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s 1) Introduction '8
al at

¢ The analysis of RC and RL circuits is carried out by applying Kirchhoff’s laws, as we did 8
¢ for resistive circuits. The only difference is that applying Kirchhoff’s laws to purely &
¢ resistive circuits results in algebraic equations, while applying the laws to RC and RL 8
¢ circuits produces differential equations, which are more difficult to solve than algebraic
s equations. The differential equations resulting from analyzing RC and RL circuits are of &

¢ the first order. Hence, the circuits are collectively known as first-order circuits. 03
g g
# | A first-order circuit is characterized by a first-order differential equation. 3
gl g
# In addition to there being two types of first-order circuits (RC and RL), there are two ways &
& 1o excite the circuits. S
< - - - am -y = - - - W
02 1) The first way is by initial conditions of the storage elements in the circuits. In these &
& so-called source-free circuits, we assume that energy is initially stored in the capacitive
K or inductive element. The energy causes current to flow in the circuit and is ¥
& gradually dissipated in the resistors. Although source free circuits are by definition ¥
I:l free of independent sources, they may have dependent sources. &
I:l 2) The second way of exciting first-order circuits is by independent sources (dc and ac %
® sources). &
o "
I:l 2) The Source-Free R Circuit :::
I:l A source-free RC circuit occurs when its dc source is suddenly disconnected. The energy I:l
I:l already stored in the capacitor is released to the resistors. _ _ ;:j
I:l Consider a series combination of a resistor and an initially *c-l N lf;: ::1
I:l charged capacitor, as shown in Fig.2.1. (The resistor and : ;:j
& Ccapacitor may be the equivalent resistance and equivalent ¢ i z R &
I:l capacitance of combinations of resistors and capacitors.) — ;:1
I:l Now to determine the circuit response. Since the capacitor is T ::1
I:l initially charged, we can assume that at time t = 0, the = ;:j
& initial voltage is Fig.2.1.source-free RC circuit ::1
5 0=V, 1) ¥
¢ '8!
ral . - Pat
% with the corresponding value of the energy stored as e
S _1rp2 &
S w(0) = CV; ...(2.2) 8
ral - . Lo ) . (3
::: Applying KCL at the top node of the circuit in Fig. 2.1 yields :::
¢S '8!
0 vAg el

& (1% 5
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s ic+ig=0 ...(2.3) &
A A
§ By definition, i, = Cdv/dt and i, = v/R. Thus, §
A A
:ﬁ: dv v :i:
o C—+-=0 ...(2.4a) %
:;: dt R :;:
A A
W dv | v 8!
% “atre=? (240) %
A A
% This is a first-order differential equation, since only the first derivative of u is involved. To &
A A
§ solve it, we rearrange the terms as §
A A
s s
W av 1 2
:21 7 —_ Edt .o .(2.5) :::
s s
Eg Integrating both sides, we get Eg
A A
% Inv=-——+InA %
'8! RC 8
& &
A A
& Wwhere In A is the integration constant. Thus, &
e s
'8 t '8!
8 Ins=—— ...(2.6) &
% A RC ’%
'8! : '8!
% Taking powers of e produces '8!
val Pal
& v(t) = Ae~t/RC S
ral Pal
I:l But from the initial conditions, v(0) = A = V,. Hence, I:I
'8! '8!
* —~t/RC ®
::j v(t) = Vye t/ ...(2.7) ;:j
R S : I
I:i This shows that the voltage response of the RC circuit is an exponential decay of the initial I:i
ral . ; . . 8!
::: voltage. Since the response is due to the initial energy stored and the physical ;2:
(3 - . e
;:j characteristics of the circuit and not due to some external voltage or current source, it is ;:j
& called the natural response of the circuit. &
'8! '8!
! — — 03
;:j The natural response of a circuit refers to the behavior (in terms of voltages and ;:j
;:j currents) of the circuit itself, with no external sources of excitation. ;:j
'8! '8!
? - . . . . ¥

»31 The natural response is illustrated graphically in Fig.2.2. Note that at t = 0, we have the »:1
s .. .. ] ] [
;:: correct initial condition as in Eq. (2.1). As t increases, the voltage decreases toward zero. ;::
&3 &3

% The rapidity with which the voltage decreases is expressed in terms of the time constant, 8§,

Pat

o denoted by z, the lowercase Greek letter tau. el
3 &3
Pal Pal
* vAg (3
5 e %
'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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¢ | The time constant of a circuit is the time required for the response to decay to a 03
' | factor of 1/e or 36.8 percent of its initial value. '8!
s s
s S
'8! '8!
a! Yal

s > S
'8! t g
& Fig.2.2. The voltage response of the RC circuit. 3
s S
s S
s S
::1 This implies that at t = 7, Eq. (2.7) becomes Igj
& &
(2 -T7/RC _ -1 _ ®
8 Voe = V,e~1 = 0.368V, e
& &
e Or 2
o 2
% [t =RC ..(2.8) &
I:l In terms of the time constant, Eq. (2.7) can be written as I:I
s w(t) = Vye /7] (29) %
'8! '8!
ral . . . . Pal
w Itis evident from Table 7.1 that the voltage v(t) is less than 1 percent of V, after 57 (five :&
ral . L. . 4
;g time constants). Thus, it is customary to assume that the capacitor |LUGILEE 2 ~ ;
rad . . o —t/T Pat
::: is_fully c-ﬁscﬁdrgecf (or charged) fgﬂer- five time co-nstafzts. In other Values of v(t)/Vo = e " :::
::: words, it takes 5t for the circuit to reach its final state or « v(0)/Vo :::
3 o . 3
;:j steady state when no changes take place with time. Notice - 036788 ;:j
L ) 27 0.13534

E:i that for every time interval of T, the voltage is reduced by 36.8 ;. 0.04979 ::3
0. . . 47 0.01832 &,
) = e )

% percent of its previous value, v(t + T) = v(t)/e = 0.368v(t) . 000671 }21
&, regardless of the value of t. E::
Pat 4
&3 &S
ral Pal
& A circuit with a small time constant gives a fast response in that it reaches the steady state (or final 1§
'8! , . . s . '8!
::: state) quickly due to quick dissipation of energy stored, whereas a circuit with a large time constant :::
::1 gives a slow response because it takes longer to reach steady state (this is illustrated in FiQ. 2.3). At :::
Pat . . . . . . Pat
& amny rate, whether the time constant is small or large, the circuit reaches steady state in five time &
Pat Pat
& constants. S
'8! '8!
'8! '8!
'8! vAg '8!
'8! <(3)> '8!
'8! e Teoey, '8!
-0-0--0-O--O-O- - O-O-O-O-O-O-O--O-O--O-O--O-O-O-O-O-O-O-O--O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-O-ORH
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' Figure 2.3. Plot of v(t)/V, = e~/ for various values of the time constant. '8!
A A
e rat
¢ With the voltage v(t) in Eq. (2.9), we can find the current i (t) , 03
e rat
@ . v(t) Vo —t/T @
E:i lR(t)szﬁe / (210) E:i
A A'
& The power dissipated in the resistor is 3
E:i v§ -2t E:i
:31 p(t) = vig = —e /T ...(2.11) ::}
A A
e ral
¥ The energy absorbed by the resistor up to time t is &
e ral
%: e _(tve —2t)T 44 — Vg —2t/T | t _ 12 —2t/T _ %:
s WR(t)—fOpdt—fOFe dt =——>e 0=5CVG(1—e ), T = RC .(2.12) S
'8! '8!
S : 1 L i %
;g Notice that as t — oo, wg () — ECVOZ, which is the same as w(0) , the energy initially &
val . . .y . . . Pal
::: stored in the capacitor. The energy that was initially stored in the capacitor is eventually :::
;g dissipated in the resistor. ;?
S _ _ _ '8
I:i With these two items, we obtain the response as the capacitor voltage v (t) = v(t) = I:i
'8! '8

st v(0)e~t/T other variables (capacitor current i, resistor voltage vg, and resistor current iz) g
® can be determined. In finding the time constant T = RC, R is often the Thevenin equivalent ¥,

>.1

ral 4
::: resistance at the terminals of the capacitor; that is, we take out the capacitor C and find R = Ry, at :::
o its terminals. S
ral - ; ; ; Pal
% | Example 1: In Fig. Fig.1, let vg(0) = 15 V. Find v, vy, and iy for t > 0. S
% Solution: 80 S
;:: We first need to make the circuit in Fig.1 conform with the o | ;::
&3 L . : + 03
Yal = =Tt
::: stahdard RC circuit in Flg.Z.l. .We find the equwal.ent 505 01Fd—,.  120% :::
& resistance or the Thevenin resistance at the capacitor - <
" terminals. Our objective is always to first obtain capacitor '
) . - P H

% voltage v.. From this, we can determine v, and i,. Fig.1 %
(3 S (3
Pat Pat
8 Roy = (84+12) 15 = < Rog = 225 = 40 :
& el T eq T 045 T &
'8! vAg '8!
'8! <(4 )= '8!
'8! maTeay, '8!
- O-O=0-0-0-0-0-OXOO-O-O=O0-0-OXO-O-OXOO-O-OO-O0-OXO-0-OXOO-O-OXO-O-O-O0-ORO-O-O-OXO-O-OXO-O-ORO-O-OROXO-O0-OXO-O0-O-O-O-O0-O0-O-OXOX K
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;3; =~ the equivalent circuit is as shown in Fig.2. ;2:
A A
\/ + \ /
8 o= R,,C =4(0.1)=04 :
g T = Negh = (0.1) = 0.4s Ry < v —— 01F 8
A A
e rat
® v=1v(0)e" " =157V v, = v = 15725V B *
e rat
D< ... . <
:3: use voltage division to get v, so, Fig.2 :2:
A A
e rat
D< 12 _ _ <
v, = ——v = 0.6(15e725) = 925ty e
val 12+8 Pat
e rat
P ey 3
Ly = E = (0.75e7%°'4 Pas
e rat
e ras
e rat
DA . . <
::: H.W.1: Let v-(0) = 45 V. Determine v, v,. and i, for f > 0. :::
% Answer: Y eo S
A — A
e ral
® 457025ty 157025ty _3 757025ty J_-; L+ 1 c
»ﬁq 120 2 6Q < o 3F =— 2¢ ,i
o ] B -8
"al "al
e ral
# | Example 2: The switch in the circuit in Fig.1 has been closed fora long time, and it is &
::1 opened at t = 0. Find v(t) for t = 0. Calculate the initial energy stored in the capacitor. &
& Solution: =0 &
8! . ) ) ) ) 30 = 1Q al
I:l For t < 0, the switch is closed; the capacitor is an open ——3 [ &
ral . . . . . A - DX
% Ccircuit to dc , as represented in Fig.2(a). Using voltage 20v (%) 00  v—= 20mF K
(2 divisi - ‘ ? &
s\ dIvIsIon _ | e
'8! '8
'8! _ 9 _ : e
::: v_C(t) =55 (20) =15V.t < 0_ | Fig. 1 :::
::1 Since the voltage across a capacitor cannot change instantaneously, the voltage across the ::1
I:l capacitoratt = 0~ isthesame att = 0, or I:I
'8! '8
s 30 1Q s
o v-(0) =V, =15V 2%
'8! | =
::: i . .., 20v(H) 90 = 2:(0) :::
e For t > 0, the switch is opened, and we have the RC circuit i <
8! . ; . . .. . . !
;:: shown in Fig.2 (b). [Notice that the RC circuit in Fig.2 (b) is @ ;31
O . . ] ] O
::j source free; the independent source in Fig.1l is needed to 10 ::j
% provide V, or the initial energy in the capacitor. T ®
(3 0 < 3
:.: 9Q T ¥=15V = 20mF :.:
;gReq=1+9=10(z,r=Reqc=10x20><10-3=0-25 N S
ral (®) (2
3 : : : (3
::1 Thus, the voltage across the capacitor for t > 0 is Fig.2 ::1
Pal Pal
03 03
Pat . _ Pat
& v(t) = v (0)e /T = 15e7t/02y = 1575ty &
& ¢ 62
03

3 viy «
PaVA%A%A%A A% A% A% A4 AYAVAYAVAYAVAYAVAYAVYAYAVAYAYAYAYAVAY AVAVAYAVAYAYAYAYAYAYAYAYAYAVAYAYAYAVAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAA



2000 00ROVOVOOOOOOOOOOOOOOOOOOOOOOOOOVOOOOOOOOOOVODOOOOOOOOOOOVOOOON

(3

:: University of Diyala Electrical Circuits
:: Engineering College
Y
03
>‘1
::: 1 2 1 -3 2 &
¢ we(0) =5 CvZ(0) =5 x 20X 107° x 15% = 2.25] S
e ral
'8! '8!
® | H.W.2: If the switch in Fig. shown opens at t = 0, find v(t) for t > 0 and w,(0) . &
a _ — <
& Answer: 8e~2tV. 5.33] co =0 &
R
'8 oL .8
ral N 11 )2
(2 24V (F) FF=—1v Z12Q Z4Q %
::: T 6 _ ! :::
% | %
A A
e rat
e rat
e rat
e ras
5 i %
& 3) The Source-Free RL Circuit (3
"al O "al
e ral
8 Our goal is to determine the circuit response ( current i(t) A - L+ '8
(3 = = '8
¥ through the inductor). We select the inductor current as the L = I R = g &
val . . . 1 + = ral
::: response in order to take advantage of the idea i that the :::
S . 8
# inductor current cannot change instantaneously. At t = 0, | !
& we assume that the inductor has an initial current I,, or with = !
ral . . . . . A <
::: the corresponding energy stored in the inductor as Fig.3.1 A source-free RL circuit :3:
3 8
C 3
E:i i(0) = IO1 (3.1) E:i
3 03
% w(0) ==LI? (3.2) s
g O =gth -
;:j Applying KVL around the loop in Fig.3.1, ;:j
'8! '8
::: vL + UR == 0 (33) E::
bt . , 5
::: But v, = Ldi/dt and v = iR. Thus, :::
3 03
'8! . : '8
ey di . di R, '8
= — — —+ -1 =
::: Ldt+Rl 0 dt+Ll 0 (3.4) :::
'8! . . . . el
;:j Rearranging terms and integrating gives ;:j
Pal Pal
QS 03
Pat . . Pal
& i(t)di tR . (L) Rt ¢ , Rt (
Pal — — — Pal
K fIO T__fofdt = Inif, ——T|0 = lnl(t)—lnIO——T+0 &
'8 3
Pat Pat
;31 i(t) Rt :::
¥ o In—=—— (3.5) %
Sk L
& Taking the powers of e, we have K
»
s i(t) =Ipe (3.6) 8
'8! 3
'8! 3
3 viy «
PaVA%A%A%A A% A% A% A4 AYAVAYAVAYAVAYAVAYAVYAYAVAYAYAYAYAVAY AVAVAYAVAYAYAYAYAYAYAYAYAYAVAYAYAYAVAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAYAA
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s This shows that the natural response of the RL circuit is an exponential decay of the initial &

