole causes a downward 

turn. We notice from Fig.  that there is a zero 𝑗𝜔 at 

the origin which should have intersected the 

frequency axis at 𝜔 = 1. This is indicated by the 

straight line with slope +20𝑑𝐵/ decade. The fact 

that this straight line is shifted by 40 𝑑𝐵 indicates 

that there is a40‐d𝐵 gain; that is, 

40 = 20log10𝐾 ⇒  log10𝐾 = 2 

or 

𝐾 = 102 = 100 
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In addition to the zero 𝑗𝜔 at the origin, we notice that there are three factors with corner 

frequencies at 𝜔 = 1 ∙ 5, and 20 𝑟𝑎𝑑/𝑠. Thus, we have:  

1. A pole at 𝑝 = 1 with slope −20𝑑𝐵/decade to cause a down‐ward turn and counteract 

the zero at the origin. The pole at 𝑝 = 1 is determined as 1/(1 + 𝑗𝜔/1) . 

2. Another pole at 𝑝 = 5 with slope −20𝑑𝐵/decade causing a downward turn. The pole is 

1/(1 + 𝑗𝜔/5) . 

3. A third pole at 𝑝 = 20 with slope −20𝑑𝐵/decade causing a further downward turn. The 

pole is 1/(1 + 𝑗𝜔/20) . 

Putting all these together gives the corresponding transfer function as 

𝐻(𝜔) =
100𝑗𝜔

(1 + 𝑗𝜔/1)(1 + 𝑗𝜔/5)(1 + 𝑗𝜔/20)
=

𝑗𝜔104

(𝑗𝜔 + 1)(𝑗𝜔 + 5)(𝑗𝜔 + 20)
 

or 

𝐻(𝑠) =
104𝑆

(𝑠 + 1)(𝑠 + 5)(𝑠 + 20)
.    𝑠 = 𝑗𝜔 

 

H.W.6:  Obtain the transfer function 𝐻(𝜔) corresponding to the Bode plot in Fig. below 

 

Answer: 𝑯(𝝎) =
𝟒.𝟎𝟎𝟎(𝒔+𝟓)

(𝒔+𝟏𝟎)(𝒔+𝟏𝟎𝟎)𝟐. 
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5) Series Resonance 
The most prominent feature of the frequency response of a circuit may be the sharp peak (or 

resonant peak) exhibited in its amplitude characteristic. The concept of resonance applies in 

several areas of science and engineering. Resonance occurs in any system that has a 

complex conjugate pair of poles; it is the cause of oscillations of stored energy from one 

form to another. It is the phenomenon that allows frequency discrimination in 

communications networks. Resonance occurs in any circuit that has at least one inductor 

and one capacitor. 

Resonance is a condition in an RLC circuit in which the capacitive and inductive 
reactances are equal in magnitude, thereby resulting in a purely resistive 
impedance. 
 

Resonant circuits (series or parallel) are useful for constructing filters, as their transfer 

functions can be highly frequency selective. 

They are used in many applications such as 

selecting the desired stations in radio and 𝑇𝑉 

receivers. 

Consider the series RLC circuit shown in Fig. 

5.1 in the frequency domain. The input 

impedance is                                                                    Fig. 5.1 The series resonant circuit.                   

𝑍 = 𝐻(𝜔) =
𝑉𝑠

𝐼
= 𝑅 + 𝑗𝜔𝐿 +

1

𝑗𝜔𝐶
                                                                              …(5.1) 

∴ 𝑍 = 𝑅 + 𝑗(𝜔𝐿 −
1

𝜔𝐶
)                                                                                               …(5.2) 

Resonance results when the imaginary part of the transfer function is zero, or 

𝜔𝐿 −
1

𝜔𝐶
= 0                                                                                                 …(5.3) 

The value of 𝜔 that satisfies this condition is called the resonant frequency 𝝎𝟎. Thus, the 

resonance condition is 

𝜔0𝐿 =
1

𝜔0𝐶
                                                                                                                 …(5.4) 

∴ 𝜔0 =
1

√𝐿𝐶
𝑟𝑎𝑑/𝑠                                                                                                        …(5.5) 

𝑓0 =
1

2𝜋√𝐿𝐶
 Hz                                                                                                             …(5.6) 
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Notes: 

|𝑽𝑳| =  
𝑽𝒎

𝑹
 𝝎𝟎𝑳 = 𝑸𝑽𝒎 

|𝑽𝑪| =  
𝑽𝒎

𝑹
 

𝟏

𝝎𝟎𝑪
= 𝑸𝑽𝒎, where Q is the quality factor. 

Note that at resonance: 

1. The impedance is purely resistive, thus, 𝑍 = 𝑅. In other words, the LC series 

combination acts like a short circuit, and the entire voltage is across R. 

2. The voltage 𝑉𝑠 and the current I are in phase, so that the power factor is unity. 

3. The magnitude of the transfer function 𝐻(𝜔) = 𝑍(𝜔) is minimum. 

4. The inductor voltage and capacitor voltage can be much more than the source voltage. 

𝐼 = |𝐼| =
𝑉𝑚

√𝑅2+(𝜔𝐿−1/𝜔𝐶)2
                                                                                             …(5.7) 

The frequency response of the circuit’s current magnitude is shown in Fig. 5.2. The 

average power dissipated by the RLC circuit is 

𝑃(𝜔) =
1

2
𝐼2𝑅                                                                                                               …(5.8) 

 

 

 

 

 

 

 

 

Fig. 5.2 The current amplitude versus frequency for the series resonant circuit of Fig. 5.1 

 

The highest power dissipated occurs at resonance, when 𝐼 = 𝑉𝑚/𝑅, so that 

𝑃(𝜔0) =
1

2

𝑉𝑚
2

𝑅
                                                                                                               …(5.9)  

At certain frequencies 𝜔 = 𝜔1. 𝜔2, the dissipated power is half the maximum value; that is, 

𝑃(𝜔1) = 𝑃(𝜔2) =
(𝑉𝑚/√2)2

2𝑅
=

𝑉𝑚
2

4𝑅
                                                                              …(5.10) 

Hence, 𝜔1 and 𝜔2 are called the half‐power frequencies. 
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The half‐power frequencies are obtained by setting 𝑍 equal to √2𝑅 , and writing 

√𝑅2 + (𝜔𝐿 −
1

𝜔𝐶
)2 = √2𝑅                                                                                       …(5.11) 

Solving for 𝜔, we obtain 

 

                                                                        …(5.12)  

 

 

From Eqs. (5.5) and (5.12), 

𝜔0 = √𝜔1𝜔2                                                                                                             …(5.13) 

showing that the resonant frequency is the geometric mean of the half‐ power frequencies. 

Notice that 𝜔1 and 𝜔2 are in general not symmetrical around the resonant frequency 𝜔0, 

because the frequency response is not generally symmetrical.  

Although the height of the curve in Fig. 5.2 is determined by 𝑅, the width of the curve 

depends on other factors. The width of the response curve depends on the bandwidth 𝑩, 

which is defined as the difference between the two half‐power frequencies, 

𝐵 = 𝜔2 − 𝜔1                                                                                                              …(5.14) 

The “sharpness” of the resonance in a resonant circuit is measured quantitatively by the 

quality factor 𝑄 (dimensionless). At resonance, the reactive energy in the circuit oscillates 

between the inductor and the capacitor. The quality factor relates the maximum or peak 

energy stored to the energy dissipated in the circuit per cycle of oscillation: 

𝑄 = 2𝜋
𝑃𝑒𝑎𝑘 𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑖𝑛 𝑜𝑛𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑎𝑡 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒
                                  …(5.15) 

∴ 𝑄 = 2𝜋
1

2
𝐿𝐼2

1

2
𝐼2𝑅(1/𝑓0)

=
2𝜋𝑓0𝐿

𝑅
                                                                                       …(5.16) 

𝑄 =
𝜔0𝐿

𝑅
=

1

𝜔0𝐶𝑅
                                                                                                       …(5.17) 

The relationship between the bandwidth B and the quality factor Q is obtained by 

substituting Eq. (5.12) into Eq. (5.14) and utilizing Eq. (5.17). 
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𝐵 =
𝑅

𝐿
=

𝜔0

𝑄
    or 𝐵 = 𝜔0

2𝐶𝑅                                                                                   …(5.18)  

The quality factor of a resonant circuit is the ratio of its resonant frequency to its 
bandwidth. The quality factor is a measure of the selectivity (or “sharpness” of 
resonance) of the circuit. 
 

Keep in mind that Eqs. (5.12), (5.17), and (5.18) only apply to a series RLC circuit. As 

illustrated in Fig. 5.3, the higher the value of Q, the more selective the circuit is but the 

smaller the bandwidth. 