% current. The current response is shown in Fig.3.2. 0
5 3
e (3
Pa A
P2t i(f) A Pal
g gt

P Tangent at r=0 <

E:i 0.3681, Lt E:i
s s
s S
:21 0 T t :::
o Fig.3.2. The current response of the RL circuit e
val ral
s s
s s
s e
% Itis evident from Eq. (3.6) that the time constant for the RL circuit is :i
val al
s s
e L '8!
o =7 In (s) (3.7) 8
& L i(t) =lpe " (3.8) &
ral . — N4
::: vr(t) = iR = IyRe™t/* (3.9) :::
3 . : — 03
::1 The power dissipated in the resistor is I:j

. — »
::: p=vgi= IgRe 2t/t (310) ’::
::} t :::
' - —_ (Y12 po-2t/tgs — Y _j2p,-2t/T _L a
5 wg(t) = [y pdt = [, I Re*"/*dt = —~tIfRe "/ K T=- %
R 02
S L2 —2t/t ¥
& We(t) =;LI5(1—e ) (3.11) &
'8! '8!
al 1 . ; . Pal
;g Note that as t » o ,wi() = ELI@, which is the same as w; (0) , the initial energy ;?
Pal - . . . . ey . . R Pat
::: stored in the inductor as in Eq. (3.2). Again, energy initially stored in the inductor is :::
;:: eventually dissipated in the resistor. ;::
&3 03
ral Pal
R _ : : . . 2
I:l With the two items, we obtain the response as the inductor current i, (t) = i(t) = I:l
Pal ] . . ] . Pal
::: i(0)e~t/*. Once we determine the inductor current i;, other variables (inductor voltage v;, :::
&3 , : . : : : 03
;:j resistor voltage vy, and resistor current iz) can be obtained. Note that in general, R in Eq. ::j
::: (3.7) is the Thevenin resistance at the terminals of the inductor. :::
ral Pal
'8! '8!
'8! '8!
'8! '8!
'8! vAg '8!
Pal Pal
o AL 62
'20X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X'X'X'A'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2<
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w - . . . = = H - \/
¢ | Example 3: Assuming that i(0) = 104, calculate i(t) and i, (t) in the circuit of Fig.1. *
% Solution: 4Q 05
® There are two ways we can solve this problem. One ; 1 l 0
® way is to obtain the equivalent resistance at the inductor ) &
[ . . _ el i <
:3: terminals and then use Eq. (3.8). The other way isto os5H = <2Q Ty 3 ;g:
A . . A = O
# start from scratch by using Kirchhoff’s voltage law. *
® Whichever approach is taken, it is always better to first *
% obtain the inductor current. Fig.1 R
e s
¢ METHOD 1 The equivalent resistance is the same as the Thevenin resistance at the &
¢ inductor terminals. Because of the dependent source, we insert a voltage source with v, = &
< . . . . . el
% 1V at the inductor terminals a-b, as in Fig. 2(a). (We could also insert a 1-A current source :i«
e . . : al
& at the terminals.) Applying KVL to the two loops results in &
A A
e s
8 . . . . 1 al
g2(11—12)+1=0=>11—12=—5 1) %
§ 6l =20 —3i; =00, =20 2) &
A A
e s
:g Substituting Eqg. (2) into Eqg. (1) gives &
'8! '8!
al | i . Pal
& i =—34 i,=—i; =34 %
'8! v, 1 S
§ o Reg=Rrn=-2=20
& o &
'* Q3
ral Pal
§ oL _2_3
W L= T1755 '8!
g e g3 2 $
'8! '8!
'8! '8!
& e — 10— s
g () =i(0)e T=10e 34 t>0 &
03 9 a 40 '8!
S © 10 S
:.: AN A A :.:
I:i N o I:i
% n=1v(T) (i) 20 i T3 $
» ! _ I £ ) _ 2 . . »
& : k\ : N\’ : = ) Oy = ) 4 >.:
(3 0sHE (4 ) 2% i ) 37 8
'8! ; '8!
'8! b '8!
Pal Pal
R 62
(< (a) (b) &
'8! '8!
Pal Pal
¢S 03
'8! Fig. 2 '8!
¢S A 03

OO

[X
X
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
),1
b
M
X
X
X
X
X
X
X
:1
X
3
N
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
| X
X
| X
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s METHOD 2 We may directly apply KVL to the circuit as in Fig. 2(b). '8
A A
e e
& For loop 1, 0
e %
Pa <
% 1di; 20— 1) =0 %
s —— i —iy) = 0
§ 2 dt v (3
e %
e diy . : e
\/ . — — — N
3 . +4i; —4i, =0 1) %
e %
& For loop 2, 0
e %
& 60— 20 —3% =0 . 5, 0
a4 lp — 4l — ol = = 1, = gll (2) o
e el
< . . . . el
::: Substituting Eq. (2) into Eq. (1) gives :g:
A A'
DS <
:21 dh 4 2, — = dh _ _ 204 ::1
Al —— -1 = - - — = A
w dt 3 iy 3 <
e el
3 Since i; = i, we may replace i; with i and integrate: 3
e el
i) 2 ¢ i(©) 2 g3
::1 Taking the powers of e, we finally obtain *
val ral

. . —(=)t —\=t A
8 i(t) = i(0)e () = 10e~() 4 t>0 3
3 03
ral Pal
3 _ &S
& Which is the same as by Method 1. &
ral Pal
3 di 2 10 2 s
ral Pal
(2 — — —-(2/3)t _ -(3)t 0,
ral =] — — —_— —- 3 D<
::: v, =1L T 0.5(10)( 3)e 3 € |4 :::
% Since the inductor and the 2 — £ resistor are in parallel, (v, = vg) '8!
0 2 03
<. Vg (= [
§ i.(t) == =—1.6667¢ B4 >0 ¥
(. 2 (3
'8! (3
3 . : —— : , 3
::1 H.W.3: Find i and v, in the circuit of Fig. 1. Let i(0) =5 A. ::1
& Answer: 5e~*V —20e*V. 40 &
Pl AR A Pat
3 0
ral . — Pal
>:1 I l N [N l} >:<
Pal = 1€ D<
}:{ ,;-" :.— _:‘— }:{
%! 2H | =40
3 C T < S
8! 2o, 8!
! \—/ e S
'8 3
'8! (3
'8! : '8
'8! Fig. 1 '8!
G2 A 02
& Y o ¥ &
G2 e 62
'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’%K’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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N . . - N X . D
¢ | Example 4: The switch in the circuit of Fig. 1. has been closed for a long time. Att =0, |8
'8 | the switch is opened. Calculate i(t) fort > 0. '8!
Ya! Yal
' Solution: '8!
3 ' : : i =0 (3
& When t <0, the switch is closed, and the inductor 2Q =¢ 40 0
P a4 - - - - J.'-J""'-.-'."'J"".' | J.'v"-"r'."'\"."'-' 24
® acts as a short circuit to dc. The 16 — (2 resistor is F : lfm !
e o : L o S
;% short-circuited; the resulting circuit is shown in Fig. < o < o = o 9,4 :%
¢ 2(a). Toget i; in Fig. 2(a), we combine the 4 — 2 and ‘“‘ T
§ 12 — 2 resistors in parallel to get §
A A
e s
W 4x12 . &
§ Gz 310 Fig. 1. S
s S
(3 40 3
al . Yal
a 1 =——=284 M
e 2+3 s
e e
e . o : L . s
% We obtain i(¢) from i, in Fig. 2(a) using current division, by writing 3
A A
s e
. 12 at
() =——i; =64, t<0 s
:%: 12+4 :%:
A A
val . . . ral
:2: Since the current through an inductor cannot change instantaneously, ;i:
&3 8
'8! '8!
& i(0)=1i(07) =064 '8
'8! '8!
'8! '8!
al . . . . al
;:: When t > 0, the switch is open and the voltage source is disconnected. We now have the ;i:
&3 N &3
::1 source-free RL circuit in Fig. 2(b). ::1
'8! '8!
ral Pal
I§1 Req = (12 4+ 4)||16 = 812 I§1
'8! '8!
K3 L 2 1 3
W T —=—==—=-=5 Pal
S R 8 4 3
&3 &3
ral Pal
¥ i(t) =i(0)e t/" = 6e™*A 3
$ B %
'8! '8!
ral - Pal
% L 0 4Q 44 ¥
Pal 7| Pal
8! - T = = s
g 40V (D) =120 12Q < = 16Q = 2H 8
’. S = " = - ‘
'8! '8!
'8! '8!
S (@) () s
"al . . . . . Pal
::: Fig. 2 Solving the circuit of Fig.1: (a) for t <0, (b) for t > 0. :::
3 03
6! | H.W.4: For the circuit in Fig.1, find i(t) fort > 0. S
Pal Pal
»:< >y $
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Electrical Circuits

Pat 240

L
= 8Q

=0
A
! I.’
=120
N "l AMAN
s s'(rjl | 5Q
= 2H
Fig.1

& | switch was open for a long time.

& | Example 5: In the circuit shown in Fig.1, find i,, v,, and i for all time, assuming that the

w Solution: It is better to first find the inductor

20 30 S
W . H T4 H a_A A A A A A A W
%« current i and then obtain other quantities from it. MWW : 1. :i:
val . . . . . I I 2
w For t < 0, the switch is open. Since the inductor % y L‘ :ﬁ:
;g acts like a short circuit to dc, the 6 — (2 resistor is 10V () Xi=0 S6Q Z2H
¢ short-circuited, so that we have the circuit shown | s
< . ral
& inFig.2 (a). Hence, &
e s
e s
al - . 10 i e
® i =0 and i(t)=—=24. t<0 Fig.1 0
2 2+3 Yat
3 s
; Pl
& v, =3i(t)=6V. t<0 %
;:j Thus, i(0) = 2. ;%j
S 3
& Fort > 0, the switch is closed, so that the voltage source is short- circuited. We now have %
ral . R . ; R R Pal
% a source-free RL circuit as shown in Fig.2 (b). At the inductor terminals, ;3*
Pat
& Rrn =36 =20 &
& &
S L S
® T = =1s o
02 Rrp 0
& _t &
&% i) =i(0)eT=2etA. t>0 &
Pat Pal
s . . _ : : &S
;:j Since the inductor is in parallel with the 6 — 2 and 3 — 12 resistors, ;:j
ral Pal
8 L —t —t 8!
e V,(t)=—v,=—L—=-2(—2e")=4e V. t>0 %!
% dt 3
'8! '8!
'8! '8!
" 14 2 _, 02
% lo(t)=€=—§€ A. t>0 %
'8! '8!
'8! _ '8!
::j Thus, for all time, I:j
Pal Pal
* VA (3
& <(11)> &
[
'20X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’%l’l’l’l’l’l’l’l’l -0~ -O--O-O--O-O-O- OO X’X’X’X’X’X’:‘



RS O OO OO OO
(2
» . . s . . .
,: University of Diyala Electrical Circuits
Wl Engineering College

K 2Q 30 30 &
s MWWW—, A 4 ; S
:ﬁ: - o ! l I ”'l ’ . t oL J’ :ﬁ:
g o < ' 2 = '8!
el 10v () 60 < 6 =y 2 2H '8!
» N = > _r ’e‘
A 1 A
o . al
& - ' '8!
K () ®) (3
. T 8
3 Fig.2. The circuitin Fig.1 for: ()t <0 (b)t > 0 *
o a
® We notice that the inductor current is continuous at t = 0, | 0
< _ . gt
% While the current through the 6 — 2 resistor drops from 0 to e

% —2/3 at t =0, and the voltage across the 3 — 2 resistor
% drops from 6 to 4 at t = 0. We also notice that the time
::1 constant is the same regardless of what the output is defined

;:j to be. Fig.3. plotsi and i,,. /(— > %:
(3 - ) P

Lalla

ral 101 ral
3 o(0) 5
* '*
* (3
8 : . . 0>
'8! Fig.3. A plotof i and i (3
* ? ®
* 03
* 03
* 03

E:i H.W.5: Determine i, i,, and v, for all ¢ in the circuit shown in Fig.1. Assume that the E:i
::: switch was closed for a long time. It should be noted that opening a switch in series with :::
::: an ideal current source creates an infinite voltage at the current source terminals. Clearly :::
::: this is impossible. For the purposes of problem solving, we can place a shunt resistor in :::
::: parallel with the source (which now makes it a voltage source in series with a resistor). In :::
::: more practical circuits, devices that act like current sources are, for the most part, :::
% | electronic circuits. These circuits will allow the source to act like an ideal current source | &

X

&S
I:l over its operating range but voltage-limit it when the load resistor becomes too large (as in .:1
% | an open circuit). s
% Answer'i—{le t<0 —{6‘4 t<0 —{Z‘W t<0 %
0 ' 12724 t>0" ° —4e724 t>0" ° 18e?V t>0 8
R &
R 62
R &
& 62
R &
R 62
R &
(2 A 62
(2 oY '8!
w Dy
LV VOVOVOVOVOVOVOVOVOVOVLOTV VOO VOO LOVOVOVOVOV VOV DVDOVOO DA
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& 4) Singularity Functions

8 A basic understanding of singularity functions will help us make sense of the response of
& Tirst-order circuits to a sudden application of an independent dc voltage or current source.
a Singularity functions (also called switching functions) are very useful in circuit analysis.
¢ They serve as good approximations to the switching signals that arise in circuits with
® switching operations. They are helpful in the neat, compact description of some circuit
::1 phenomena, especially the step response of RC or RL circuits .

® | Singularity functions are functions that either are discontinuous or have
® | discontinuous derivatives.

® The three most widely used singularity functions in circuit analysis are:

& 1. the unit step function.
ral .
::: 2. the unit impulse function.
(< 3. the unit ramp function.

' 4.1) Unit step function

%' | The unit step function u(t) is O for negative values of t and 1 for positive values of
o |t

% The unit step function is undefined at t = 0, where it changes abruptly from 0 to 1 (shown

::j in Fig.4.1). It is dimensionless, like other mathematical functions such as sine and cosine.
& In mathematical terms,
>.1
>.1
el _ {O, t<o0 i1
>.1
>.1
>.1
>.1
® vAg
<l =

[X
X
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
).1
bl
bl
bl
X
b
b
bl
bl
bl
b
X
X
)
N
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
h
p
b
b
b
b
| X
X
| X

0
0
0
0
0
0
0
0
0
<
e
e

OO0
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< ; . . /
;3; If the abrupt change occurs at t = t, (where t, > 0) instead of t = 0, which is the same as ;2:
) A
::: saying that u(t) is delayed by t, seconds, as shown in Fig.4.2(a), the unit step function :g:
§ becomes Egi
) A
% 0, t<t, &

s If the change is at t = —t,, meaning that u(t) is advanced by t, seconds, Fig.4.2(b), the '

sl _ i %
8 unit step function becomes '8
S A
e o
(3 0, t<-—t 8
N ’ [0) "al
. Ut +t,) = 4.3) %
& (t+1o) {1, t>—t, (4.3) 03
o o
'8! '8!
:ﬁ: H(f— I.:}) A :i:
al u(f) A u(r+ 1) A Pat
"al "al
al hal
al hal
'8! 1+ 1 <
al : ! 8!
al . . hal
'8! 1 ! ! &
at | I <
al ' : 8
al ! . hal
al . . ! o
rat = > »%e
'ﬁ 0 ty t ~t, O t %
'8! - Pat
K2 0 t (a) (b) &
;:: Fig.4.1The unit step function. Fig.4.2 The unit step function *
;:j (a) delayed by t, (b) advanced by to. ;g
3 '8
< . . ) 9
;:: We use the step function to represent an abrupt change in voltage or current, like the ;2:
;:: changes that occur in the circuits of control systems and digital computers. For example, ;::
% the voltage &
o 0, t<t '*
8 _ Y 0 0
w V(t) = 4.4) %
% Mmay be expressed in terms of the unit step function as :&
ral 4
% v(t) = Vou(t — to) (45)

E:i If we Ie_t ty = 0 then y(t)is s_imply th_e step voltage I_/Ou(-t). A voltage_ source of_VOu.(t) IS E:i
% shown in Fig.4.3 (a); its equivalent circuit is shown in Fig.4.3 (b). It is evident in Fig.4.3 &
® (b) that terminals a-b are short circuited (v = 0) for t < 0 and that v = V, appears at the &

Pat Pat
& terminals 3
S S
& ¥
S S
S 3
S S
S 3
S s
S 3
s S
S 3
S S
S S
S S
3 SAg 3
rat Pal
S <{14)> K3

X
X
M
M
M
M
M
M
Y
M
M
M
B
M
M
M
M
M
M
M
M
i
i
i
i
i
i
i
i
i
i
Dy

X
»d
X
R

X
X
X
X
X
X
X
X
X
X
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X
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X
X
X
X
X
X
X
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Vou(r) :

(a) (b)
Fig.4.3 (a) A voltage source of V,u(t) (b) its equivalent circuit.

for t > 0. Similarly, a current source of I,u(t) is shown in Fig.4.4 (a), while its equivalent

0
\_/

S 3
% circuitis in Fig.4.4 (b). Notice that for t < 0, there is an open circuit (i = 0) ,and thati = &
s s
x 1o flows for ¢ > 0. &
& &
A - O
S =0 L 63
'8! oa a hal
al 02
5 YA 3
2 A
'8! N A '8!
f — ! )

::j Tyu(t) | L' Iy ) ,:j
& &
A

k< o b o b o
ral

o @ (b) K
ral ) . . . . ’;‘
;g Fig.4.4 (a) A current source of I,u(t) (b) its equivalent circuit. ;:j
o 62
ral Pal
.. : &3

5 4.2) Unit impulse function e
K P s
1 1 H H H ) . . Pat

I:i The derivative of the unit step function wu(t) is the unit impulse function (or delta function)
ral . i Pal
% &(t) , which we write as :::
K . 0 t<0 &
& 0(t) = — u(t) = {Undefined t=0 (4.6) %
& 0 t>0 e
::1 The unit impulse function §(t) is zero everywhere except at t = 0, where it is ::1
% | undefined. &
::1 Impulsive currents and voltages occur in electric circuits as a result of switching ::1
I:l operations or impulsive sources. Although the unit impulse function is not physically I:I
Pat . R . . . . . - . Pat
& realizable (just like ideal sources, ideal resistors, etc.), it is a very useful mathematical &
s tool. '8
02 0
'8! '8!
'8! '8!
'8! '8!
Pat Pat
S 2
0 A 02
(2 Y '8!
o AL 62
'2’1’1’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’%"X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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¢ The unit impulse may be regarded as an applied or resulting shock. It may be visualized as g

¢ a very short duration pulse of unit area. This may be expressed mathematically as '8!
s s
':‘ ot '8
3 s(t)dt=1 4.7) &
a Jo- Pl

& where t = 0~ denotes the time just before t = 0 and t = 0% is the time just after t = 0. %
¢ For this reason, it is customary to write 1 (denoting unit area) beside the arrow that is used rg
s to symbolize the unit impulse function, as in Fig.4.5. The unit area is known as the s
® strength of the impulse function. When an impulse function has a strength other than ¥

3 unity, the area of the impulse is equal to its strength. For example, an impulse function 3
2 ) ] ] <
% 108(¢) has an area of 10. Fig.4.6 shows the impulse functions 58(t + 2), 108(¢) , and g
A A'
® —46(t—3). &
e s
e e
e s
A A
2 | 106(r b<
% o(1) 4 (=) ¢ $
e 5 s
a4 351:.?' +2) o
'8! '8!
'8! '8
& &
&3 8
::: | | 1 | » :ﬁ:
K3 -2 -1 0 1 2 13 t *
% 0 t —48(t—3) '*
ra! . . . . . . ral
o Fig.4.5 The unit impulse function. Fig.4.6 Three impulse functions. 3
&3 &3
& &
o 62
ral . . . . . ral
::: To illustrate how the impulse function affects other functions, let us evaluate the integral ;::
&3 &3
$ I, £ O~ todt (48) &
'8! '8!
ral i . . D<
;:: where a < t, < b. Since 6(t — ty) = 0 except at t = t,, the integrand is zero except at ¢,,. ;2:
;:j Thus, ;:j
R 62
':‘ b b b >:<
¢ J, [ D8t —to)dt = [, f (£)8(t — to)dt = f(to) J, & (t — to)dt = f(to) *
b
& [ f(®)8(t—to)dt = f(to) 02
% a (4.9) ':‘
'8! '8!
I:l This shows that when a function is integrated with the impulse function, we obtain the I:i
"8 . . . .. . ral
::: value of the function at the point where the impulse occurs. This is a highly useful :::
3 &3
'8! '8!

< A <
(D Ny O
Pal Pat
S <(16)> 3
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Y
3
>‘1
Pal . - N : \/
;3; property of the impulse function known as the sampling or sifting property. The special case ;;:
A A
& of Eq. (4.8) is for t, = 0. Then Eq. (4.9) becomes 0
A A
. 0F 3
& Jo- £(©8(®)dt = f(0) (4.10) %
w0 had
e S
e S
e S
& 4.3) Unit ramp function &
e . o : : , , s
s Integrating the unit step function w(¢) results in the unit ramp functionr(t) ; '8
A A
e s
o t 0
® r(t) = [ u(t)dt = tu(t) (4.12) &
s S
s S
I 0, t<0 at
S (o ={ 4.12) &
¢ "O=1 t>0 (412) s
val - - . . . ral
% | The unit ramp function is zero for negative values of t and has a unit slope for e
= . &
% | positive values of t. al
val . " " " . Pa
::: Fig.4.7 shows the unit ramp function. In general, a ramp is a function that changes at a :::
A A
& constant rate. *
e s
I:l The unit ramp function may be delayed or advanced as shown in Fig.4.8. For the delayed &
val . . Pal
9 unit ramp function, 3
62 8
'8! '8!
'8! 0 t<t Pal
® r(t—ty) =1, 2 4.13) '
K3 (t=t0) =] - to, T =t (4.13) &
;:j and for the advanced unit ramp function, ;:j
'8! '8!
:::r(t+t)—0' t = —tp (414):::
& T\t +ty, t=—t, 14 %
I:j We should keep in mind that the three singularity functions (impulse, step, and ramp) are I:j
& related by differentiation as &
'8! '8!
% du(t) dr(t) 3
% 5(t) = ) u(t) = —— (4.15) ¢
3 dt dt &
;:: or byinte?ration as t ;:j
»
Egi u®) =J__6@®dt, r@)=J__u(t)dt (4.16) ::3
¢S 03
R 62
R &
R 62
R &
R 62
R &
o 62
3 &3
::: VA :::
$ <(17)> &
'20X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’%K’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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e
>‘1
a! Yal
al r(t+1) A S
Ya! Yal
Pal .
& F(f) A &
e al
e al
e al
'8! ' '8!
Pal f
it L ! s
g : . o
Yal 1 ! Pt
e ! ! e
'8! l ' '8!
N I X "al
'8! ! > 8
%: | > —Ip —tfp+1 0 :::
::: 0 1 f (b) :::
Pal
% Fig.4.7 The unit ramp function. Fig.4.8 The unit ramp function ¥
al Yal
o (a) delayed by to (b) advanced by to. o
o al
o a
o a
o a
o a
o al
o al
'8! S
'8! '8
& &
:i: Example 6: Express the voltage pulse in Fig.1 in terms of the unit step. Calculate its :3:
::: derivative and sketch it. :::
- - - - A
;:: Solution: The type of pulse in Fig.1 is called the gate “©4 '8
3 _ _ 8
I:l Sfunction. 1t may be regarded as a step function that switches ol I:I
ral . Pal
::: on at one value of t and switches off at another value of t. :::
33 &
'8! . : : . '8
::1 This gate function switches on at t = 2s and switches off at ::1
- - . | | | - P
& t = 5s. It consists of the sum of two unit step functions as o 1 > 3 1 5 &
ral R . R L. R . Pal
% shown in Fig.2 (a). From the figure, it is evident that Fig.1 3
&3 &
'8! '8
I:l v(t) = 10u(t —2) — 10u(t —5) = 10[u(t — 2) —u(t — 5)] I:I
'8! '8
al R . R R . Pal
% Taking the derivative of this gives e
& &
v S
¢ = =10[6(t —2) - 8(t - 5)] 3
R 02
e &

i Which is shown in Fig.2 (b). We can obtain Fig.2 (b). directly from Fig.1. by simply »::

ral Pal
;gj observing that there is a sudden increase by 10 IV at t = 2s leading to 105(t — 2) . At t = ;§j
I:l 5s, there is a sudden decrease by 10 V leading to —10V 6(t — 5) . I::
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
3 Vi 3
3 <(18)- s
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4
:e: 10u(t—2) —10u(t—5) A :e:
03 03
:ﬁ: 10 — 10 |- :ﬁ:
:g I > 0 I N > %:
D< 0 1 2 t 1 2 3 4 |s t DX
03 03
E:i -10 - —— E:i
’i‘ (a) %
'8! '
C/ T (/
:ﬁ: 10 :::
'8! '
P% 0 | | | | > %
al 1 2 3 4 |5 ¢t Yal
'8 3
& &
::: —10 + :::
:31 ®) ;3:
x Fig.2 (a) Decomposition of the pulse in Fig.1, (b) derivative of the pulse in Fig.1. :ﬁ:
ral At
'8! '8!
& | H.W. 6: Express the current pulse in Fig.Llin terms of the unit step. Find its integral and &
:g sketch it. %
I:l Answer:10{u(t) — 2u(t — 2) + u(t —4)], 10[r(t) — 2r(t — 2) + r(t — 4)]. See Fig.2. Igi
::: i0) A :ﬁ:
O Jide A 8!
¢S 20 - &
o 62
:.: 2 4 t :.:
3 03
'8! '8
(3 _10 | ! > 3
() 0 2 4t (3
ral . Pat
i 03
:§: Fig.1 Fig.2 4
03 : — : : : 03
I:l Example 7: Express the sawtootf function shown in Fig.lin terms of singularity functions. I:I
ral . Pal
::: Solution: o(0) 4 :::
QS 03
Pat Pal
&S : : : 03
;:j There are three ways of solving this problem. The first method 10 | ;:j
& is by mere observation of the given function, while the other &
Pal . - - - . Pal
% methods involve some graphical manipulations of the function. :::
ral
'8 3
'8! > 8
’.‘ 0 7 r ’0‘
'8! - 3
'8 3
'8! 3
'8 - 3
'8} Fig.1 '8!
p Dy
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Y

8

s METHOD 1 By looking at the sketch of v(t) in Fig.1, it is not hard to notice that the g
A A
# given function v(t) is a combination of singularity functions. So we let 0
e al
e al
g V() =v1(6) +v2(0) + 1)
& The function v, (¢) is the ramp function of slope 5, shown in Fig.2 (a); that is, K
% 1 %
A A
e a
§ v =51 2 %
A A
e e
>, () vty a
! 10 10 8
% (1) A ygq
%: _I_ 0 ! > — ! > %:
E:i 0 2t 2 t 0 2 t E:i
A A
o al
:f: -10 b :g
al s
3 @ (b) © 3
"al "al
& Fig.2 Partial decomposition of v(t) in Fig.1. &
o a
D< <
s a
s a

% Since v(t) goes to infinity, we need another function at t = 2s in order to get v(t) . We I§1
::1 let this function be v,, which is a ramp function of slope -5, as shown in Fig.2 (b); that is, g

'8! '8!
& &
& v2(t) = —5r(t—-2) 3) &
'8! : : : - : . '8!
::j Adding v, and v, gives us the signal in Fig.2 (c). Obviously, this is not the same as v(t) ::1
I:l in Fig.1. But the difference is simply a constant 10 units for t > 2s. By adding a third I:I
ral . Pal
% signal vs, where 8!
ral Pal
:g vy = —=10u(t — 2) (4) :?
& we get v(t) , as shown in Fig.3. Substituting Egs. (2) through (4) into Eq. (1) gives &
'8! '8!
Pal Pal
s v(t) = 57(t) — 5r(t — 2) — 10u(t — 2) it
& &
R 62
R 62
R 62
R 62
R &
R 62
R &
R 62
R &
R 62
R &
o 62
R &
o 62
R &
* LA (3
3 <(20%- s
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3

&

e s
s e
Pad 10 — 10 DX
:% —I— v3(1) & — :%
(2 ' — 0 > Q
::j 0 2 t 2 t 0 2t %:
'8! '8!
:%: 10 :%:
(2 - B - A
'8! '8!
S s
(3 Fig.3 Complete decomposition of v(t) in Fig.1. *
s S
¥ METHOD 2 A close observation of Fig.1 reveals that v(t) is a multiplication of two 3
< . ; . Pal
% functions: a ramp function and a gate function. Thus, 3
A A
e s
§ v(t) = 5t[u(t) — u(t — 2)] = 5tu(t) — Stu(t — 2) §
A A
val ral
S =5r(t) — 5(t — 2 + 2)u(t — 2) = 5r(t) — 5(t — 2)u(t — 2) — 10u(t — 2) S
e s
K = 57(t) — 5r(t — 2) — 10u(t — 2) &
s the same as before. 8
&3 8
'8! _ L _ _ '8!
I:l METHOD 3 This method is similar to Method 2. We observe from Fig.1 that v(t) is a I:l
Pat . . . . . . - . Pat
::: multiplication of a ramp function and a unit step function, as shown in Fig.4. Thus, :::
&3 &3
'8! '8!
I:} v(t) = 5r(t)u(—t + 2) E:}
'8! 3
ral Pal
:g If we replace u(—t) by 1 — u(t) , then we can replace u(—t +2) by 1 —u(t — 2) . :?
¢ Hence, '8!
ral Pal
:g v(t) = 5r(t)[1 — u(t — 2)] I§1
'8! : o : e
¢ which can be simplified as in Method 2 to get the same result. '8!
::: Sr(f) A :::
& &
8! 10 f------ u(=r+2) A '8!
R 62
R &
'8! '8!
& X 1 &
::: 0 2 r 0 2 t :::
e . . N '8!
'8! Fig.4. Decomposition of v(t) in Fig.1. '8!
* VA (3
8 G S
'8! o eTeay, '8!