 The selectivity of an RLC circuit is the ability of the circuit to respond to a certain 

frequency and discriminate against all other frequencies.  

                                                                      

                                                                                               

 

                    

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3 The higher the circuit  Q, the smaller the bandwidth. 

 

A resonant circuit is designed to operate at or near its resonant frequency. It is said to be a 

high-Q circuit when its quality factor is equal to or greater than 10. For high-Q circuits (𝑄 ≥

10) the half-power frequencies are, for all practical purposes, symmetrical around the 

resonant frequency and can be approximated as 

𝜔1 ≈ 𝜔0 −
𝐵

2
.            𝜔2 ≈ 𝜔0 +

𝐵

2
                                                                             …(5.19) 

High‐𝑄 circuits are used often in communications networks. 

We see that a resonant circuit is characterized by five related parameters: the two 

half‐power frequencies 𝝎𝟏 and 𝝎𝟐, the resonant frequency 𝝎𝟎, the bandwidth 𝑩, and 

the quality factor 𝑸. 
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Example 7:  In the circuit of Fig. below, 𝑅 = 2𝛺, 𝐿 = 1𝑚𝐻, 

and 𝐶 = 0 ∙ 4𝜇𝐹. (a) Find the resonant frequency and the 

half‐power frequencies. (b) Calculate the quality factor and 

bandwidth. (c) Determine the amplitude of the current at 𝜔0, 𝜔1, 

and 𝜔2. 

Solution: 

(a) 𝜔0 =
1

√𝐿𝐶
=

1

√10×04×1036
= 50 𝑘𝑟𝑎𝑑/𝑠  

METHOD 1 The lower & upper half‐power frequencies are 

𝜔1 = −
𝑅

2𝐿
+ √(

𝑅

2𝐿
)2 +

1

𝐿𝐶
= −

2

2 × 10−3
+ √(103)2 + (50 × 103)2 = −1 + √1 + 2500𝑘𝑟𝑎𝑑/𝑠 = 49𝑘𝑟𝑎𝑑/𝑠 

𝜔2 = 1 + √1 + 2500𝑘𝑟𝑎𝑑/𝑠 = 51 𝑘𝑟𝑎𝑑/𝑠 

(b) The bandwidth is  𝐵 = 𝜔2 − 𝜔1 = 2𝑘𝑟𝑎𝑑/𝑠    or       𝐵 =
𝑅

𝐿
=

2

10−3
= 2𝑘𝑟𝑎𝑑/𝑠 

𝑄 =
𝜔0

𝐵
=

50

2
= 25 

 METHOD 2 Alternatively, we could find 

𝑄 =
𝜔0𝐿

𝑅
=

50 × 103 × 10−3

2
= 25 

𝐵 =
𝜔0

𝑄
=

50×103

25
= 2 𝑘𝑟𝑎𝑑|𝑠𝑠 

Since 𝑄 > 10, this is a high‐Q circuit and we can obtain the half‐ power frequencies as 

𝜔1 = 𝜔0 −
𝐵

2
= 50 −1 = 49𝑘𝑟𝑎𝑑/𝑠   &     𝜔2 = 𝜔0 +

𝐵

2
= 50 +1 = 51 𝑘𝑟𝑎𝑑/𝑠 

(c) At 𝜔 = 𝜔0,  𝐼 =  
𝑉𝑚

𝑅
=  

20

2
= 10 𝐴  

At 𝜔 = 𝜔1. 𝜔2            → 𝐼 =  
𝑉𝑚

√2𝑅
=  

10

√2
= 7 ∙ 071 𝐴  

H.W.7:  A series‐connected circuit has 𝑅 = 4𝛺 and 𝐿 = 25𝑚𝐻. (a) Calculate the value of 

𝐶 that will produce a quality factor of 50. (b) Find 𝜔1. 𝜔2. and 𝐵. (c) Determine the 

average power dissipated at 𝜔 = 𝜔0. 𝜔1. 𝜔2. Take 𝑉𝑚 = 100𝑉. 

Answer: (a) 0.625 𝝁𝑭. (b) 7920 𝒓𝒂𝒅/𝒔, 8080 
𝒓𝒂𝒅

𝒔
. 𝟏𝟔𝟎

𝒓𝒂𝒅

𝒔
. (𝒄)𝟏 ∙ 𝟐𝟓𝒌𝑾. 0.625 𝒌𝑾, 

0.625 𝒌𝑾. 
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6) Parallel Resonance 
The parallel RLC circuit in Fig. 6.1 is the dual of the series RLC circuit. So we will avoid 

needless repetition. The admittance is 

𝑌 = 𝐻(𝜔) =
𝐼

𝑉
=

1

𝑅
+ 𝑗𝜔𝐶 +

1

𝑗𝜔𝐿
                                                                                 …(6.1) 

∴ 𝑌 =
1

𝑅
+ 𝑗(𝜔𝐶 −

1

𝜔𝐿
)                                                                                                …(6.2) 

Resonance occurs when the imaginary part of  𝑌 is zero, 

𝜔𝐶 −
1

𝜔𝐿
= 0                                                                                                                …(6.3) 

∴ 𝜔0 =
1

√𝐿𝐶
𝑟𝑎𝑑/𝑠                                                                                                       …(6.4) 

which is the same as Eq. (5.5) for the series resonant circuit. The voltage |𝑉| is sketched in 

Fig. 6.2 as a function of frequency. Notice that at resonance, the parallel LC combination 

acts like an open circuit, so that the entire current flows through R. Also, the inductor and 

capacitor current can be much more than the source current at resonance. 

            

Fig. 6.1 The parallel resonant circuit.                          Fig. 6.2 The current amplitude versus   

                                                                                     frequency for the series resonant  

                                                                                      circuit of Fig. 6.1. 

 

Notes: 

|𝑰𝑳| =  
𝑰𝒎𝑹

𝝎𝟎𝑳
 = 𝑸𝑰𝒎 

|𝑰𝑪| =  𝝎𝟎𝑪𝑰𝒎𝑹 = 𝑸𝑰𝒎, where Q is the quality factor. 
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We exploit the duality between Fig. 5.1 and Fig. 6.1 by comparing Eq. (6.2) with Eq. 

(5.2). By replacing R, L, and C in the expressions for the series circuit with 1/𝑅, 𝐶, and 𝐿 

respectively, we obtain for the parallel circuit 

 

 

 

                                                                        …(6.5) 

 

 

 
 

𝐵 = 𝜔2 − 𝜔1 =
1

𝑅𝐶
                                                                                                      …(6.6) 

𝑄 =
𝜔0

𝐵
= 𝜔0𝑅𝐶 =

𝑅

𝜔0𝐿
                                                                                                …(6.7) 

It should be noted that Eqs. (6.5) to (6.7) apply only to a parallel 𝑅𝐿𝐶 circuit. Using Eqs. 

(6.5) and (6.7) we can express the half‐ power frequencies in terms of the quality factor. 

The result is 

𝜔1 = ω𝑜√1 + (
1

2𝑄
)2 −

𝜔0

2𝑄
.,  𝜔2 = ω𝑜√1 + (

1

2𝑄
)2 +

𝜔0

2𝑄
                                             …(6.8) 

Again, for high‐Q circuits (𝑄 ≥ 10) 

𝜔1 ≃ 𝜔0 −
𝐵

2
,    𝜔2 ≃ 𝜔0 +

𝐵

2
                                                                                      …(6.9) 

Table 6.1 presents a summary of the characteristics of the series and parallel resonant 

circuits.  
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Example 8: In the parallel RLC circuit of Fig. shown, let 𝑅 = 8𝑘𝛺, 𝐿 = 0 ∙ 2𝑚𝐻 , and 

𝐶 = 8𝜇𝐹. (a) Calculate 𝜔0, 𝑄, and 𝐵. (b) Find 𝜔1 and 𝜔2. 
(c) Determine the power dissipated at 𝜔0 ,𝜔1, and 𝜔2. 
 