p-O-0-O-O-O-O-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0--0-0-OXOXORORORO-O-O-O-0-000000-0-0-0-0-0-0-0-0-O0-0-O0-O-O-O-O-O-O-O-O-O-OOXR
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s | H.W. 7: Refer to Fig.1. Express i(t) in terms of singularity functions. 3
s Answer: 2u(t) — 2r(t) + 4r(t—2) — 2r(t—3) . i(0) (A) A '8!

a! 2 !
a! !
a! !
% 0 | | > ’x‘

62 Fig.1 2T e
8 8
# | Example 8: Given the signal &
'8! 3, t<0 '8!
8 8
(3 gt) =4-2, 0<t<1 &
o 2t — 4, t>1 &
%8 | express g(t) in terms of step and ramp functions. At
al g Yal
\/ - . W
::} Solution: ,:j
& &
% The signal g(t) may be regarded as the sum of three functions specified within the three :ﬁ:
. 8
s intervalst < 0,0 <t < 1,andt > 1. "8
"al "al
o al

g Fort <0, g(t) may be regarded as 3 multiplied by u(—t) , where u(—t) =1 fort <0 %
s and 0 for ¢t > 0. Within the time interval 0 < t < 1, the function may be considered as —2 g

< <
;g multiplied by a gated function [u(t) — u(t — 1)]. For t > 1, the function may be regarded 8
I:l as 2t — 4 multiplied by the unit step function u(t — 1) . Thus, 03
val ral
o e
I§1 g(t) = 3u(=t) — 2[u(t) — u(t — D] + (2t — Hu(t — 1) ;§;
'8! '8!
Egi = 3u(—t) — 2u(t) + (2t — 4 + 2)u(t — 1) Eg
o 62
I§1 = 3u(—t) — 2u(t) + 2(t — Du(t — 1) = 3u(—t) — 2u(t) + 2r(t — 1) I§1
'8! '8!
Eg One may avoid the trouble of using u(—t) by replacing it with 1 — u(t) . Then Eg
ral Pal
;§: g(t) = 3[1 — u(t)] = 2u(t) + 2r(t — 1) = 3 — 5u(t) + 2r(t — 1) ;§:
'8! '8!
E:i Alternatively, we may plot g(t) and apply Method 1 from Example 7. E:i
Pal 4
| HW.8:If ()
I? 0, t<0 ;§:
3 h(t) = 8, 0<t<?2 3
'8! T )2t+6, 2<t<6 '8!
'8! ’ '8!
'8! 0, t>6 '8!
::: express h(t) in terms of the singularity functions. :::
P
'8! '8!
o Answer: 8u(t) + 2u(t—2) +2r(t—2) —18u(t—6) — 2r(t — 6) . '8!
R &
* VA (3
'8! <=(22)> '8!
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e | Example 9: Evaluate the following integrals involving the impulse function: '8!
Ya! Yal
e 10 ral
D< <
& (t? 44t —2)5(t — 2)dt &
8 . S
3 J [6(t —1De tcost+ 6(t+ 1)e tsint]dt 3
A A
e —c rat
% Solution: '8!
e - rat
e rat
w For the first integral, we apply the sifting property in Eq. (4.9). a
D< <
A A
e rat
(10 rat
S Jo (2 +4t—2)8(t—2)dt=*+4t—2)|;=,=4+8-2=10 S
e rat
DX .- . <
2 Similarly, for the second integral, ¢
e ras
e rat
<IN rat
(3 j [6(t —1De tcost+ 6(t+ 1)e tsint]dt &
a J—oo ral
e ral
e ral
% =e ‘cost|i—;+eFsint|,—_; =e ' cos1+e’sin(—1)=0.1988 — 2.2873 = —2.0885 8
A A
e ral
al — ()
% | H.W. 9: Evaluate the following integrals: R
’;‘ 00 10 ';‘
(3 3 2 '8!
S (t°+ 5t +10)5(t + 3)dt, 6 (t — m) cos 3tdt 8
* o) 0 :%:
Pat -

62 8
Pat . Pat
& Answer: 28, —1. o
8 rat
'8! '8!
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! '8
'8! (3
'8! (3
'8! (3
'8! 3
'8 3
'8! 3
'8 3
'8! 3
'8 3
'8! 3
'8 3
'8! 3
'8 3
'8! '8
'8 3
'8! '8
'8 3
'8! 3
'8 3
'8! 3
'8 3
'8! 3
'8! 3
ha! A ral
% A ':‘
- O-0-0-0-O-O-O-0-O-O-O-O-O-0-O-O-O-O-O-0-O-O-0- - -0 O-O- RO Or-O-O--0-O-Or-O-O--O-O-Or-O- OO0 O-O-0-0-O-O-O-O-O-O-OAH
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5 ) Step Response of an RC Circuit *
e e
e L . rat
;3; When the dc source of an RC circuit is suddenly applied, the voltage or current source can ;3;
A A
# be modeled as a step function, and the response is kKnown as a step response. &
e e
* The step response of a circuit is its behavior when the excitation is the step *
* function, which may be a voltage or a current source. o
¢ The step response is the response of the circuit due to a sudden application of a dc voltage &
G2 G
& Or current source. &
e %
e %

% Consider the RC circuit in Fig.5.1 (a) which can be replaced by the circuit in Fig.5.1 (b), &
® where V is a constant dc voltage source. We assume an initial voltage V,, on the capacitor, &

Igl although this is not necessary for the step response. Igl
Yal _ R Pt
¢S R = Ny (3
e e
rad <
K . | + 3
P< fany I D<
»f: V () C = v I’_.".h'l:f’} = C=v 'g
o s o/ - — a
ral ral
s e
s e
s e
' (a) (b) 3
( - - - - - e
;:1 Fig.5.1 An RC circuit with voltage step input. '8!
o 62
'8! '8!
& &
’ - - -

;g Since the voltage of a capacitor cannot change instantaneously, ;?
'8! '8!
& v(07) =v(0h) =V, (5.1) &

G - . . . . - . )

I:i where v(07) is the voltage across the capacitor just before switching and v(0%) is its .:1
’a! . . . . . ral
% voltage immediately after switching. Applying KCL, we have 3
&3 &3
'8! '8!
& dv v—TVu(t) &
® (—+—o = o
& dt R s
'8! '8!
'8! '8!
e dv v |74 !
at o — _——

$ "t TrRe rCHW (52) %
3 3
Igl where v is the voltage across the capacitor. For t > 0, Eq. (5.2) becomes »:1
ral Pal
§ L v _ Vs e
::1 dt ' RC RC (5.3) ::1
< i i <
% Rearranging terms gives 3
3 VA «
Dy
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& dt RC &
'8! '8!
§ v __dt
€ " L_V_ RC (54) &
e S
R . . . . i ey iy <
Igi Integrating both sides and introducing the initial conditions, »31
o v(t) ¢ 3
s (=Y = -l s
& 0 RC K
e s
< t <
e INnw@®) -V)—-InVy—-V,)=——+0 &
s RC s
s S
§ In v = e (5.5) :gi
% Taking the exponential of both sides 3
s s
g v -V, 3
§ ——=e"", T=RC 3
w Vo — s e
e s
:;: -t/T :;:
& v=Vo= (Vo —We &
'8! '8!
& _t &
¥ v =V (p—V)e >0 (5.6) %
& Thus, 8!
'8! '8!
o v, £<0 3
% v(t)={ 0 (5.7) %
K3 Vot Vo —V)e™*, t>0 e
& This is known as the complete response (Or total response) Of the RC circuit to a sudden &
'8! p Sp Sp '8!
;:: application of a dc voltage source, assuming the capacitor is initially charged. The reason ;3:
&3 . ) . . &3
::} for the term “complete” will become evident a little later. Assuming that V; > V,,, a plot of ::}
& v(t) is shown in Fig.5.2. &
'8! '8!
8 .. . . e
;:j If we assume that the capacitor is uncharged initially, we set V, = 0 in Eq. (5.7) so that ;:j
Pal ) Pal
S () = . (5.8) ¥
(3 Vi(@—e "), t>0 s
{ . . . 4
& Wwhich can be written alternatively as e
'8! '8!
'8! _ '8!
8 v(t) = V(1 —e™/"u(r) (59) &
::j This is the complete step response of the RC circuit when the capacitor is initially ;:j
P . ] . . . cd 8!
;:: uncharged. The current through the capacitor is obtained from Eq. (5.8) using i(t) = d—tv. ;::
62 02
& We get &
'8! '8!
Pat Pat
R &
* vAg (3
& <(25)> &
&'X'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X'X'X%K'X'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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(2
3 ()= Cc®=Cye RC,t >0 &
ot = —_—= - T = P
E:i l dt T s€ % T ’ E:i
A A
§ o i) = Ze gt 5.10) %
g U0 = e (5.10) %
% Fi9.5.3 shows the plots of capacitor voltage v(t) and capacitor current i(t) . 8!
A A
:i: f’( T:l h o (!_) " .{:(f:] h :i:
0 B £ R — R &
e rat
e rat
e rat
e rat
e rat
e rat
& 0 t (a) (b) &
e ral
A - - . - - A
& Fig.5.2 Response of an RC Fig.5.3 Step response of an RC circuit with &
O . . . . e - . O
@ circuit with initially charged initially uncharged capacitor: (a) voltage (3
& capacitor. response, (b) current response. '8
o 2
o e
R e
o e
o e
I:l Rather than going through the derivations above, there is a systematic approach—or I:i
ral . . R . Pal
::: rather, a short-cut method—for finding the step response of an RC or RL circuit. Let us ;2:
&S . L L &3
;:j reexamine Eq. (5.6), which is more general than Eq. (5.9). It is evident that v(t) has two ;:j
& components. s
'8! '8
ral . R L. . . Pal
;:: Classically there are two ways of decomposing this into two components. The first is to ;3:
3 ., 5 . : .. 3
::} break it into a “natural response and a forced response’ and the second is to break it into a ::}
Yl . . . . g
::: “transient response and a steady-state response.” Starting with the natural response and forced :::
3 : 03
;:j (a) response, we write the total or complete response as ;:j
»
'8 3
(> Complete response = natural response + forced response '8!
% stored energy independent source ,:‘
»
'8 3
% or 3
'8 3
'8! '8
& v=v,—v '8!
& VT U Ty (5.11) &
Pat Pat
3 - _ 03
S where v, = V,e /" and vy = V;(1 — /%) (3
»
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s We are familiar with the natural response v, of the circuit, as discussed response, (b) ’a
& current response. in Section 2. v, is known as the forced response because it is produced by &

D< . . . . . . rad
:3: the circuit when an external “force” (a voltage source in this case) is applied. It represents :2:
8 . : . 8
¢ Wwhat the circuit is forced to do by the input excitation. The natural response eventually &
¢ dies out along with the transient component of the forced response, leaving only the &
ral el
:3: steady- state component of the forced response. :g:
A A
® Another way of looking at the complete response is to break into two components—one ®
Igl temporary and the other permanent, i.e., Igl
'8! '8
K3 o K3
rat Complete response = transient response + steady-state response at
’;‘ temporary part permanent part ’;‘
al Yal
o a
'8! S
& &
A A
val ral
::: UV ="V — Uss (5.12) :::
A A
s _ Pas
& where v, = (V, — V;)e /" and vg =V, &
& &
&3 , : . : 8
::j The transient response v, is temporary; it is the portion of the complete response that decays
I:i to zero as time approaches infinity. Thus, &
'8! S
::1 The transient response is the circuit’s temporary response that will die out with ::1
& | time. &
I:l The steady-state response v is the portion of the complete response that remains after the I:l
ral . . D<
% transient reponse has died out. Thus, 3
33 &
o : : —— : ®
I:i The steady-state response is the behavior of the circuit a long time after an I:i
¥ | external excitation is applied. &

ral - - - - - Pal
% The first decomposition of the complete response is in terms of the source of the
¢ responses, while the second decomposition is in terms of the permanency of the responses. g
% Under certain conditions, the natural response and transient response are the same. The ¢

I:l same can be said about the forced response and steady-state response. I:I
'8! '8!
ral . . . . Pal
;3: Whichever way we look at it, the complete response in Eg. (5.6) may be written as ;::
3 03
'8! '8!
& v(t) = v(o) + [v(0) — v(0)]e " (5.13) &
Igl where v(0) is the initial voltage at ¢t = 0% and v(o) is the final or steady- state value. I:I
ral . . . . . ral
::: Thus, to find the step response of an RC circuit requires three things: :::
3 03
'8! . : '8!
() 1. The initial capacitor voltage v(0) . 0>
R &
* VA (3
8! < = :Q:
Pal

'20X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X'PX'X'%K’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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P&

Pad . . DY
S 2. The final capacitor voltage v (o) . &
! 3. The time constant . &
el el
el &l

s We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from the circuit for ’g
® t > 0. Once these items are determined, we obtain the response using Eq. (5.13). This &

3 technique equally applies to RL circuits, as we shall see in the next section. (3
e e
e e
¢ Note that if the switch changes position at time ¢ = ¢, instead of at t = 0, there is a time 8
® delay in the response so that Eq. (5.13) becomes *
e e
e e
% v(t) = v(o) + [v(ty) — v(co)]e”7t0)/" (5.14) &
& Where v(¢,) is the initial value at ¢ = ts. Keep in mind that Eq. (5.13) or (5.14) applies *
& only to step responses, that is, when the input excitation is constant. 3
o al
¢ | Example 10: The switch in Fig.1 has been in position A for along time. At t = 0, the | &
¢ | switch moves to B. Determine v(t) for ¢ > 0 and calculate its value at t = 1s and 4 s. *
# Solution: For t < 0, the switch is at *
# position A. The capacitor acts like an K m 4 ,B 4“‘1 &
}X‘ . i i WO o L WO 1 ’x‘
' open circuit to dc, but v is the same 1=0 { '8
33 8
::1 as the voltage across the 5 — kn + L A *

: 24v () Q= ) —— (Fh30v &
& resistor. Hence, the voltage across 4V Skez v 0SmE )30V e
ral . . . Yl
::: the capacitor just before t =0 is '8
;:j obtained by voltage division as | ;:j
& 62
ral Pal
& &
;g Using the fact that the capacitor voltage cannot change instantaneously, ;?
'8! '8
& v(0) =v(07) =v(0*) =15V &
ral Pal
& &
;g For t > 0, the switch is in position B. The Thevenin resistance connected to the capacitor ;§j
& s Ry, = 4k(2, and the time constant is &
o T=RrC=4%x103%x05%x10"3=2s S
(S m (3
I : : . '8
I:l Since the capacitor acts like an open circuit to dc at steady state, v(c0) = 30 V. Thus, I:l
ral Pal
R 62
(3 _ - - 0
& v(t) = v(e) + [v(0) — v()]e t/t =30 + (15 — 30)e™%/2 = (30 — 15705V 3
'8 '8
& Att=1= v(1) =30— 1575 =209V &
Pat Pal
& &
S Att =4, v(4) = 30— 15¢72 = 27.97V 9
* VA 3
K3 <(28)> &
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¢ | H.W. 10: Find v(¢) for t > 0 in the circuit of Fig.1. Assume the switch has been open for |8
¢ | a long time and is closed at ¢t = 0. Calculate v(t) att = 0.5 *
® Answer: (6.25+ 3.75e %)V for all t > o *
a - <
% 0.7.63V. i X
A AT T A A
’al ey 1 PN _ ral
e 10V () v —— 3F L) 3V g
S T - R
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
al Yal
s s
s S
s S
® | Example 11: In Fig.1, the switch has been closed for a long time and is opened at t = 0. | &
® | Find i and v for all time. &
& Solution: The resistor current i can —0 &
DS . . . i = <
;i: be discontinuous at t = 0, while the 100 “73 ;31
# capacitor voltage v cannot. Hence, it ' &
& is always better to find v and then PN s T A%
e . 30u®)V () 200 v——3F (T )10y
s obtain i from v. e > N 8
62 8
'8! N : : '8!
E:i By definition of the unit step function, - ! Egi
62 8
'8! '8!
¥ 30 _ {0, t<o0 . %!
ral u(t) = Fig.1 ral
5 =130, t>0 J %
&3 &3
ral Pal
;g For t < 0, the switch is closed and 30u(t) = 0, so that the 30u(t) voltage source is ;?
I:l replaced by a short circuit and should be regarded as contributing nothing to v. Since the I:I
::1 switch has been closed for a long time, the capacitor voltage has reached steady state and ::1
val ) . X ) . . . . 8!
;:: the capacitor acts like an open circuit. Hence, the circuit becomes that shown in Fig.2 (a) ;::
&3 o . &3
::j for t < 0. From this circuit we obtain ::1
'8! '8!
'8! v 3
& v=10V, i=--—=-14 *
s 10 s
el 3
ral . . . Pal
::: Since the capacitor voltage cannot change instantaneously, :::
¢S 03
'8! '8!
& v(0) =v(07) =10V &
'8! '8!
Pat . - . . Pal
:& For t > 0, the switch is opened and the 10-V voltage source is disconnected from the :&
( ; . . . . ; . 4
;:: circuit. The 30u(t) voltage source is now operative, so the circuit becomes that shown in ;::
(- . o : : 8,
::j Fig.2 (b). After a long time, the circuit reaches steady state and the capacitor acts like an ::1
§ open circuit (b) again. We obtain v (o) by using voltage division, writing E:i
¢S 03
ha! A ral
(2 > O
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S 3
:21 v(0) = ———(30) = 20V 10Q _! %:
A A
A‘ ‘.}:. e e e
% The Thevenin resistance at the capacitor terminals is 20032 s (Dov B
& 10x20 20 |9~ &
$ Rpp=10[20= —_—="20 ' %
S 30 3 (a) s
¢ and the time constant is ; '8
& 100 _1 0
% A ""'v"-" i }E
(2 201 5 I M
% T=RppC=— =35 P Lo+ '8
& 3 4 3 30v (7)) 200%  v=—3F &
& Thus | | 4
% () = v(0) + [1(0) — ()] ©
A A
§ @ Fig.2 (a) for t<0, for t>0. §
& =20+ (10 — 20)e '5 &
kS = (20 — 10e~06t)V %
'8! '8
I:l To obtain i, we notice from Fig.2 (b) that i is the sum of the currents through the 20 — 2
& resistor and the capacitor; that is, &
< dv —0.6t —0.6t -0.6t '8!
o L =5+CE= 1—-0.5e7°" +0.25(=0.6)(—10)e "> = (1 + e "°)A s
'8! '8
'8! '8
::1 Notice from Fig.2 (b) that v + 10i = 30 is satisfied, as expected. Hence, ::1
'8! '8
ral Pal
I§1 {101/, t<0 . { 14, t<0 I§1
V= — l = -
e (20 — 10e7 %YV, t=>0 (1+e7 %4, t>0 K3
'8! '8
::1 Notice that the capacitor voltage is continuous while the resistor current is not. E::
'8! 8
'8! — —— . '8
I:j H.W. 11: The switch in Fig.L1 is closed at t = 0. Find i(t) and u(t) for all time. Note that I:I
& u(-t)=1fort <0andO0fort>0.Also, u(-t) =1—u(t). &
& Answer: _ o (3
02 F &
}.‘ 50 3
% i(t) = { ’2 1 15t A 0 - %
8! - e_ ) t > ’ P < e ha!
:? ( + ) 20u(-HV (T) r—=—— 02F 10Q = (4)3A :::
N _ = Ly O
() 20V, t<0 | | 3
e V= -15¢ - : el
& 101+e ™HY, t>0 (3
& &
5 Fig.1 it
& g- &
& 62
& &
* VA 3
Pal Pal
K30
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% 6) Step Response of an RL Circuit '8!

% Consider the RL circuit in Fig.6.1 (a), which may be replaced by the circuit in Fig.6.1 (b). s
® Rather than apply Kirchhoff’s laws, we will use the simple technique in Egs. (5.11) ¥

(3 through (5.14). Let the response be the sum of the transient response and the steady-state 63
ral el
% response, K
A A
=t g (6.1) &
e e
® We know that the transient response is always a decaying exponential, that is, 0
e e
% i, = Ae /" T==2 %
O ’ R (6.2) '8!
A A'
ral . . rad
::: where A is a constant to be determined. :::
A A
o al

® The steady-state response is the value of the current a long time after the switch in Fig.6.1 8
% (a) is closed. We know that the transient response essentially dies out after five time
& constants. At that time, the inductor becomes a short circuit, and the voltage across it is ras

e zero. The entire source voltage V; appears across R. Thus, the steady-state response is '8!
A A
e s
. Vs '8!
% TR (63) %
Ig Substituting Egs. (6.2) and (6.3) into Eg. (6.1) gives e
val ral
ral . —t/T s ral
8 =AY (6.4) %
& &
’ - - - - . - - -
;:: We now determine the constant A ffom the initial value of i. Let I, be the initial current ;3:
33 : : : &3
::1 through the inductor, which may come from a source other than V. Since the current ::1
I:l through the inductor cannot change instantaneously, I:i
. e (
& 1(07) =1i(07) =1y (6.5) &
'8! '8!
% Thus, at ¢t = 0, Eq. (6.4) becomes '8!
o &
Pal Pal
X h=A+-= &
& 0 R &
R 62
' From this, we obtain A as '8
R 62
R &
G2 Vs 62
3 A=1] —= 03
'8! 0 '8!
(s R (s
Pal Pal
o N . 62
% Substituting for 4 in Eq. (6.4), we get &
o 62
'8! '8!
Pal Pal
G2 A 02
R e &
2 p Sy s
'2'X'X'X'X'X'X'X'X'X'X'X'X'X'X'X’X’X’X’X’X’X’X’X’X'X’X’X’X’X’X’A'X’i’X’A'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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>‘1

S i =% Uy =Byt 6.6) ¥
§ O =7+U—e (6.6) %
& R R 2
< . T - N <
:3: This is the complete response of the RL circuit. It is illustrated in Fig.6.2. The response in :2:
A . O
§ Eq. (6.6) may be written as E:i
A A
< . . . _ e
$i(0) = i(e0) + [1(0) — i(e0)]e ™" 67) %
::: i(f) & %:
& R R Iy 3
E:i AN l E o ATATATS l E E:i
:21 =0 4 1 L+ , :::
e V(D) L2 o) v (T) L 2 o) e B &
:;: A _.:_ S ' :;:
(@) ©) 0 T
e s
s s
val . . . . . ral
3 Fig.6.1 An RL circuit with a Fig.6.2 Total response of &
A . . . cl e e O
o step input voltage. the RL circuit with initial ¢
& inductor current I, 63
& &
'8! '8!
'8! '8!
S
::1 where i(0) and i(oo) are the initial and final values of i, respectively. Thus, to find the »ﬁ:
Yal . ) . ) Yal
;:: step response of an RL circuit requires three things: ;::
&3 &3
(3 o s
I:l 1. The initial inductor current i(0) att = 0. I:l
'8! '8!
ra! . . . ’al
;g 2. The final inductor current i(c) . ;?
'8! _ '8!
& 3. The time constant . &
'8! '8!
S . : N : - 8
;:j We obtain item 1 from the given circuit for t < 0 and items 2 and 3 from the circuit for ;:j
I:l t > 0. Once these items are determined, we obtain the response using Eq. (6.7). Keep in I:I
Pal . B - B Pal
% mind that this technique applies only for step responses. :&
Pal 4
3 03
Pat Pal
&S — L : : 03
¢ Again, if the switching takes place at time t = ¢, instead of t = 0, Eq. (6.7) becomes (S
% i(6) = i) + [i(tg) — i(e0)]e~Ct)/7 (6.8) %
&3 — &3
w IfI, = 0, then <
&3 0 03
'8! '8!
'8! '8!
;:: 0, t<O0 ;::
al g — Pat
s i(t) =1V _ 6.9a) ¢
Pal Pal
¢S 03
ha! A ral
(2 o= O
Pal Pal
S =(32)> 03
:f'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’%K’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X"s
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s Or el
e al
e al
< V. _ rat
% (1) =2 (1—e Mu(t) (6.9b) g
8 8
% This is the step response of the RL circuit with no initial inductor current. The voltage ¥
"a A
< . . . . i 24
& across the inductor is obtained from Eq. (6.9) using v = Ldi/dt. We get 2
e e
al ) rat
:31 t)=1L di v L -t L t>0 %
¢ v(t)=L—=V,—e ", 1=—, 2
& dt 1R R ®
e e
e e
e OrF e
o al
o al
\/ _ _t \ /
& v(t) = Vee u(t) (6.10) &
- : S
8 Fig.6.3 shows the step responses in Egs. (6.9) and (6.10). '8!
Yal "al
8 8
:g i(f) A (1) A *
P2l ral
& L 14 o
o - 5 al
3 R 3
& &
&3 8
'8! S
'8! '8
33 &
ral L [ Pal
e 0 t 0 t g
& &
e (a) (b) 3
'8! '8
'8! '8

e Fig.6.3 Step responses of an RL circuit with no initial inductor current: (a) current rg

»

03
;:j response, (b) voltage response. ::1
3 &
o 62
o &
::1 Example 12: Find i(t) in the circuit of Fig.1 for t > 0. Assume that the switch has been I:j
& | Closed for a long time. I:I
® Solution: When t<0, the 3—0 resistor is =0 &
(s short-circuited, and the inductor acts like a short circuit. (s
;:: The current through the inductor at t = 0~ (i.e., just 20 30 ;g
} ‘ — . YWY L - } ‘
5 before t = 0) is l RL %
T : 10v (7)) Jin 8
% i(07)=—=54 Fig.1 =/ =37
3 2 03
(s | ¢
'8! 3
'8! 3
s} YAy '8!
Pal Pat
o 2 62
00DV DRVVRVVRV VRV VRVVVV VDLV VDOV VDDV VDLV VDDV VDR
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% &
:3: Since the inductor current cannot change instantaneously, '8
A A
e s
% 1(0) = i(0%) = i(07) = 54 3
A A
s When t > 0, the switch is open. The 2 — (2 and 3 — 2 resistors are in series, so that '8
A A
e S
s 10 &
al - Yal
e [(00)=——F==2A4 at
e 2+3 '8
e s
b . . i . : at
:i: The Thevenin resistance across the inductor terminals is ;3;
A A
e s
% Rpy=2+3=50 &
s s
= ] R
% For the time constant, 3
Al A'
(2 L 3 1 at
:;: T=—=—= — :;:
’i‘ RTh 5 15 ’%
e e
& Thus, 0
e s
§ i) = i(0) +[i(0) — i()]e V"
s s
'8! '8!
al al
:g =2+ (5—-2)e 15t =2 +3e71504,t > 0 S
& . - : '8
::1 Check.- In Fig.1, for t > 0, KVL must be satisfied; that is, I:I
s 3
::: 10=5i+1L di '::
'8! =l = '8!
8! dt !
'8! '8!
ral Pal
::: : di —15¢t 1 —-15t :::
& 51+LE= [10 + 15e~ '] + [§(3)(—15)e ]=10 &
'8! '8!
S 3
& This confirms the result. &
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
P . ; ; . . . s
::: H.W. 12: The switch in Fig.1 has been closed for a long time. It opens at t = 0. Find i(t) :::
O .
» )

% fort > 0. — ,:j
% Answer: (6+3e ") Aforallt > 0. . '8!
K9 ' 15H e
;.‘ r .:( .:f .:{ “ ;d
K K
'8! '8!
e h (>
® 5Q < | t=0 <10Q (4)9a 8
s 1 3
< (3
o - 62
% Fig.1 %
'8! ' '8!
Pal Pal
(< vAg s
Pal Pal
3 <(34)> K3
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S . — : . . 5
¢ | Example 13: Att = 0, switch 1 in Fig.1is closed, and switch 2 is closed 4 s later. Find 03
¢ | i(t) for t > 0. Calculate i for t = 2s and t = 5s. *
¢ Solution: We need to consider the three time 03
& intervals t < 0,0 <t < 4, and t > 4 separately. For 0 90 L so &
W - . ANAA - AAAA "‘
% t <0, switches S; and S, are open so that i = 0. W YW l &
O . . . 2 I O
# Since the inductor current cannot change instantly, 14 &
e = rat
a' rA— . .t P < 8!
ol (07)=i(0)=i(0") =0 40v () 20 < S 5SH g
’X‘ oy :_'_-__ —_'- %
'8! : & '8!
® For 0 <t<4, S is closed so that the 4 — 2 and 10v(2) ®
& 6 — 0 resistors are in series. (Remember, at this JI_ 0
DB . ) D<
% time, S, is still open.) Hence, assuming for now that = &
2 i . O
# Sy is closed forever, Fig.1 &
e e
e s
< 40 8
K &
A
& L 5 1 &
:%: T=—=—=—-39 :e:
8 Rrp 10 2 &
'8! '8!
Pat Pat
% Thus, 8!
'8! '8!
R : : : -t/ -2t -2t :f:
e [(t) = i() + [i(0) — i(0)]e =44+ (0—4e " =4(1-e""HA0<t <4 R
val Pal

s Fort > 4,5, is closed; the 10-V voltage source is connected, and the circuit changes. This ¢

'8! _ '8
I:j sudden change does not affect the inductor current because the current cannot change I:j
= == . )
& abruptly. Thus, the initial current is &
'8! '8
C. e _ '8
::} i(4)=i(4")=4(1—-e8) =44 ;:j
'8! '8
ral B . - - . Pal
::: To find i(o) , let v be the voltage at node P in Fig.1. Using KCL, :::
02 2
Eg 0-v 10-v_U 180 ;g
=— 0 V= — !
& 4 2 6 11 &
'8! '8
Pal Pal
% (o) =2 =20 _ 27274 3
w L(O0) =—=—= L. <
0 6 11 S
::: The Thevenin resistance at the inductor terminals is ;::
s 4x2 22 s
& Rrp=4l2+6=——+6=—0 &
02 6 3 02
3 03
'8! '8
% and 3
o an (3
Pal Pal
e SAo o
O
( 4
'20X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A'X’i’X%K'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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el 8

e e
e e
s Hence, g
Ya! Yal
& 1(t) = i(0) + [i(4) — i(x)]e =¥/t > 4 3
& &
3 : : : &
e We need (t — 4) in the exponential because of the time delay. Thus, '8!
e 8!
8 o 15 "8
s i(t) =2.727 + (4 —2.727)e "D/ =2 '8
) 22 O
A A
(3 = 2.727 + 1.273e714667(t=% ¢ > 4 &
% Putting all this together, &
& &
A\ A
(3 0, t<0 (3
S (1) =41 -e™), 0<t<4 3
& 2.727 + 1.273e714607(t=0 ¢ >4 5
'8 '8
& &
:ij Att =2, ::}
¥ ' 3
s i(2) =4(1-e*)=3.934 s
& &
& R
& Att =75, '8!
ral Pal
I§1 i(5) = 2.727 + 1273714667 = 3,024 I§1
& &
& &
::1 H.W. 13: Switch S; in Fig.1 is closed at t = 0, and switch S, is closed at t = 2s. ::1
::1 Calculate i(t) for all t. Find i(1) and i(3) .