 

 

Solution: 

(a) 𝜔0 =
1

√𝐿𝐶
=

1

√02×10−3×8×10−6
=

105

4
= 25 krad /𝑠 

𝑄 =
𝑅

𝜔0𝐿
=

8 × 103

25 × 103 × 0.2 × 10−3
= 1600 

𝐵 =
𝜔0

𝑄
= 15 ∙ 625 rad /𝑠 

(b) Due to the high value of 𝑄, we can regard this as a high‐𝑄 circuit, Hence, 

𝜔1 = 𝜔0 −
𝐵

2
= 25000 − 7.812 = 24992𝑟𝑎𝑑/𝑠 

𝜔2 = 𝜔0 +
𝐵

2
= 25000 + 7.812 = 25008𝑟𝑎𝑑/𝑠 

(c) At 𝜔 = 𝜔0, 𝑌 = 1/𝑅 or 𝑍 = 𝑅 = 8𝑘𝛺. Then 

𝐼𝑜 =
𝑉

𝑍
=

10/−90𝑜

8000
= 1 ∙ 25/−90𝑜𝑚𝐴 

Since the entire current flows through 𝑅 at resonance, the average power dissipated at 𝜔 =

𝜔0 is 

𝑃 =
1

2
|𝐼𝑜|2𝑅 =

1

2
(1 ∙ 25 × 10−3)2(8 × 103) = 6 ∙ 25𝑚𝑊 

or  𝑃 =
𝑉𝑚

2

2𝑅
=

100

2×8×103
= 6 ∙ 25𝑚𝑊 

At  𝜔 = 𝜔1, 𝜔2, → 𝑃 =
𝑉𝑚

2

4𝑅
= 3 ∙ 125𝑚𝑊 

H.W.8: A parallel resonant circuit has 𝑅 = 100𝑘𝛺, 𝐿 = 20𝑚𝐻, and 𝐶 = 5𝑛𝐹. Calculate 

𝜔0, 𝜔1, 𝜔2, 𝑄, and B. 

Answer: 100 𝒌𝒓𝒂𝒅/𝒔, 𝟗𝟗𝒌𝒓𝒂𝒅/𝒔, 𝟏𝟎𝟏𝒌𝒓𝒂𝒅/𝒔, 𝟓𝟎. 𝟐𝒌𝒓𝒂𝒅/𝒔 ∙ 
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Example 9:  Determine the resonant frequency of the circuit in Fig. shown. 

Solution: 

The input admittance is 

𝑌 = 𝑗𝜔0 ∙ 1 +
1

10
+

1

2 + 𝑗𝜔2

= 0 ∙ 1 + 𝑗𝜔0 ∙ 1 +
2 − 𝑗𝜔2

4 + 4𝜔2
 

At resonance,  Im (𝑌) = 0 and  

 𝜔00 ∙ 1 −
2𝜔0

4+4𝜔0
2 = 0 ⇒ 𝜔0 = 2 rad /𝑠 

 

H.W.9: Calculate the resonant frequency of the circuit in Fig. shown. 

Answer: 100 rad/s. 
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Lecture ()                   Frequency Response 
 

Problems 
H.W.(1):  For the circuit shown in Fig., find H(s) = Vo /Vi (s). 

 

 
 

[Answer: 𝐇(𝒔) =   
𝑽𝟎(𝒔)

𝑽𝒊(𝒔)
=  

𝟓𝒔

𝒔𝟐+𝟖𝒔+𝟓
 ] 

H.W.(2): For the circuit shown in Fig.,find H(s) = Io (s)/Is (s). 

 

[Answer: 𝐇(𝒔) =  
𝑰𝟎 (𝒔)

𝑰𝒔(𝒔)
=  

𝒔

𝒔𝟐+𝟑𝒔+𝟏
] 

H.W.(3): Construct the Bode plots for 𝐺(𝑠) =  
𝑠+1

𝑠2(𝑠+10)
 

[Answer:]  

 

H.W.(4): Draw the Bode plots for 𝐺(𝑗𝜔) =  
50(𝑗𝜔+1)

𝑗𝜔(−𝜔2+10𝑗𝜔+25)
 

[Answer:]  
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H.W.(5): Construct the Bode plots for 𝐺(𝑠) =  
40(𝑠+1)

(𝑠+2)(𝑠+10)
 

[Answer:] 

 

H.W.(6): Construct the Bode plots for 𝐺(𝑠) =  
𝑠

(𝑠+2)2+ (𝑠+1)
  

[Answer:] 

 

H.W.(7): Construct the Bode plots for 𝐺(𝑠) =  
𝑠(𝑠+20)

(𝑠+1)(𝑠2+60𝑠+400)
 

[Answer:] 
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H.W.(8): Find the transfer function H(ω ) with the Bode 

magnitude plot shown in Fig. 

[Answer: 𝐇(𝝎) =    
𝟏𝟎𝟒(𝟐+𝒋𝝎)

(𝟐𝟎+𝐣𝛚)(𝟏𝟎𝟎+𝐣𝛚)
] 

 

H.W.(9): The Bode magnitude plot of H(ω ) is 

shown in Fig. Find H(ω ). 

[Answer: 𝐇(𝝎) =    
𝟏𝟎𝟎𝒋𝝎

(𝟏+𝐣𝛚)(𝟏𝟎+𝐣𝛚)𝟐
] 

 

H.W.(10): The magnitude plot in Fig. represents 

the transfer function of a preamplifier. Find H(s). 

 

 

[Answer: 𝐇(𝒔) =    
𝟖𝟒𝟖𝟖(𝒔+𝟓𝟎𝟎)

(𝐬+𝟓𝟎)(𝐬+𝟐𝟏𝟐𝟐)
] 

H.W.(11): Find the transfer function H(ω ) with 

the Bode magnitude plot shown in Fig. 

 

[Answer: 𝐇(𝝎) =    
𝟓.𝟑𝟑×𝟏𝟎𝟒(𝟏+𝒋𝝎)(𝟏𝟐𝟎+𝒋𝝎)

(𝟏𝟎+𝐣𝛚)(𝟖𝟎+𝐣𝛚)𝟐
] 

H.W.(12): Find the transfer function H(ω ) with 

the Bode magnitude plot shown in Fig. 

 

 

[Answer: 𝐇(𝝎) =    
𝟕.𝟐×𝟏𝟎𝟓(𝒋𝝎)(𝟐𝟎+𝒋𝝎)

(𝟒+𝐣𝛚)(𝟏𝟎𝟎+𝐣𝛚)(𝟔𝟎𝟎+𝐣𝛚)𝟐
] 

H.W.(13): Find the transfer function H(ω ) with 

the Bode magnitude plot shown in Fig. 

 

 

 

[Answer: 𝐇(𝝎) =    
𝟐𝟖𝟖(𝟏𝟎𝟎+𝐣𝛚)𝟐

𝐣𝛚(𝟗𝟎𝟎+𝐣𝛚)[(𝐣𝛚)𝟐+𝟒𝒋𝝎+𝟒𝟎𝟎]
] 

H.W.(14): Design a parallel resonant RLC circuit with ω0 = 10 rad/s and Q = 20. Calculate 

the bandwidth of the circuit. Let R = 10 Ω . 

[Answer: 8.796x106 rad/s] 
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H.W.(15): A parallel RLC circuit has R = 5kΩ, L = 8 mH, and C = μF. Determine: 

(a) the resonant frequency (b) the bandwidth (c) the quality factor 

[Answer: 40Ω, 10 μF, 2.5 μH, 2.5 krad / s, 198.75 krad/s, 201.25 krad/s] 

H.W.(16): It is expected that a parallel RLC resonant circuit has a midband admittance of 

25 × 110 −3 S, quality factor of 80, and a resonant frequency of 200 krad/s. Calculate the 

values of R, L, and C. Find the bandwidth and the half-power frequencies. 

[Answer: 40Ω, 10 µF, 2.5 µH, 2.5 krad/ s, 198.75 krad/s, 201.25 krad/s] 

H.W.(17): For the circuit in Fig, find the resonant 

frequency.  

 

[Answer: 4.841 krad/s] 

H.W.(18): A parallel resonance circuit has a resistance of 2 k Ω and half-power 

frequencies of 86 kHz and 90 kHz. Determine: 

(a) the capacitance (b) the inductance (c) the resonant frequency (d) the bandwidth (e) the 

quality factor  

[Answer:  (a)19.89Nf (b) 164.45 μH (c) 552.9krad / s (d) 25.13krad / s (e)Q = 22 ] 

H.W.(19): For the circuits in Fig, find the resonant 

frequency ωo , the quality factor Q, and the 

bandwidth B. 

[Answer: (a) 1.5811 rad / s, Q = 0.1976, B = 8 rad 

/ s (b) 5 krad / s, Q = 20, B = 250 rad / s] 

H.W.(20): Calculate the resonant frequency of each of the 

circuits in Fig. 

[Answer:(a)𝝎𝟎 =  √
𝟏

𝑳𝑪
− 

𝑹𝟐

𝑳𝟐
 (b) 𝝎𝟎 =  

𝟏

√𝑳𝑪
] 

H.W.(21): For the circuit in Fig., find: 

(a) the resonant frequency ωo 

(b) Zin (ω0) 

[Answer (a) 2.357 krad/ s (b) 1Ω 

H.W.(22): For the circuit shown in Fig., find ω0 , B, and Q, 

as seen by the voltage across the inductor. 