& Answer:

>.1

ral

::: 0, t<o0

§ i(t) ={2(1—e™%), 0<t<2

8 —5(t-2

K 3.6 —1.6e "D, t>2

>.1

- . 1

¢ (1) =1.99974,i(3) = 3.5894. 6a ()

::: 3

>.1

>.1

>.1

>.1

>.1

>.1

>.1

>.1

::: A

& <(36)>

OO
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'8} ?o '8!
'8! [Ltectute () D randient &
Pal

o 1) Introduction '8!
¢ In the previous lecture we considered circuits with a single storage element (a capacitor or '8
¢ an inductor). Suck circuits are first-order because the differential equations describing them are first- 8,
® order. In this lecture we will consider circuits containing two storage elements. These are 8,
& known as second-order circuits because their responses are described by differential equations that contain §;
8 second derivatives. '8!
¢ Typical examples of second-order circuits are RLC circuits, in which the three kinds of 8
¢ passive elements are present. Examples of such circuits are shown in Fig. 1.1(a) and (b). &
8 Other examples are RL and RC circuits, as shown in Fig. 1.1(c) and (d). It is apparent from &
¢ Fig. 1.1 that a second-order circuit may have two storage elements of different type or the same type 8,

E:i (provided elements of the same type cannot be represented by an equivalent single element). §
A A
& | A second-order circuit is characterized by a second-order differential equation. It | %
# | consists of resistors and the equivalent of two energy storage elements. &
& &
’.‘ VY ’e‘
& R
’:‘ Py e - ) ’;‘
'8 7 (2) C — i 'x*,i R< C=/— L= 8
& g T 02
& 02
& 02
& 62
0 (a) (b) '8
& R R, R o
& 1 2 02
& . 02
ral Py = — ) I e D<
::: 't: W Ll :: I'E = jl'l'- I\._*_.-f'l T ¢ 1 Cl T :::
& &
& &
& &
e (c) (d) e
'8! '8
- . - : - 3
& Fig. 1.1 Typical examples of second-order circuits: (a) series RLC circuit, (b) parallel RLC %
% circuit, (c) RL circuit, (d) RC circuit. (>
02 02
'8 '8
'8! '8
'8 '8
'8! '8
'8! '8
'8! '8
'8 '8
'8! '8
'8! '8
'8! SAg 3
(3 <(1)> (3
! e, 23

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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o 2) Finding Initial and Final Values 8!
s There are two key points to keep in mind in determining the initial conditions. First—as s

¢ always in circuit analysis—we must carefully handle the polarity of voltage v (t) across the &

ral

% capacitor and the direction of the current i(t) through the inductor. Keep in mind that v and

al

s i are defined strictly according to the passive sign convention. Second, keep in mind that %

rat

® the capacitor voltage is always continuous so that o
(2 +\ — - (2
: v(0™) = v(07) (2.1a) Eg
% and the inductor current is always continuous so that &
ot . + " — (2
& 1(07) =1i(07) (2.1b) %
A A'
# where t = 0~ denotes the time just before a switching event and t = 0* is the time just 3
o . . . . . <
& after the switching event, assuming that the switching event takes place at ¢ = 0. &
s s
# Thus, in finding initial conditions, we first focus on those variables that cannot change &
§ abruptly, capacitor voltage and inductor current, by applying Eq. (2.1). The following §
% examples illustrate these ideas. o
'8! '8!
'8! '8
I:: Example 1: The switch in Fig.1 has been closed for a long time. It is open at t = 0. Find: | &
val . . . Pal
o | (@) i(07), v(0™), (b)di(0™)/dt, dv(0™)/dt, (¢)i(e0), v(<) . 3

- A
¢ Solution: _ _ 10 i 025H S
::: (a) If the switch is closed a long time before t = 0, it | :::
§ Mmeans that the circuit has reached dc steady state at r L8
ot =0.Atdc steady state, the inductor acts like ashort 12v (%) P oaF e g
::: circuit, while the capacitor acts like an open circuit, so ‘ =0’ - :::
::: we have the circuit in Fig.2 (a) at t = 0~. Thus, :::
a Fig.1 o
o 62
o 62
s o 12 I 3
o ((07) =——= =24, v(07) =2i(07) =4V '8!
(3 442 (3
o &
' 40 ! 40 ! 025H 4Q 1 8!
8! — — s
o 12v(F) 202, 12v (1) 01F = » 12v (1) v 8
:.: S = _ o _ S :‘:
s | | %
R -
(s (a) (b) ©) '
( . . . . . . 4
::: Fig.2 Equivalent circuit of that in Fig.1 for: (a) t = 07, (b)t = 07, (c)t - oo. :::
R &
R 62
R &
8 vAg 3
8 e Oiq 3
Q3 rTaaor (S

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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' As the inductor current and the capacitor voltage cannot change abruptly, 3
2 A
e S
Egi i(0Y) =i(07) = 24,v(0%) = v(07) = 4V §
2 A
'8! R : . N e
;3; (b) At t = 07, the switch is open; the equivalent circuit is as shown in Fig. 2(b). The same ;2:
2 A
# current flows through both the inductor and capacitor. Hence, 0
e e
< <
% ic(0%) = i(0%) =24 %
2 A
e S
® Since Cdv/dt = i;, dv/dt = i./C, and (3
e S
< <
& dv(0") ic(0Y) 2 %
* = = =20V /s '8
& dt C 0.1 (3
o K3
& Similarly, since Ldi/dt = v;, di/dt = v, /L. We now obtain v, by applying KVL to the %
E:i loop in Fig. 2(b). The result is §
2 A
s s
® —12+4i(07) +v,(07) +v(0F) =0 &
::1 v, (01)=12-8—-4=0 (3
'8! '8!
::1 Thus, ::1
'8! '8!
:.: 7 + + :%:
& ai(0¥) v, (07) 0 04/s &
ral — - - Pal
dt L 0.25 K3
s 3

i (C) Fort > 0, the circuit undergoes transience. Butas t — oo, the circuit reaches steady state g
% again. The inductor acts like a short circuit and the capacitor like an open circuit, so that the s

& I . '
I:l circuit in Fig. 2(b) becomes that shown in Fig. 2(c), from which we have ::j
% S
(3 ral
% () = 04,v(0) = 12V &
% S
% S
(3 — : : &
I:l H.W.1: The switch in Fig. 1 was open for a long time but closed at t = 0. Determine: (a) ::1
% L(0%), v(0"), (B)di(0)/dt, dv(0*)/dr, ()i(0), v (). 3
& Answer: (a) 1 4, 2V, (b)254/s, 0V/s, (c)64, ~ 1=0 03
s 12V, S
* 10 Q 04H 1 !
(Y ' 0>
(3 + (S
’.‘ = i P w
o 20 = VT F (Z)12ve
’.‘ < — M }“
(3 (S
% S
(3 : (S
(3 Fig. 1 e
% S
% S
< =

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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s | Example 2: In the circuit of Fig. 1, calculate: (a) i, (0%), v-(07), vz (0%),
e | (b)di, (0%)/dt, dv.(07)/dt, dvg(0™)/dE, (€)i (), V(), V() .

% Solution:
% (a)Fort <0, 3u(t) = 0. Att = 0 since the circuit
® has reached steady state, the inductor can be replaced

4Q

Fal=

..- +

—O——

3 A ! uoa () 203« osn
'8 by a short circuit, while the capacitor is replaced by T i 20V '8
O . . . . . . O
%' an open circuit as shown in Fig. 2(a). From this figure 3
'8! '8!
# we obtain Fig. 1 0
¢ i,(07) = 0,v2(07) = 0,v,(07) = —20V (L1 %

% Although the derivatives of these quantities at t = 0~ are not required, it is evident that
they are all zero, since the circuit has reached steady state and nothing changes.

e i a *f - b X
\/ VA - W B . N
£ L s [P |
@ & ) + };‘
:i: t_c ) + %]-" —— U +‘“\ :::
:g p 293 /_\ 3a(d) 203 % | - L 5 068 :::
%: \o) 20V () 20v &
s e
s - e
s e
s e
S @) (b) '8
ral i . .. . (2
o Fig. 2 The circuit in Fig. 1 for: (a) t = 0, (b)t = 0* S
'8! '8!
'8! '8!
'8! '8!
ral R L. R R ; . Pal
& Fort >0, 3u(t) =3, so that the circuit is now equivalent to that in Fig. 2(b). Since the g
. . &3
::1 inductor current and capacitor voltage cannot change abruptly, ::1

Pat
::: C 0t 0 + - ':‘
g 1,(07)=1,(07) =0, vc(07)=vc(07)=-20V (1.2) %
'8! '8!
'8! '8!
'8! N : : : '8!
::1 Although the voltage across the 4 — 12 resistor is not required, we will use it to apply KVL ::1

. . . . . »

E:i and KCL,; let it be called v,. Applying KCL at node a in Fig. 2(b) gives ::i
(3 Q3
Pal Pal
o + + O
) X
S 5 ve(0) (0 1y &
Pat . Pat
R 2 4 &
Pa i i i i i <
::: Applying KVL to the middle mesh in Fig. 2(b) yields :::
¢S 03
ral + + + _ ral
% —VR(07) +1,(0) +vc(0%) +20 =0 (14) ¥
'8! '8!
Pal Pal
8 vAg 3
K3 <(a )= &
'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’PX'X'%K'X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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Q3

Y

&

& : . - al
:% Since v (0*) = —20V from Eq. (1.2), Eq. (1.4) implies that ;g
e s
e s
¥ Vg (07) = v,(0%) (1.5) 3
e s
§ From Egs. (1.3) and (1.5), we obtain Egi
2 A
g s
§ v(07) = v,(0%) = 4V (1.6) §
2 A
b ) ) a4
% (b) Since Ldi, /dt = v, S
s s
8 diy(01) _v,(0%)
S dr L s
2 A'
'8 : . - . ¢
;2: But applying KVL to the right mesh in Fig. 2(b) gives :31
2 A
e s
% v.(0%) = (01 +20=0 %
2 A
& <
:21 Hence, >§:
K &
(2 A
e di, (0F '8!
E:i % —0 (1.7) E:i
(2 A
% Similarly, since Cdv¢/dt = i, then dvc/dt = ic/C. We apply KCL atnode b in Fig. &
val Pal
:g 2(b) to get i, :g
'8! '8!
Pal + Pat
:g vogf) ) _ i-(07) + i, (0) (1.8) :g
(. (3
§ Since v,(0%) = 4and i, (0%) = 0, ic(0%) = 4/4 = 1 A. Then E:i
R 8
’.‘ + . + "‘
o dvc(07) _ ic(07) 1 e
K3 = =05 = 2V/s (1.9) ¥
s dat C 0.5 e
(3 . (3
::1 To get dvg(0™)/dt, we apply KCL to node a and obtain ::1
S (3
::: 3 = Yr Yo :::
& 352 3
S (3
S (3
ral . . . . . ral
::: Taking the derivative of each term and setting t = 07 gives :::
. 8
'8! '8!
3 dvg(0*) | dv,(0F) '8!
s 0=2 + (110) ¥
o : o . '8!
I:l We also apply KVL to the middle mesh in Fig. 2(b) and obtain ::j
'8! '8!
Pat Pat
::: —vp+v.,+20+v,=0 :::
R 0
'8! : : I : : '8!
® Again, taking the derivative of each term and setting t = 0% yields (3
% 8
® vAg (3
»:< vy $

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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8

Y

8

Pal

’g‘ + + + '8!
s dvg(0T) dv.(07) dv,(07) '8
& - + + =0 0
0 dt dt dt %
'8! '8!
§ Substituting for dv.(07)/dt = 2 gives §
A A
e e
o dvg(0F dv, (0% '8!
o dt dt 2
e e
& From Egs. (1.10) and (1.11), we get *
o e
& dvg(0) ZV y &
o ————==V/s e
s dt 3 '8!
a! Ya!
& We can find diz (0")/dt although it is not required. Since vg = 5ig, &
o al
§ dix(0D) _ldve(0h) _12_2
§ dt 5 dt 53 15 (3
Yal "al
o al
# () Ast — oo, the circuit reaches steady state. We have the equivalent circuit in Fig. 2(a) &
& except that the 3-A current source is now operative. By current division principle, 0
o a
o a
'8! 2 S
o i (0)=——34=14 (1.12) &
K3 () =577 o
(3 4 (3
K3 Vg(00) = mSAxZ =4V, v¢(o) = —-20V *
'8! '8!
'8! '8
'8! '8
'8! '8
'8! '8
0 e s gl T 0
& | H.W.2: For the circuit in Fig. 1, find: (a) i, (0%), vc(0%), vg(0%) , (b) di, (07)/dt, &
ral . Pal
o L dvc(01)/dt, dvg(07)/dt, ()i (%), ve(®), V(%) . S
& Answer: (a) —64, 0,0, (b)0,20V /s, 0, (c) — 24, 20V, 20V. 02
'8! : '8
8! IR 4+ VR _ 3
'8! — ) '8
8 l ic 5Q l I g
'8! '8
5 . 0!
:.: i 1 - ~ ()
3 awiA (§) SF=F % L = 2H (4)6A 5
'8 ? ) / '8
& 02
S 03
'8 '8
'8! '8
02 02
3 : ®
'8! Fig. 1 '8!
3 ®
'8! '8
'8 '8
'8! '8
'8! '8
'8! A 3
'8! <(6 )= '8

Q- OV-O-V-O-O-O-O-O-0-O-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-O0-O0-0-O0-O0-0-O-O0-O0-0-O0-O-O- O OO0



RS O O OO OO OO
(2
» . . s . . .
&l University of Diyala Electrical Circuits
Wl Engineering College

'8 3) The Source- Free Series RLC Circuit '8!
. R

% Consider the series RLC circuit shown in Fig. 3.1. The circuit is being excited by the energy g

rat

¢ initially stored in the capacitor and inductor. The energy is represented by the initial &

0

® capacitor voltage V, and initial inductor current I,. Thus, att = 0, &
S v(0) = Ej idt =1V, (3.1a) &
'8! —c0 '8!
ral . O
. 1(0)=1 0
% 10) =1 (3.10)
}" - - - v<
% Applying KVL around the loop in Fig. 3.1, 62
a Pl
:f: di 1t :i:
DS . i . _ ;4
S Ri+L—+-[ idt=0 (32) %
’al

s R L s
% "'.\_-"-.L_-*-._.-*-_' f f f f % %
'8! — '8!
’al

A A
ral Pal
& (i) Vo = C 8
.
o 2
o e
o e
o e
;:j Fig. 3.1. A source-free series RLC circuit. :f:
& &
R 62
R 62
;:j To eliminate the integral, we differentiate with respect to t and rearrange terms. We get ;:j

i R di i

$ et Tate0 %
02 (33 %
Yal .. . , . . . o - . et
o This is a second-order differential equation and is the reason for calling the RLC circuits in this g

: . : : 3
% lecture second-order circuits. To solve such a second-order differential equation requires that ::1
Pal - ey .- - ey . . . . . - ey Pat
% We have two initial conditions, such as the initial value of i and its first derivative or initial

"a\ - .-, . . - - - - .-, . >‘
;3: values of some i and v. The initial value of i is given in Eq. (8.2b). We get the initial value ;::
3 . , : 03
::j of the derivative of i from Egs. (3.1a) and (3.2); that is, ::1
- di(0) s
s Ri(O)+L——+V;=0 8
'8! dt '8!
'8! '8!
'8! '8!
o O 3
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! vAg '8!
8 <% 5
8! i '8!