 

[Answer: ω0 = 447.21 rad/s, B = 1.067 rad/s, Q = 419.13 ] 

H.W.(23): For the network shown in Fig., find 

(a) the transfer function H(ω ) = Vo (ω )/I(ω ), 

(b) the magnitude of H at ωo = 1 rad/s. 

[Answer: (a) 𝐇(𝝎) =    
𝒋𝝎

𝟐(𝟏+𝐣𝛚)𝟐
  (b) 0.25] 
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H.W.(24): Determine the driving point impedance at the input 

terminals of the network shown. 

  

 

[Answer:] 

H.W.(25): Find the transfer impedance or transfer function Vo(s)/Is(s) 

for the network shown in Fig. 

 

 

[Answer: 𝐇(𝒔) =   
𝑽𝟎(𝒔)

𝑰𝒔(𝒔)
=  

𝟖𝒔

𝟐𝒔𝟐+𝟔𝒔+𝟏
] 

H.W.(26): The series RLC circuit in Fig. is driven by a 

variable-frequency source. If the resonant frequency of the 

network is selected as ω0 = 1600 rad/s, find the value of C. In 

addition, compute the current at resonance and at ω0/4 and 

4ω0. 

[Answer: C = 39 µF,𝑰(𝝎𝟎) = 𝟏𝟐∠𝟑𝟎𝑶. 𝑰(𝝎𝟎/𝟒) = 𝟎 ∙ 𝟒∠𝟏𝟏𝟖𝑶. 𝑰(𝟒𝝎𝟎) = 𝟎 ∙ 𝟒∠−𝟓𝟖𝑶]  

H.W.(27): A parallel RLC circuit, which is driven by a variable frequency 2-A current 

source, has the following values: R = 1 kΩ, L = 100mH and C = 10 µF. Find the 

bandwidth of the network, the half-power frequencies, and the voltage across the network 

at the half-power frequencies.  

[Answer: B = 100 rad/s, 𝝎𝟏 = 𝟗𝟓𝟏 ∙ 𝟐𝟓
𝒓𝒂𝒅

𝒔
. 𝝎𝟐 = 𝟏𝟎𝟓𝟏 ∙ 𝟐𝟓

𝒓𝒂𝒅

𝒔
 . 

 𝑽 =  √𝟐 ∠𝟒𝟓𝒐 𝒌𝑽 𝒂𝒕 𝝎𝟏 . 𝑽 =  √𝟐 ∠−𝟒𝟓𝒐 𝒌𝑽 𝒂𝒕 𝝎𝟐] 

H.W.(28): The source in the network in Fig. is 

𝑖𝑠(𝑡) = cos 1000𝑡 + cos 1500𝑡 𝐴. R = 200 Ω 

and C = 500 µF . If ω0 = 1000 rad/s, find L, Q, 

and the BW. Compute the output voltage 𝑣0(𝑡) 

and discuss the magnitude of the output voltage at the two input frequencies. 

[Answer: L = 2 mH, Q = 100, B = 10 rad/s, 𝒗𝟎(𝒕) = 𝟐𝟎𝟎𝒄𝒐𝒔 𝟏𝟎𝟎𝟎𝒕 + 𝟐 ∙
𝟒𝒄𝒐𝒔(𝟏𝟓𝟎𝟎𝒕 − 𝟖𝟗 ∙ 𝟑𝟏𝟎)𝑽] 

H.W.(29): Determine the value of C in the network shown in 

Fig. for the circuit to be in resonance. 

 

[Answer: either C = 345 mF or C = 45 mF] 

H.W.(30): Determine the new parameters of the network 

shown in Fig. if Znew = 104Zold 

 

[Answer: Lnew = 5 kH, Cnew = 12.5 µF, Rnew = 20 kΩ] 
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H.W.(31): A parallel RLC network is constructed using R = 5 Ω, L = 100 mH, and C = 1 

mF. (a) Compute Q0. (b) Determine at which frequencies the impedance magnitude drops 

to 90% of its maximum value. 

[Answer: (a) 0.5 (b) ω1 = 62.7 rad/s; ω1 = 159.5 rad/s] 

H.W.(32): After deriving Zin(s) in Fig., find (a) ω0; 

(b) Q0. 

 

[Answer: Z = R + j(ωL – 1/ωC), ω0=1.4*105; 

Q0=14.1] 

H.W.(33): For the circuit shown in Fig., the voltage 

source has magnitude 1 V and phase angle 0◦. Determine 

the resonant frequency ω0 and the value of Vx at 0.95ω0. 

[Answer: At ω0 set imaginary part of input 

impedance, Z(ω), to zero to obtain ω0 = 41 rad/s. 

Then, Z(0.95ω0) = Ζ(39) = 1.845 ∠-2.20 Ω, Is(39) =  0.542 ∠2.2o A and 

Vx(39) = 0.98 ∠2.20 V] 

H.W.(34): The network function that represents this circuit is 

 
Determine the value of the inductance L and of the gain A of the voltage-controlled 

voltage source (VCVS).  

[Answer: A =3 and L = 2H.] 

H.W.(35): The network function of this circuit is 

 
Determine expressions that relate the network function parameters k, z, and p to the circuit 

parameters R1, R2, L, N1, and N2. 

[Answer:] 

H.W.(36): The network function of this circuit is 

 
Determine expressions that relate the network function parameters k and p to the circuit 

parameters R1, R2, M, L1, and L2.  

[Answer:] 
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Lecture (  )                             Passive Filters 
 
1) Introduction   
 

     The reactances of inductors and capacitors depend on the frequency of the a.c. signal 

applied to them. That is why these devices are known as frequency-selective. By using 

various combinations of resistors, inductors and capacitors, we can make circuits that have 

the property of passing or rejecting either low or high frequencies or bands of frequencies. 

These frequency selective networks, which alter the amplitude and phase characteristics of 

the input a.c. signal, are called filters. Their performance is usually expressed in terms of 

how much attenuation a band of frequencies experiences by passing through them. 

Attenuation is commonly expressed in terms of decibels (dB). 

     As a frequency-selective device, a filter can be used to limit the frequency spectrum of 

a signal to some specified band of frequencies. Filters are the circuits used in radio and TV 

receivers to allow us to select one desired signal out of a multitude of broadcast signals in 

the environment. 
 

A filter is a circuit that is designed to pass signals with desired frequencies and 
reject or attenuate others. 

 
2) Types of Electrical Filters 

1) A passive filter is a filter consists of only passive elements R, L, and C. 

2)  An active filter is a filter consists of active elements (such as transistors and op 

amps) in addition to passive elements R, L, and C.  

We consider passive filters in this section. LC filters have been used in practical 

applications for more than eight decades. LC filter technology feeds related areas such as 

equalizers, impedance-matching networks, transformers, shaping networks, power 

dividers, attenuators, and directional couplers, and is continuously providing practicing 

engineers with oppurtunities to innovate and experiment.  

 

There are four types of filters whether passive or active: 

1. A lowpass filter passes low frequencies and stops high frequencies, as shown ideally in 

Fig.2.1 (a). 

2. A highpass filter passes high frequencies and rejects low frequencies, as shown ideally in 

Fig.2.1 (b). 

3. A bandpass filter passes frequencies within a frequency band and blocks or attenuates 

frequencies outside the band, as shown ideally in Fig.2.1 (c). 

4. A bandstop filter (or band-rejection) passes frequencies outside a frequency band and blocks 

or attenuates frequencies within the band, as shown ideally in Fig.2.1 (d). 
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Fig.2.1 Ideal frequency response of four types of filter:  

            (a) lowpass filter, (b) highpass filter, (c) bandpass filter, (d) bandstop filter. 

 
 

Table 2.1 presents a summary of the characteristics of these filters. Be aware that the 

characteristics in Table 2.1 are only valid for first- or second-order filters—but one should 

not have the impression that only these kinds of filter exist. We now consider typical 

circuits for realizing the filters shown in Table 2.1. 
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2.1) Lowpass Filter      
2.1.1) RC LowPass Filter: A typical lowpass filter is formed when the output of an RC 

circuit is taken off the capacitor as shown in Fig.2.2.  At low frequencies, the capacitor has 

a very large reactance. Consequently, at low frequencies the capacitor is essentially an 

open circuit resulting in the voltage across the capacitor, Vout, to be essentially equal to the 

applied voltage, Vin. At high frequencies, the capacitor has a very small reactance, which 

essentially short-circuits the output terminals. The voltage at the output will therefore 

approach zero as the frequency increases. The transfer function (see also Example1) is 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑖
=

1/𝑗𝜔𝐶

𝑅+1/𝑗𝜔𝐶
=  

1

1+𝑗𝜔𝑅𝐶
                                                                                 …(2.1) 

Note that 𝐇(0) = 1.  𝐇(∞) = 0. Fig.2.3 shows the plot of |𝐇(ω) | along with the ideal 

characteristic.  The range of frequencies passed by a filter within specified limits is called 

the passband of the filter. The half-power frequency, which is equivalent to the corner 

frequency on the Bode plots but in the context of filters is usually known as the cutoff 

frequency (or roll off or break or critical frequency) is obtained by setting the magnitude of  𝐇(ω) 

equal to 
𝟏

√𝟐
 thus, 

𝐻(𝜔𝑐) =  
1

√1+𝜔𝑐
2𝑅2𝐶2

=  
1

√2
                                                                                         …(2.2) 

For the RC circuit, the cutoff frequency occurs at 

𝜔𝑐 =  
1

𝜏
 = 

1

𝑅𝐶
                                                                                                               …(2.3) 

∴ 𝐻(𝜔) =
1

1+𝑗
𝜔

𝜔𝑐

                                                                                                           …(2.4) 

Note: cutoff frequency sometimes called  -3db frequency because the output voltage is down 3 dB 

from its maximum at this frequency. The term dB (decibel) is a commonly used unit in filter 

measurements. 

A lowpass filter is designed to pass only frequencies from dc up to the cutoff 

frequency ωc. 

Note: The cutoff frequency is the frequency at which the transfer function H drops in 

magnitude to 70.71% of its maximum value. It is also regarded as the frequency at which 

the power dissipated in a circuit is half of its maximum value. 

                     
Fig.2.2 A lowpass filter                                  Fig.2.3 Ideal and actual frequency response  

                                                                                        of a lowpass filter        
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2.1.2) The RL LowPass Filter: A low-pass filter circuit may be 

made up of a resistor and an inductor as illustrated in Fig.2.4. In a 

manner similar to that used for the RC low-pass filter, we may 

write the transfer function for the circuit of Fig.2.4 as follows: 

 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑖
=

𝑅

𝑅+𝑗𝜔𝐿
=  

1

1+𝑗𝜔
𝐿

𝑅

                                   …(2.5)          Fig.2.4 RL lowpass filter 

Since the cutoff frequency is found as 𝜔𝑐 =  
1

𝜏
 . 𝑠𝑜  

𝜔𝑐 =  
1

𝜏
 = 

1
𝐿

𝑅

 = 
𝑅

𝐿
                                                                                                           …(2.6) 

𝐻(𝜔) =
1

1+𝑗
𝜔

𝜔𝑐

                                                                                                              …(2.7) 

 

2.2) Highpass Filter      
2.2.1) RC HighPass Filter: A highpass filter is formed when the output of an RC circuit is 

taken off the resistor as shown in Fig.2.5.  At low frequencies, the reactance of the 

capacitor will be very large, effectively preventing any input signal from passing through 

to the output. At high frequencies, the capacitive reactance will approach a short-circuit 

condition, providing a very low impedance path for the signal from the input to the output. 
The transfer function is 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑖
=

𝑅

𝑅+1/𝑗𝜔𝐶
=  

𝑗𝜔𝑅𝐶

1+𝑗𝜔𝑅𝐶
                                                                                 …(2.8) 

 

Note that 𝐇(0) = 0. 𝐇(∞) = 1. Fig.2.6 shows the plot of |𝐇(ω) |. Again, the corner or 

cutoff frequency is 
𝜔𝑐 =  

1

𝜏
 = 

1

𝑅𝐶
                                                                                        …(2.9) 

 

𝐻(𝜔) =
𝑗

𝜔

𝜔𝑐

1+𝑗
𝜔

𝜔𝑐

                                                                                    …(2.10) 

A highpass filter is designed to pass all frequencies above its cutoff frequency ωc. 

A highpass filter can also be formed when the output of an RL circuit is taken off the 

inductor.  

                              
Fig.2.5 A highpass filter                                  Fig.2.6 Ideal and actual frequency response  

                                                                                        of a highpass filter 
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2.2.2) RL HighPass Filter 
A typical RL high-pass filter circuit is shown in Fig.2.7. At 

low frequencies, the inductor is effectively a short circuit, 

which means that the output of the circuit is essentially zero at 

low frequencies. Inversely, at high frequencies, the reactance 

of the inductor approaches infinity and greatly exceeds the 

resistance, effectively preventing current. The voltage across 

the inductor is therefore very nearly equal to the applied input 

voltage signal. The transfer function for the high-pass RL 

circuit is derived as follows:                                                        Fig.2.7. RL high-pass filter 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑖
=

𝑗𝜔𝐿

𝑅+𝑗𝜔𝐿
=  

𝑗𝜔
𝐿

𝑅

1+𝑗𝜔
𝐿

𝑅

                                                                  …(2.11) 

Since the cutoff frequency is found as 𝜔𝑐 =  
1

𝜏
 . 𝑠𝑜  

𝜔𝑐 =  
1

𝜏
 = 

1
𝐿

𝑅

 = 
𝑅

𝐿
                                                                                  …(2.12) 

𝐻(𝜔) =
𝑗

𝜔

𝜔𝑐

1+𝑗
𝜔

𝜔𝑐

                                                                                    …(2.13) 

The preceding expression is identical to the transfer function for a high-pass RC filter, 

with the exception that in this case we have 𝜏 =  
𝐿

𝑅
. 

 

2.3) Bandpass Filter  
The RLC series resonant circuit provides a bandpass filter when the output is taken off the 

resistor as shown in Fig.2.7. The transfer function is 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑖
=

𝑅

𝑅+𝑗(𝜔𝐿−1/𝜔𝐶)
                                                                    …(2.14) 

We observe that 𝐇(0) = 0. 𝐇(∞) = 0. Fig.2.8 shows the plot of |𝐇(ω) |. The bandpass 

filter passes a band of frequencies (𝝎𝟏  <  𝝎 <  𝝎𝟐) centered on 𝝎𝟎 the center frequency, 

which is given by 

𝜔𝑐 =  
1

√𝐿𝐶
                                                                                          …(2.15)

  

A bandpass filter is designed to pass all frequencies within a band of frequencies, 

𝝎𝟏  <  𝝎 <  𝝎𝟐  

Since the bandpass filter in Fig.2.7 is a series resonant circuit, the half-power frequencies, 

the bandwidth, and the quality factor are determined as in series resonant circuit. A 

bandpass filter can also be formed by cascading the lowpass filter (where 𝝎𝟐 =  𝝎𝒄) in 

Fig.2.2 with the highpass filter (where 𝝎𝟏 =  𝝎𝒄) in Fig.2.5. However, the result would not 

be the same as just adding the output of the lowpass filter to the input of the highpass filter, 

because one circuit loads the other and alters the desired transfer function. 
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Fig.2.7 A bandpass filter                                  Fig.2.8 Ideal and actual frequency response  

                                                                                        of a bandpass filter 

 

 

2.4) Bandstop Filter  
A filter that prevents a band of frequencies between two designated values (𝝎𝟏 and 𝝎𝟐) 

from passing is variably known as a bandstop, bandreject, or notch filter. A bandstop filter is 

formed when the output RLC series resonant circuit is taken off the LC series combination 

as shown in Fig.2.9. The transfer function is 

𝐻(𝜔) =
𝑉𝑜

𝑉𝑖
=

𝑗(𝜔𝐿−1/𝜔𝐶)

𝑅+𝑗(𝜔𝐿−1/𝜔𝐶)
                                                                    …(2.16) 

Note that 𝐇(0) = 1. 𝐇(∞) = 1. Fig.2.10 shows the plot of |𝐇(ω) |. Again, the corner or 

cutoff frequency is 
𝜔𝑐 =  

1

√𝐿𝐶
                                                                                          …(2.17) 

while the half-power frequencies, the bandwidth, and the quality factor are calculated 

using the formulas for a series resonant circuit. Here, 𝝎𝟎 is called the frequency of rejection, 

while the corresponding bandwidth (𝑩 =  𝝎𝟐 − 𝝎𝟏) is known as the bandwidth of rejection. 

Thus, 

A bandstop filter is designed to stop or eliminate all frequencies within a band of 

frequencies, 𝝎𝟏  <  𝝎 <  𝝎𝟐.  

Notice that adding the transfer functions of the bandpass and the bandstop gives unity at any 

frequency for the same values of R, L, and C. Of course, this is not true in general but true 

for the circuits treated here. This is due to the fact that the characteristic of one is the 

inverse of the other.  