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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8

Y

8

:g: dai(o) 1 0
s L0 = LRI+ 1) B4 %
e e
¢ With the two initial conditions in Egs. (3.1b) and (3.4), we can now solve Eq. (3.4). Our &
a! Ya!
® experience in the preceding lecture on first-order circuits suggests that the solution is of &
D< . <
:3: exponential form. So we let ;g:
A A
e a
I — st Pat
$ = Ae (35 %
a! Ya!
% where A and s are constants to be determined. Substituting Eg. (3.5) into Eq. (3.3) and ¥
A A
R . . - . . <
® carrying out the necessary differentiations, we obtain &
e e
e e
8 AR A rat
(3 ASZeSt+—L se“+ﬁe“ =0 *
o al
O <
e Ae’*(s*+-s+—)=0 (3.6) ¥
R , L, ke : : : &
e Since i = Ae®* is the assumed solution we are trying to find, only the expression in &
'8! <
% parentheses can be zero: %
& &
’:‘ 2 R 1 ':‘
s s“+-s+—=0 (3.7) &
’al L LC Pal

® This quadratic equation is known as the characteristic equation of the formula to differential ¥
::1 Eqg. (3.3), since the roots of the equation dictate the character of i. The two roots of Eq. (3.7)

! 8
s are '8
3 8
8! S
& R R 1 02
§ s =——+ [()?2——= (3.83)
el 2L 2L LC e
(D R R 1 (2
ral _ 2 rat
! =——— [(5)2—-= 3.8b) ¢
::j 52 2L (ZL) LC ( ) ::j
. . )
& A more compact way of expressing the roots is &
rat Pad
3 8!
rat Pad
3 8!
rat — 2 _ 2 — _ 2 _ 2 rad
& [s1=—a+a?—ws s;=—a—a® = wg (3.9) %
! S
8! S
rat h Pal
A wnere K
3 3
3 8!
Pat Pat
k< 21’ 0 T VIc (3.10) e

%% The roots s; and s, are called natural frequencies, measured in nepers per second (Np/s) , &
% because they are associated with the natural response of the circuit; w, is known as the |
::: resonant frequency or strictly as the undamped natural frequency, expressed in radians per :::
s second (rad/s) ;and «a is the neper frequency or the damping factor, expressed in nepers per g
® second. In terms of « and w,, Eq. (3.7) can be written as 0

P< A <
X%
's! ST R, '8!
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8

s s“+2as+ w5 =0 (3.7a) 8
e 8!
'8! '8!
® | Notes: 0
e e
val . . . . . Pal
:3: 1) The neper (Np) is a dimensionless unit named after John Napier (1550— ;g:
:3: 1617), a Scottish mathematician. :g:
A A
! 2) The ratio a/w, is known as the damping ratio ( &
e e
ral . . . . . . rad
% The variables s and w, are important quantities we will be discussing throughout the rest :i«
ral al
3 of the lecture. 03
e e
® The two values of s in Eq. (3.9) indicate that there are two possible solutions for i, each of &
e L . . e
:2: which is of the form of the assumed solution in Eq. (3.5); that is, :2:
A A
o al
:i: il - Aleslt, iz B Azeszt (311) :i:
'8! 05
Yal "al
:2: Since Eq. (3.3) is a linear equation, any linear combination of the two distinct solutions i, ;2:
A A

¢ and i, is also asolution of Eq. (3.3). A complete or total solution of Eq. (3.3) would therefore 8

0

® require a linear combination of i; and i,. Thus, the natural response ofthe series RLC circuit

s e
CR '8!
& &
(O 8
& iD= Ajesit + A,eSt (3.12) ¥
I:i where the constants A, and A, are determined ffom the initial values i(0) and di(0)/dt I:i
< D<
% in Egs. (3.1b) and (3.4). 3
&3 &3
'8! _ _ '8!
I:j From Eqg. (3.9), we can infer that there are three types of solutions I:I
'8! '8!
ral Pal
s 1.1f a > w,, we have the overdamped case. 3
&3 &3
'8! '8!
& 2. 1f a = w,, we have the critically damped case. &
'8! '8!
'8! '8!
::1 3. If a < wy, we have the underdamped case. ::1
'8! '8!
< . A D<
::: We will consider each of these cases separately. :::
3 03
'8! '8!

® | Note: The response is overdamped when the roots of the circuit's characteristic | &
& | equation are unequal and real, critically damped when the roots are equal and real, | &

I:l and underdamped when the roots are complex. I:l
Pal Pal
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! vAg '8!
8 P OG 5
8! i '8!

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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8

K &
¢ Overdamped Case (a > wy) 8
a! Yal
'8! '8!
® From Egs. (3.8) and (3.9), « > w, implies C > 4L/R?. When this happens, both roots s; &
ral . . el
:3: and s, are negative and real. The response is :2:
A A
e e
§ i(t) = Ajesit + A,es?t (3.13) §
% which decays and approaches zero as t increases. Fig. 3.2(a) illustrates a typical overdamped &
ral rad
;% response. I;I
o e
e e
e e
e e
P o P
;g Critically Damped Case (a = wy) I;I
o al
® When a = w,, C = 4L/R? and 03
§ S1=s=-a=—— (3.14) %
o _ _ R
® For this case, Eq. (3.12) yields &
o al
ral Pal
’i‘ l(t) - Ale_at + Aze_at B A3e_at ’i‘
o a
o a

¢ where A; = A; + A,. This cannot be the solution, because the two initial conditions cannot 8
® be satisfied with the single constant A,. What then could be wrong? Our assumption of an Igi

s . . _ . .- . ’al
;:: exponential solution is incorrect for the special case of critical damping. Let us go back to ;2:
62 8
;:j Eq. (3.3). When a = wy, = R/2L, EQ. (3.3) becomes ;:j
ral ral
C QP T 3
S ad— a“l = O
& dt? dt 3
* 03
& or o
* 03
o &
® 4 di di &S
® —(—+ai —+ai) = : 03
& a G + ai) + a(dt +ai) =0 (3.15) %
s 1f we let S
* 03
'8} , 03
8! di , (>
o f=—ta (3.16) %
& then Eg. (8. 15) becomes :&
ral J
0 e
& df e
;:q a +af =0 %
* 03

% which is a first-order differential equation with solution f = A;e~%t, where A4, is a constant. 6

Pal Pal
3 _ 03
I:l Equation (3.16) then becomes I:I
& &
o di 62
S —+ai = Ae ™ S
T S
Pal Pal
3 03
3 VA 3
Y

(3 <(10)> 03

AR A

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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P‘

P‘:

Y

% Or o
s S
s S
s di . S
g e —+eTai=4 (3.17) &
A A
al . . ()
& This can be written as 8!
s S
s S
e d S
< at N\ <
§ D=4 (3.18) &
s S
s S
D< i i 1 <
K3 Integrating both sides yields S
& &
P% eati = Alt + AZ Pii
s S
g S
D< <
5 or
K &
= (At +Ay)e™* (3.19) %

& where 4, is another constant. Hence, the natural response of the critically damped circuit &
s s

% 1S a sum of two terms: a negative exponential and a negative exponential multiplied bya &

G2

' linear term, or '8
A A
e e
8 N — —at S
:g i(t) = (4, + A t)e (3.20) :g
! - — - — . - al
::: A typical critically damped response is shown in Fig. 3.2 (b). In fact, Fig. 3.2 (b) is a sketch :2:
) . _ . . _ . A
;:j of i(t) = te~*t, which reaches a maximum value of e™1/a at t = 1/a, one time constant, (3
I:l and then decays all the way to zero. *
val Pal
'8! '8!
'8! '8!
3 &
( i .

yzq 04 i(f) A ,:‘
'8! ‘ '8!
'8! '8!
K2 &
(> T (04 '#
'8! '8!
(> LTl '8
8 > ' — > s
s 0 " 0 1 t 0 b g s
'.‘ @ 2 '0‘
'8! 0 '8!
'8! ‘ '8!
'8! '8!
'8! (a) (b) (0 e
'8! e
Pat X
S Fig. 3.2 (a) Overdamped response, (b) critically damped response, (c) underdamped S
% response. &
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
0! '8!
Pal Pat
S vAg s
g
(> oveTaroY (>
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&

Y

s s
e Underdamped Case (a < wy) "
o 0 o
e rat
& Fora < w,, C < 4L/R?. The roots may be written as !
e ral
e ral
D <
% s;=—a+ [—(wf—a?)=—-a+] %
& 1= wy —a®) =—a+jw, (3.21a) &
'8! '8!
'8! '
& &
X Sy =—a— \/—(wé —a?)=—a—jwg (3.21b) &
e rat
e ral

3 where j = vV—1and wy = y/wZ — a?, which is called the damping frequency. Both w, and w4 '8

Al

¢ are natural frequencies because they help determine the natural response; while w, is often 8

Eg called the undamped natural frequency, w, is called the damped natural frequency. The natural Eg
&S - 3
E:i response IS E:i
(2 A
E:i i(t) = Aje~@ @)t 4 4, e~ (@tOt = g=al(4 gJ@al 4 A,e~I@at) (3.22) §
::: Using Euler’s identities, ::j
A . . Pat
o el = cosO +jsinf,e /% = cosf —jsinb (3.23)
& we get s
s i(t) = e “[A;(cos wat +j sin wgt) + Ay( cos wgt — j sin wgt)] ™ (3
é} = e "[(A; + Ay) cos wyt + j(A; — Ay) sin wgyt] (3.24) (3
I:j Replacing constants (4, + 4,) and j (4, — A,) with constants B, and B, we write :§1
3 '8!
ral ral
o i(t) = e *(B; cos wyt + B, sin w4t) (3.25) 8!

i With the presence of sine and cosine functions, it is clear that the natural response for this rg
%! case Is exponentially damped and oscillatory in nature. The response has a time constant of s

03 : . : : )
E:i 1/a and a period of T = 21 /w,. Fig. 3.2(c) depicts a typical underdamped response. [Fig. E:i
::: 3.2 assumes for each case that i(0) = 0.]. :::
o 02
&3 : : . &3
::1 Once the inductor current i(t) is found for the RLC series circuit as shown above, other ::1
I:l circuit quantities such as individual element voltages can easily be found. For example, the I:i
8! . . . . . rat
;:: resistor voltage is vy = Ri, and the inductor voltage is v, = Ldi/dt. The inductor current ;::
;gj i(t) is selected as the key variable to be determined first in order to take advantage of Eq. ;g
Pal Pal
& (2.1b). e
R &
3 03
E:i We conclude this section by noting the following interesting, peculiar properties of an RLC E:i
R : &
¢ network: '8!
R &
3 03
I:l 1. The behavior of such a network is captured by the idea of damping, which is the gradual I:i
Pat Pat
;:: loss of the initial stored energy, as evidenced by because of the inherent losses in them. the ;::
;gj continuous decrease in the amplitude of the response. The damping effect is due to the ;?j
::: VA :::
Dy

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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s presence of resistance R. The damping factor a determines the rate at which the response is s
¢ damped. If R = 0, then a = 0, and we have an LC circuit with 1/vLC as the undamped &

D< . . . . <
:3: natural frequency. Since a < w, in this case, the response is not only undamped but also :2:
A B . L. . .. . . O
¢ oscillatory. The circuit is said to be loss-less, because the dissipating or damping element (R) &
& is absent. By adjusting the value of R, the response may be made undamped, overdamped, 02
e e
& cnitically damped O undamped. *
e S
# 2. Oscillatory response is possible due to the presence of the two types of storage elements. &
e S

% Having both L and C allows the flow of energy back and forth between the two. The damped &
¢ oscillation exhibited by the underdamped response is known as ringing. It stems from the 8

Eg ability of the storage elements L and C to transfer energy back and forth between them. Eg

¢ 3. Observe from Fig. 3.2 that the waveforms of the responses differ. In general, it is difficult '8
& to tell from the waveforms the difference between the overdamped and critically damped ¥
¢ responses. The critically damped case is the borderline between the underdamped and &
s overdamped cases and it decays the fastest. With the same initial conditions, the overdamped &
¢ case has the longest settling time, because it takes the longest time to dissipate the initial 8
® stored energy. If we desire the response that approaches the final value most rapidly without %
::1 oscillation or ringing, the critically damped critically damped circuit. circuit is the right g