                  
Fig.2.9 A bandstop filter                                  Fig.2.10 Ideal and actual frequency response  

                                                                                        of a bandstop filter 
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We should note that: 

1. From Eqs. (2.1), (2.5), (2.8), (2.11), (2.14), and  (2.16), the maximum gain of a passive 

filter is unity. To generate a gain greater than unity, one should use an active filter. 

2. There are other ways to get the types of filters. 

3. The filters treated here are the simple types. Many other filters have sharper and 

complex frequency responses. 

There are three major limitations to the passive filters considered in the previous section. 

First, they cannot generate gain greater than 1; passive elements cannot add energy to the 

network. Second, they may require bulky and expensive inductors. Third, they perform 

poorly at frequencies below the audio frequency range (300 Hz < f < 3000 Hz) 

Nevertheless, passive filters are useful at high frequencies. 

 

Example 1: Determine what type of filter is shown in Fig. Calculate the corner or cutoff 

frequency. Take R = 2 kΩ, L = 2 H, C = 2 µF 

Solution: 

𝐻(𝑠) =
𝑉𝑜

𝑉𝑖
=

𝑅‖
1

𝑠𝐶

𝑠𝐿+𝑅‖
1

𝑠𝐶

. 𝑠 = 𝑗𝜔                            …(1) 

𝑅‖
1

𝑠𝐶
=

𝑅/𝑠𝐶

𝑅 + 1/𝑠𝐶
=

𝑅

1 + 𝑠𝑅𝐶
 

Substituting this into Eq. (1) gives 

𝐻(𝑠) =
𝑅

1+𝑠𝑅𝐶

𝑠𝐿+
𝑅

1+𝑠𝑅𝐶

=
𝑅

𝑠2𝑅𝐿𝐶+𝑠𝐿+𝑅
. 𝑠 = 𝑗𝜔  

or   𝐻(𝜔) =
𝑅

−𝜔2𝑅𝐿𝐶+𝑗𝜔𝐿+𝑅
                                                                                            …(2) 

Since 𝐻(𝑂) = 1 and 𝐻(∞) = 0, we conclude from Table 2.1 that the circuit of this 

example is a second‐order lowpass filter. The magnitude of 𝐻 is 

𝐻 =
𝑅

√(𝑅−𝜔2𝑅𝐿𝐶)2+𝜔2𝐿2
                                                                                                    …(3) 

The corner frequency is the same as the half‐power frequency, i.e., where 𝐻 is reduced by 

a factor of 1/√2. Since the dc value of 𝐻(𝜔) is 1, at the corner frequency, Eq. (3) 

becomes after squaring 

𝐻2 =
1

2
=

𝑅2

(𝑅−𝜔𝑐
2𝑅𝐿𝐶)2+𝜔𝑐

2𝐿2
         or         2 = (1 − ω𝑐

2𝐿𝐶)2 + (
𝜔𝑐𝐿

𝑅
)2 

Substituting the values of 𝑅, 𝐿, and 𝐶, we obtain 
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2 = (1 − 𝜔𝑐
24 × 10−6)2 + (𝜔𝑐10−3)2 

Assuming that 𝜔𝑐 is in 𝑘𝑟𝑎𝑑/𝑠, 

2 = (1 − 4𝜔𝑐
2)2 + 𝜔𝑐

2       or          16𝜔𝑐
4 − 7𝜔𝑐

2 − 1 = 0 

Solving the quadratic equation in 𝜔𝑐
2, we get 𝜔𝑐

2 = 0 ∙ 5509𝑎𝑛𝑑 − 0 ∙ 1134. Since 𝜔𝑐 is 

real, 

𝜔𝑐 = 0 ∙ 742 krad /𝑠 = 742 rad /𝑠         

 

H.W.1:  For the circuit shown, obtain the transfer function 
𝑽𝑶 (𝝎)

𝑽𝒊 (𝝎)
 . Identify the type of 

filter and determine the corner frequency. Take R1 = 100 Ω = R2 , L = 2 mH. 

Answer: 
𝑹𝟐

𝑹𝟏+𝑹𝟐
(

𝒋𝝎

𝒋𝝎+𝝎𝒄
) , highpass filter 

 𝝎𝒄 =
𝑹𝟏𝑹𝟐

(𝑹𝟏+𝑹𝟐)𝑳
= 𝟐𝟓 krad /𝒔. 

 
 

Example 2:  If the bandstop filter in Fig.2.8 is to reject a 200-Hz sinusoid while passing 

other frequencies, calculate the values of L and C. Take R = 150 Ω and the bandwidth as 

100 Hz.  

Solution: 

We use the formulas for a series resonant circuit 

𝐵 = 2𝜋(100) = 200𝜋𝑟𝑎𝑑/𝑠 

But     𝐵 =
𝑅

𝐿
 ⇒  𝐿 =

𝑅

𝐵
=

150

200𝜋
= 0 ∙ 2387𝐻 

Rejection of the 200‐Hz sinusoid means that 𝑓0 is 200 Hz, so that 𝜔0 in is 

𝜔0 = 2𝜋𝑓0 = 2𝜋(200) = 400𝜋 

Since 𝜔0 = 1/√𝐿𝐶, 

∴ 𝐶 =
1

𝜔0
2𝐿

=
1

(400𝜋)2(0.2387)
= 2 ∙ 653𝜇𝐹 

 

H.W.2:  Design a bandpass filter of the form in Fig.2.6 with a lower cutoff frequency of 

20.1 kHz and an upper cutoff frequency of 20.3 kHz. Take R = 20 kΩ Calculate L, C & Q. 

Answer: 15.92 H, 3.9 pF, 101. 
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Example  :  Consider the low-pass circuit of Figure below.  

a. Write the transfer function for the circuit. 

b. Sketch the frequency response. 

Solution: 

a. 𝐻(𝜔) =
𝑉𝑜

𝑉𝑠
=

𝑅2

𝑅2+𝑅1+𝑗𝜔𝐿
=  

𝑅2

𝑅2+𝑅1
 (

1

1+𝑗𝜔
𝐿

𝑅2+𝑅1

)  

𝑏. From the transfer function of part (a), we see that the dc gain will no longer be 1 (𝑂𝑑𝐵) 

but rather is found as 

𝐴𝑣(𝑑𝑐) = 20 log (
𝑅2

𝑅1 + 𝑅2
) = 20 log (

1

10
) = −20𝑑𝐵 

The cutoff frequency occurs at 

𝜔𝑐 =
1

𝜏
=

1
𝐿

𝑅1+𝑅2

 = 
𝑅1+𝑅2

𝐿
=

10𝑘𝛺

2𝑚𝐻
 = 5.0𝑀𝑟𝑎𝑑/𝑠 

The resulting Bode plot is shown in Figure 22‐24. Notice that the frequency response of 

the phase shift is precisely the same as for other low‐pass filters. However, the response of 

the voltage gain now starts at−20 𝑑𝐵 and then drops at a rate of−20 𝑑𝐵/decade above the 

cutoff frequency, 𝜔𝑐 = 5𝑀𝑟𝑎𝑑/𝑠. 
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H.W.  :  Design a low-pass RC filter to have a cutoff frequency of 30 krad/s. Use a 0.01-

µF capacitor. 

Answer: 

 
H.W.  :  Design a low-pass RL filter to have a cutoff frequency of 20 kHz and a dc gain of 

-6 dB. Use a 10-mH inductor. (Assume that the inductor has no internal resistance.) 

Answer: 

 

H.W.  :   A series RL low-pass filter with a cutoff frequency of 2 kHz is needed. Using 

R = 5 kΩ, compute (a) L; (b) |𝐻(𝑗𝜔)|at 50 kHz; and (c)𝜃(𝑗𝜔) at 50 kHz. 

Answer: (a) 0.4 H, (b) 0.04, (c) -87.710 

 

H.W.  : Compute the transfer function of a series RC low-pass filter that has a load resistor 

RL in parallel with its capacitor. 

Answer: 𝑯(𝒔) =
𝟏/𝑹𝑪

𝒔+𝟏/𝑲𝑹𝑪
   𝒘𝒉𝒆𝒓𝒆 𝑲 =  

𝐑𝑳

𝑹+𝐑𝑳
 

 

 



University of Diyala                                                                                                  Electrical Circuits               
Engineering College                                                                                                   2nd Class                                  
Electronic Department                                        Year (2015-2016)                         Lecturer : Wisam N. AL-Obaidi 

 

11 
 

H.W.  : Use a 25-mH inductor to design a high-pass filter circuit having a cutoff 

frequency of 80 krad/s and a high-frequency gain of -12 dB. Sketch the frequency 

response of the filter.   

Answer: 

 

Example  :  Write the transfer function for the circuit of Figure below. Sketch the 

resulting Bode plot and determine the expected bandwidth for the band-pass filter. 

Solution: 
It is easier to recognize that the circuit consists of two 

stages: one a low-pass stage and the other a high-pass 

stage. If the cutoff frequencies of each stage are separated 

by more than one decade, then we may assume that the 

impedance of one stage will not adversely affect the 

operation of the other stage. Based on the previous 

assumption, the transfer function of the first stage is 

determined as 

𝐻1(𝜔) =
𝑉1

𝑉𝑖𝑛
=  

𝑗𝜔𝑅1𝐶1

1 + 𝑗𝜔𝑅1𝐶1
 

And for the second stage, 

𝐻2(𝜔) =
𝑉𝑜𝑢𝑡

𝑉1
=  

1

1 + 𝑗𝜔𝑅2𝐶2
 

Combining the preceding results, we have 

𝐻(𝜔) =
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛
=  𝐻1(𝜔)𝐻2(𝜔) =  

𝑗𝜔𝑅1𝐶1

(1 + 𝑗𝜔𝑅1𝐶1)(1 + 𝑗𝜔𝑅2𝐶2)
=  

𝑗𝜔𝜏1

(1 + 𝑗𝜔𝜏1)(1 + 𝑗𝜔𝜏2)
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The resulting frequency response is determined by the summation of the individual 

responses as shown in Figure below. 
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Example  :  Determine the transfer function of a third-order Butterworth low-pass filter 

having a cutoff frequency equal to 500 rad/s, if the transfer function al cutoff frequency 

equal 1 rad/s is given by, 

𝐻𝑛(𝑠) =
1

(𝑠 + 1)(𝑠2 + 𝑠 + 1)
 

Solution: 

A technique called frequency scaling is used to adjust the cutoff frequency to 𝜔𝑐 =

500 𝑟𝑎𝑑/𝑠. Frequency scaling can be accomplished by replacing each 𝑠 in 𝐻𝑛(𝑠) by 𝑠/

𝜔𝑐. That is, 

𝐻(𝑠) =
1

(
𝑠

𝜔𝑐
+1)((

𝑠

𝜔𝑐
)2+

𝑠

𝜔𝑐
+1)

  

In this case, 𝜔𝑐 = 500 𝑟𝑎𝑑/𝑠, so 

𝐻(𝑠) =
1

(
𝑠

500
+1)((

𝑠

500
)2+

𝑠

500
+1)

=
5003

(𝑠+500)(𝑠2+500𝑠+5002)
 =     

125000000

(𝑠+500)(𝑠2+500𝑠+250000)
  

𝐻(𝑠) is the transfer function of a third‐order Butterworth low‐pass filter having a cutoff 

frequency equal to 500 𝑟𝑎𝑑/𝑠. 
 

Example  : We wish to determine the parameters R, L, and C so that the circuit shown in 

Fig. operates as a band-pass filter with an 𝜔0 of 1000 rad/s and a bandwidth of 100 rad/s. 

Solution:  

The voltage gain for the network is 

H(𝜔) =
(𝑅/𝐿)𝑗𝜔

(𝑗𝜔)2 + (𝑅/𝐿)𝑗𝜔 + 1/𝐿𝐶
 

∴ 𝜔0 =
1

√𝐿𝐶
 

and since 𝜔0 = 103,     
1

𝐿𝐶
= 106 

𝑄 =
𝜔0

𝐵𝑊
=

1000

100
= 10 

However, 𝑄 =
𝜔0𝐿

𝑅
 = 

1000𝐿

𝑅
= 10 

Note that we have two equations in the three unknown circuit parameters 𝑹, 𝑳, and 𝑪. 

Hence, if we select 𝑪 = 𝟏𝝁𝑭, then 

𝐿 =
1

106𝐶
= 1𝐻     and      

1000(1)

𝑅
= 10 

∴ 𝑅 = 100𝛺 

Therefore, the parameters 𝑅 = 100𝛺, 𝐿 = 1𝐻, and 𝐶 = 1𝜇𝐹 will produce the proper filter 

characteristics. 
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3) Scalling 
In designing and analyzing filters and resonant circuits or in circuit analysis in general, it 

is sometimes convenient to work with element values of 1 Ω, 1 H, or 1 F, and then 

transform the values to realistic values by scaling. We have taken advantage of this idea by 

not using realistic element values in most of our examples and problems; mastering circuit 

analysis is made easy by using convenient component values. We have thus eased 

calculations, knowing that we could use scaling to then make the values realistic. 

There are two ways of scaling a circuit: magnitude or impedance scaling, and frequency scaling. 

Both are useful in scaling responses and circuit elements to values within the practical 

ranges. While magnitude scaling leaves the frequency response of a circuit unaltered, 

frequency scaling shifts the frequency response up or down the frequency spectrum. 

 

3.1)  Magnitude Scalling 

Magnitude scaling is the process of increasing all impedances in a network by a 
factor, the frequency response remaining unchanged. 

Recall that impedances of individual elements R, L, and C are given by 

𝑍𝑅 = 𝑅.                 𝑍𝐿 = 𝑗𝜔𝐿.                    𝑧𝑐 =
1

𝑗𝜔𝐶
                                                         …(3.1) 

In magnitude scaling, we multiply the impedance of each circuit element by a factor Km 

and let the frequency remain constant. This gives the new impedances as 

𝑍𝑅
′ = 𝐾𝑚𝑍𝑅 = 𝐾𝑚𝑅.             𝑍𝐿

′ = 𝐾𝑚𝑍𝐿 = 𝑗𝜔𝐾𝑚𝐿,          𝑍𝐶
′ = 𝐾𝑚𝑍𝐶 =

1

𝑗𝜔𝐶/𝐾𝑚
   …(3.2) 

Comparing Eq. (3.2) with Eq. (3.1), we notice the following changes in the element 

values: 𝑅 → 𝐾𝑚𝑅, 𝐿 → 𝐾𝑚𝐿, and 𝐶 → 𝐶/𝐾𝑚. Thus, in magnitude scaling, the new values 

of the elements and frequency are 

𝑅′ = 𝐾𝑚𝑅.            𝐿′ = 𝐾𝑚𝐿,         𝐶′ =
𝐶

𝐾𝑚
,           𝜔′ = 𝜔                                             …(3.3) 

The primed variables are the new values and the unprimed variables are the old values. 

Consider the series or parallel RLC circuit. We now have 

ω0
′ =

1

√𝐿’𝐶’
=

1

√𝐾𝑚𝐿𝐶/𝐾𝑚
=

1

√𝐿𝐶
= 𝜔0                                                                             …(3.4) 

showing that the resonant frequency, as expected, has not changed. Similarly, the quality 

factor and the bandwidth are not affected by magnitude scaling. Also, magnitude scaling 

does not affect transfer functions in the forms of Eqs. (2.2a) and (2.2b) in previous lecture, 

which are dimensionless quantities. 
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3.2)  Frequency Scalling 

Frequency scaling is the process of shifting the frequency response of a network 
up or down the frequency axis while leaving the impedance the same. 

We achieve frequency scaling by multiplying the frequency by a factor Kf while keeping 

the impedance the same. 

From Eq. (3.1), we see that the impedances of L and C are frequency-dependent. If we 

apply frequency scaling to 𝒁𝑳 (𝝎) and 𝒁𝑪 (𝝎)in Eq. (3.1), we obtain 

𝑍𝐿 = 𝑗(𝜔𝐾𝑓)𝐿′ = 𝑗𝜔𝐿 ⇒  𝐿′ =
𝐿

𝐾𝑓
                                                                             …(3.5a)    

𝑍𝐶 =
1

𝑗(𝜔𝐾𝑓)𝐶
′ =

1

𝑗𝜔𝐶
 ⇒  𝐶′ =

𝐶

𝐾𝑓
                                                                              …(3.5b) 

since the impedance of the inductor and capacitor must remain the same after frequency 

scaling. We notice the following changes in the element values: 𝐿 → 𝐿/𝐾𝑓 and 𝐶 → 𝐶/𝐾𝑓. 

The value of 𝑅 is not affected, since its impedance does not depend on frequency. Thus, in 

frequency scaling, the new values of the elements and frequency are 

𝑅′ = 𝑅.         𝐿′ =
𝐿

𝐾𝑓
,       𝐶′ =

𝐶

𝐾𝑓
,            𝜔′  = 𝐾𝑓𝜔                                                 …(3.6)  

Again, if we consider the series or parallel RLC circuit, for the resonant frequency 

ω0
′ =

1

√𝐿’𝐶′
=

1

√(𝐿/𝐾𝑓)(𝐶/𝐾𝑓)
=

𝐾𝑓

√𝐿𝐶
= 𝐾𝑓𝜔0                                                                  …(3.7) 

and for the bandwidth 

𝐵′ = 𝐾𝑓𝐵                                                                                                                     …(3.8) 

but the quality factor remains the same (𝑄′ = 𝑄) . 

 

3.3)  Magnitude and Frequency Scaling 
If a circuit is scaled in magnitude and frequency at the same time, then  

𝑅′ = 𝐾𝑚𝑅.               𝐿′ =
𝐾𝑚

𝐾𝑓
𝐿,              𝐶′ =

1

𝐾𝑚𝐾𝑓
𝐶.          𝜔′ = 𝐾𝑓𝜔                         …(3.9) 

These are more general formulas than those in Eqs. (3.3) and (3.6). We set Km = 1 in Eq. 

(3.9) when there is no magnitude scaling or Kf = 1 when there is no frequency scaling. 
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Example 3: A fourth-order Butterworth lowpass filter is shown in Fig.(a). The filter is 

designed such that the cutoff frequency 𝝎𝒄 = 𝟏 rad/s. Scale the circuit for a cutoff 

frequency of 50 kHz using 10- kΩ resistors.   

Solution: 

If the cutoff frequency is to shift from 𝜔𝑐 = 1𝑟𝑎𝑑/𝑠 to 𝜔𝑐
′ = 2𝜋(50) 𝑘𝑟𝑎𝑑/𝑠, then the 

frequency scale factor is 

𝐾𝑓 =
𝜔𝑐

′

𝜔𝑐
=

100𝜋 × 103

1
= 𝜋 × 105 

Also, if each 1 𝛺 resistor is to be replaced by a 10 𝑘𝛺 resistor, then the magnitude scale 

factor must be 

𝐾𝑚 =
𝑅′

𝑅
=

10 × 103

1
= 104 

Using Eq. (3.9), 

𝐿1
′ =

𝐾𝑚

𝐾𝑓
𝐿1 =

104

𝜋 × 105
(1 ∙ 848) = 58.82𝑚𝐻 

𝐿2
′ =

𝐾𝑚

𝐾𝑓
𝐿2 =

104

𝜋 × 105
(0 ∙ 765) = 24 ∙ 35𝑚𝐻 

𝐶í =
𝐶1

𝐾𝑚𝐾𝑓
=

0.765

𝜋 × 109
= 243 ∙ 5𝑝𝐹 

𝐶2
′ =

𝐶2

𝐾𝑚𝐾𝑓
=

1.848

𝜋 × 109
= 588 ∙ 2𝑝𝐹 

 

The scaled circuit is shown in Fig.(b). This circuit uses practical values and will provide 

the same transfer function as the prototype in Fig.(a), but shifted in frequency. 
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H.W.3:  A third-order Butterworth filter normalized to 𝝎𝒄 = 𝟏 rad/s.  is shown in Fig. 

Scale the circuit to a cutoff frequency of 10 kHz. Use 15-nF capacitors.  

Answer:  𝑹𝟏
′ = 𝑹𝟐

′ = 𝟏 ∙ 𝟎𝟔𝟏𝒌𝜴, 

 𝑪í = 𝑪𝟐
′ = 𝟏𝟓𝒏𝑭, 𝑳′ = 𝟑𝟑 ∙ 𝟕𝟕𝒎𝑯. 

 

 

Example  : Scale the network shown in Fig.(a) by 𝐾𝑚 = 20 and 𝐾𝑓 = 50, and then find 

𝑍𝑖𝑛(𝑠) for the scaled network. 

Solution:  

 

𝐶𝑠𝑐𝑎𝑙𝑒𝑑 =
0.05

(20)(50)
= 50𝜇𝐹 ,      𝐿𝑠𝑐𝑎𝑙𝑒𝑑 =

(20)(0.5)

50
= 200𝑚𝐻 

In scaling the dependent source, only magnitude scaling need be considered, as frequency 

scaling does not affect dependent sources. Since this is a voltage‐controlled current 

source, the multiplying constant 0.2 has units 𝑜𝑓𝐴/𝑉, or S. Since the factor has units of 

admittance, we divide by 𝐾𝑚, so that the new term is 0.01𝑉1. The resulting (scaled) 

network is shown in Fig.(𝑏). 

To find the impedance of the new network, we need to apply a 1 𝐴 test source at the input 

terminals. We may work with either circuit; however, let’s proceed by first finding the 

impedance of the unscaled network in Fig.(𝑎), and then scaling the result. 

Referring to Fig.(𝑐) 

𝑉𝑖𝑛 = 𝑉1 + 0.5𝑠(1 − 0.2𝑉1) 

𝑉1 =
20

𝑠
(1) 

𝑍𝑖𝑛 =
𝑉𝑖𝑛

1
=

𝑠2 − 4𝑠 + 40

2𝑠
 

To scale this quantity to correspond to the circuit of Fig.(𝑏) we multiply by 𝐾𝑚 = 20, and 

replace 𝑠 with 𝑠/𝐾𝑓 = 𝑠/50. Thus, 

𝑍𝑖𝑛𝑠𝑐𝑎𝑙𝑒𝑑
=

0.2𝑠2 − 40𝑠 + 20000

𝑠
 𝛺 
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Lecture ()                           Passive Filters 
 

Problems 
H.W.(1): Find the transfer function Vo /Vs of the circuit in 

Fig. Show that the circuit is a lowpass filter.  
 

[Answer: 𝐇(𝝎) =    
𝑹

𝐑+𝐣𝛚𝐋− 𝛚𝟐𝑹𝑳𝑪
 ,H(0) = 1 & H(∞) = 0, 

this circuit is a lowpass filter] 

 H.W.(2): Determine the cutoff frequency of the lowpass filter described by 

 𝐇(𝝎) =    
𝟒

𝟐 + 𝐣𝛚𝟏𝟎
 

Find the gain in dB and phase of H(ω ) at ω = 2 rad/s.   
 

[Answer: 0.2 Hz, - 14.023, - 84.3°] 

H.W.(3): Determine what type of filter is in Fig. Calculate the 

corner frequency fc .   

 

 
[Answer: H(0) = 0 & H(∞) = 1, this circuit is a highpass filter, 318.3 Hz] 

H.W.(4): Determine what type of filter the network shown in 

Fig. represents by determining the voltage transfer function. 

 

[Answer: the filter is highpass filter] 

H.W.(5): Determine what type of filter the network shown in 

Fig. represents by determining the voltage transfer function. 

 

[Answer: the filter is lowpass filter] 

H.W.(6): Determine the range of frequencies that will be passed by a series RLC bandpass 

filter with R = 10 Ω , L = 25mH, and C = 0.4 μ F. Find the quality factor.  
 

[Answer: 1.56 kHz < f < 1.62 kHz, Q = 25] 

H.W.(7): (a) Show that for a bandpass filter  

𝐇(𝒔) =    
𝒔𝑩

𝐬𝟐 + 𝐬𝐁 +  ω0
2 

where B = bandwidth of the filter and ω0 is the center frequency. 

(b) Similarly, show that for a bandstop filter, 

𝐇(𝒔) =    
𝐬𝟐 +  ω0

2

𝐬𝟐 + 𝐬𝐁 +  ω0
2 

 

[Answer] 

H.W.(8): Determine the center frequency and bandwidth of the bandpass filters in Fig.  
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[Answer: (a) ω0 = 1 rad / s, B = 3 rad / s (b) ω0 = 1 rad / s, B = 3 rad / s] 

H.W.(9): Find the bandwidth and center frequency of the 

bandstop filter of Fig.  

 

[Answer: B = 2.408 krad/ s, 15.811 krad/ s] 

H.W.(10): The filter shown in Fig.a has the response curve shown in Fig.b (a) Scale the 

filter so that it operates between a 50 Ω source and a 50 Ω load and has a cutoff frequency 

of 20 kHz. (b) Draw the new response curve.  

        
[Answer: km = 0.5; kf = 20*10‐3, 100 Ω → 50 Ω, 9.82μH → 245.5 μΗ, 31.8 μΗ → 780 

μΗ, 2.57 nF → 257 nF] 

 
H.W.(11): Design a low-pass filter using one resistor and one capacitor that will produce a 

4.24-volt output at 159 Hz when 6 volts at 159 Hz are applied at the input. 

[Answer: select R = 1 kΩ then C = 1 µF] 

H.W.(12): Design a band-pass filter with a low cutoff frequency of approximately 4535 

Hz and a high cutoff frequency of approximately 5535 Hz. 

[Answer: select C = 100Nf, then L = 10 mH and R = 62.83 Ω] 
 