< i <
% choice. o
(3 8

E:i Example 3: InFig.3.1,R = 400, L = 4H,and C = 1/4 F. Calculate the characteristic roots E:i
& | of the circuit. Is the natural response overdamped, under- damped, or critically damped? e

s Solution: We first calculate 8
s R _40 1 1 ) &
ral e E — — — <
. a = - - ) (1)0 —_ _ —_ ‘
::: 2L 2(4) VI.C 1 :::
S 4x7 S
(3 (S
(3 (S
(3 (S
s The roots are S
& | &
§ Sip=—at |a?—-wf=-5+V25—1 (3
Pas ’ [
(3 (S
s or e
K (3
& 51 =-0101, s;=-9.899 3
8! at
R 9
" . .. ) P
;3: Since a > wg, we conclude that the response is overdamped. This is also evident from the ;2:
2 - 8
::j fact that the roots are real and negative. ;::
8! at
K (3
& (3
'8! Ayg %!
B <(13)> S
* AR 23
- - 0-0-O-O-O OO -O-O-OXOXORRHO-OXOXOXRHO-O-OROXOX R O-OXOXO-O-O-O-O-OROSOXO-O-O-O-ORO-OOR-O-ORO-O-O-O-O-O-OORRK
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"al . . - ¢
¢ | HW.3:If R =100, L = 5H,and € = 2mF in Fig.3.1, find &, w,, 51, and s,. What type | &
¢ | of natural response will the circuit have? o
®  Answer: o
% Answer: 1, 10, —1 + j9.95, underdamped. '8!
a! Ya!
e S
e e
e S
e e
e S
® | Example 4: Find i(t)in the circuit of Fig.1. Assume that the circuit has reached steady 0
e - S
& | stateatt = 0", 03
e - S
w Solution: e
& Fort < 0, the switch is closed. The capacitor acts like an open circuit while the inductor &
g : . . . o g
;2; acts like a shunted circuit. The equivalent circuit is shown in Fig.2(a). Thus, att = 0, ;2;
A A'
s S
'8! 10 S
$ i(0)=——=14, v(0)=6i(0) =6V &
03 4+6 '8
A A
s : i : : N s
;2: where i(0) is the initial current through the inductor and v(0) is the initial voltage across ;2:
8 : 8
® the capacitor. &
::: For t > 0, the switch is opened and the voltage source is disconnected. The equivalent :::
&3

¢! circuit is shown in Fig.2(b), which is a source- free series RLC circuit. Notice that the 3.2 8
® and 6.2 resistors, which are in series in Fig.1 when the switch is opened, have been combined 8

::1 to give R = 902 in Fig.2(b). The roots are calculated as follows: ?1
& 3
ral Pal
A== —= , Wn = = =
x 2L “TVIC 1.1 3
8 2 5 X Th S
R 62
o 02
62 &
& si2=-at /az—w§=—9i\/81—10 = —9 + j4.359 03
ral Pal
o 62
62 8
E:i Hence, the response is underdamped (a < w) ; that is, E:i
o &
62 0
& i(t) = e (4 cos 4.359t + A, sin 4.359¢t) 1 &
'8! . : . . '8!
I:l We now obtain A, and A, using the initial conditions. Att = 0, ::1
'8! '8!
C '8!
:g From Eq. (3.4), :?
S - :
- = —Z[RL(O) + v(0)] = -2[9(1) —6] = —64/s 3)
o 62
R &
(< SAg 9
S <(1a)> (3

AR A

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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Pad . . . . . . /
;3; Note that v(0) =V, = —6V is used, because the polarity of v in Fig.2 (b) is opposite that ;2:
&3 . . . o 8
# in Fig. 3.1. Taking the derivative of i(t) in Eq. (1), 0
e e
< e
§ = = —9¢™ (4; cos 4359t + 4, sin 43590) + e~ (4:359)(~A; sin 4.359t + 4, cos 4.359¢) ;}
A A
e a
e : . : a
;% Imposing the condition in Eq. (3) at t = 0 gives I;I
e e
Egi —6=—9(4; + 0) + 4.359(—0 + 4,) Eg;
A A
< <
% But 4; = 1 from Eq. (2). Then &
A A
e e
& —6=-9+4.3594, = A, = 0.6882 *
o al
3 Substituting the values of 4, and A4, in Eq. (1) yields the complete solution as *
o al
g} i(t) = e %( cos 4.359t + 0.6882 sin 4.359t)4 §
A A
(2 40 = ! 2
'8! i N \-_l-_-* . T 002F — ¢ I '8!
::j } 0.02F T v Zen 10V (1) v26Q o - 2 osu &
o 10V (7) T i N 3% S
ral — - <
::: 3Q = = 05H :::
' | | b &
::: @) (b) :::
. . . . . »
E:i Fig.1 Fig.2 The circuit in Fig.1: (a) fort <0, (b) fort > 0. ::3
33 &
03 " g
I:l H.W. 4: The circuit in Fig.1 has reached steady state at t = 0~. If the make before-break I:I
I:l switch moves to position b at t = 0, calculate i(t) fort>0 I:I
< - D
::: Answer: e~25t( 5cos 1.6583t — 7.5378 sin 1.6583t)4 ;::
33 &
(3 1 '8
ral =F Pal
S 10Q p 0 S
e WM { e e
'8! _ '8
K3 1 lio 1 63
Kl e o = bt
(2 S0V (1) =50 ()
% W =t = %
3 31 3
& ’ 62
& &
::j Fig.1 ::j
& &
& 02
3 ®
'8! VA 3
8 5% s
'8! Ty, '8

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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< , , Pal
:i: 4) The Source-Free Parallel RLC Circuit :3:
A A
e %
& Parallel RLC circuits find many practical applications, notably in communications networks 0
= ) . &
w and filter designs. 5
Ig: Consider the parallel RLC circuit shown in Fig.4.1. Assume initial inductor current I, and Igl
§ initial capacitor voltage Vo, §
A 0 A
Pa . 1 S
g 1(0)=1I,= Zj v(t)dt (4.1a) &
e oo %
'8! '8!
& v(0) =V, (4.1b) %
e %

¢ Since the three elements are in parallel, they have the same voltage v across them. According &

0

¢ to passive sign convention, the current is entering each element; that is, the current through '8

0

¢ each fleinent IS Ieavailng the top node. Thus, applying KCL at the top node gives *
<IN v ral
§ —+ o vdt+C—=0 (4.2) §
O . . . . e .. . O
(3 Taking the derivative with respect to ¢t and dividing by C results in *
(R S K3
& dtz ' Rcdt  LC (43)
s s
# We obtain the characteristic equation by replacing the first derivative by s and the second ¥
I:l derivative by s2. By following the same reasoning used in establishing Eqs. (3.3) through %
"8 .. . . . Pal
% (3.7), the characteristic equation is obtained as R
% 2, 1 1 S
ral _— _— = Pal
(3 STt S te=0 (4.4) :&
'8! . : 3
::1 The roots of the characteristic equation are ::1
'8! '8!
(3 1 1 1 (3
::: S, =———=1= (—2—— (45) :::
e ’ 2RC 2RC LC '8!
& &
& Oor 02
o 62
o | S12 = —at [a® —wg (4.6) ¢
& &
o &
& where &
R &
1 1
w | =—, Wy = —— P
::: SRC 0 TC (4.7) :::
62 62

%' The names of these terms remain the same as in the preceding section, as they play the same g
% role in the solution. Again, there are three possible solutions, depending on whether a > 8

Pat

&3 _ 03
I:l Wy, & = Wy, OF @ < w,. Let us consider these cases separately. I:l
Pal Pal
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
& Vit &
Y

K3 <(16)> &

AR R

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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2 &
A A
e v ral
'8! ¢ '8!
R
'8 3
'8 . , + 8
rat

’:‘ R = v L= l Iy » C—F " ’:‘
'8! - '
'8! '
'8! - - '
'8! '
'8! '
'8! L '
'8! = '
& Fig.4.1 A source-free parallel RLC circuit. 0
'8! '8!
'8 '
'8 3
'8 '8
& Overdamped Case (a > w) &
’al - . .

:2: From Eq. (4.7), @ > w, Wwhen L > 4R2C. The roots of the characteristic equation are real :2:
2 : . 8
;:j and negative. The response is ;:j
& [ v(t) = Aje"tt + Ajet 4.8) %8
'8 ' 3
&3 8
& Critically Damped Case (a = w,) *
::: For a« = wy, L = 4R%C. The roots are real and equal so that the response is '8
3 03
s 3
& | v(t) = (A4, + At)e™™ (4.9) &
& &
R 02
o 02
;:j Underdamped Case (a < wy) ;:j
'8! _ '8
I:i When a < wg, L < 4R?C. In this case the roots are complex and may be expressed as I:i

— 4 )

& Sz =—axtjwg (4.10) ¥
o &
R &
% where 0>
3 03
'8 3
'8! = w2 — 2 3
g Wa = [Wo (4.11) (3
® The response is 3
S P S
(2 — ,—at : (2
s | v(t) = e” " (A cos wgt + A sin wgt) (4.12)
'8 3
'8! 3
'8 3
'8! (3
'8 3
'8! VA '8!
8 <% 5
8! T '8!

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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s The constants A; and A, in each case can be determined ffom the initial conditions. We %
e need v(0) and dv(0)/dt. The first term is known from Eq. (4.1b). We find the second '8!

§ term by combining Egs. (4.1) and (4.2), as §
A A
D< <
& Vo dv(0) S
® —+I+C =0 ®
% R dt rat
e ral
s or rat
e rat
D< <
¢ dv(0) (Vo +RIy) @13 S
s dt RC ' '8
al Yal
< .. . . . <
:2: The voltage waveforms are similar to those shown in Fig. 3.2 and will depend on whether :i:
¢ the circuit is overdamped, underdamped, or critically damped. *
e ras
$ Having found the capacitor voltage v(t) for the parallel RLC circuit as shown above, we &
e ral

¢ can readily obtain other circuit quantities such as individual element currents. For example, ’a
'8 the resistor current is i, = v/R and the capacitor voltage is v, = Cdv/dt. We have selected &
& the capacitor voltage v(t) as the key variable to be determined first in order to take &
¢ advantage of Eq. (2.1a). Notice that we first found the inductor current i(t) for the RLC ra
¢ series circuit, whereas we first found the capacitor voltage v(t) for the parallel RLC circuit. 8

ral rat
s 8
'8! 8!
'8! 8!
'8! 8!

\/

® | Example 5: In the parallel circuit of Fig. 4.1, find v(t) for t > 0, assuming v(0) = 5V, | ¥
% |i(0)=0,L=1H,and C = 10mF. Consider these cases: R = 1.92302, R =5, and R = | &

& 6.250. 3
& Solution: *
& CASE LIfR =1.9230, &
8! 1 1 (3
o= = =26 '8
& 2RC  2%x1.923x10x1073 el
o] '8!
$ 0y = = . =10 3
ral 0o— = = <
I§1 VLC  V1x10x1073 :g
. o , - '8!
::1 Since a > wy in this case, the response is overdamped. The roots of the characteristic ;:j
& equation are *
o '8!
o '8!
o 2 '8!
® s, =—at |a?—wi=-2,-50 '8!
& 9
o '8!
& : . 3
Ig and the corresponding response is &
o (3
® VA '8!
o <(18)> (3

AN

>
X
M
M
M
M
M
M
M
M
M
M
M
M
B
M
M
M
M
M
M
M
M
M
M
i
i
i
i
i
i
Ry
X
Ry
Ry
Ry
I
:’:
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
’Y
X
X
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:g: —2t —50¢ (>
3 v(t) = Ase + Ae (1) :g
e S
§ We now apply the initial conditions to get A; and A4,. §
A A
D< <
& v(0) =5=4; +4, @ %
e e
§ dv(0) ~ v(0)+Ri(0) 5+4+0 _ 260 §
& dt RC 1.923x10x10-3 3
A A
D< <
;% But differentiating Eq. (1), ;g
e S
s dv '8!
o - _ _ -2t _ —-50t S
::: dt 2Ale 501426 :::
A A'
w Attt =0 S
s ’ s
s s
& —260 = —24; — 504, 3) &
s s
val Pal
;g From Egs. (2) and (3), we obtain A; = —0.2083 and A, = 5.208. Substituting 4, and A, ;%
¢ in Eq. (1) yields E§1
ral Al
ral Pal
% v(t) = —0.2083e72t 4 5.208e 750t (4) &
ral al
o e
'8! '8!
'8! '8!
ral al
% CASE 2 When R = 50, S
&3 &3
'8! '8!
¢ 1 1 (3
& a= = =10 &
% 2RC ~ 2x5Xx10x1073 %
&3 &3
’a! . . . . .y ral
::: while w, = 10 remains the same. Since a = w, = 10, the response is critically damped. ;::
&3 &3
;:j Hence, s; = s, = —10, and ;:j
'8! '8!
< _ D
:g v(t) = (A1 + Ayt)e %" (5) :?
'8! . " '8
::1 To get A; and A,, we apply the initial conditions ::1
'8! '8!
Pat Pat
I? u(0) =5=4 (6) ;i:
'8 . '8!
::j dv(0) _v(O) + Ri(0) B 540 100 ::j
& de RC 5x10x1073 &
'8! '8!
& But differentiating Eq. (5), K
'8! '8!
'8! '8!
o dv 3
:.: - = (_1OA1 - 10A2t + Az)e_lot :.:
& dt 62
3 vAg 3
K3 <(19)> &

AR A

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘



22000V OOOOOOOOOOOOOOOOOOOOOOO VOOV VOOV OON

(3

:: University of Diyala Electrical Circuits

8] Engineering College

8

Y

3

:s Ya!
s Att =0, rat
'8! '8!
'8! '8!
% —100 = —104, + 4, 7) 8
e S
D< <
;% From Egs. (6) and (7), A; = 5and A, = —50. Thus, I;I
e e
& v(t) = (5—500)e 0ty 8) &
'8! '8!
'8! '8!
A A
e S
& CASE 3 When R = 6.251, &
S S
< <
S 1 1 6 &
e a= = = 8
* 2RC  2X6.25x10x1073 63
s S
® while w, = 10 remains the same. As a < w, in this case, the response is underdamped. The ¥
val .. . Pal
% roots of the characteristic equation are 8!
& &
A A
s s
::: S1, =—at /az—w§=—8+]6 :::
'8! '8
'8 '8
Yal "al
;g Hence, o
'8! '8!
E:i v(t) = (A, cos 6t + A, sin 6t)e 8t 9) §
&3 8
ra . al
;g We now obtain 4, and A,, as ;:j
'8! '8!
& v(0)=5=4, (10) &
'8! '8!
ral Pal
I§1 dv(0)  w(0)+Ri(0) 540 _ g0 I§1
& dt RC 6.25x10x1073 &
'8! _ o '8!
& But differentiating Eq. (9), &
'8! '8!
- '8!
K d—" = (=84, cos 6t — 84, sin 6t — 64, sin 6t + 64, cos 6t)e 8t &
(R &
R &
& Att =0, &
Pat Pat
;g —80 = —84, + 64, (11) ;g
'8! '8!
& From Egs. (10) and (11), 4; = 5 and 4, = —6.667. Thus, &
'8! '8!
Pal Pal
é} v(t) = (5 cos 6t — 6.667 sin 6t)e 8¢ (12) :?
o : : : : ®
I:l Notice that by increasing the value of R, the degree of damping decreases and the I:I
Pal . . Pal
::: responses differ. Fig.1 plots the three cases. :::
3 03
'8! VA '8!
K3 <(20)> &

AR I

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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Y Pat
al at
val v(H)V A Pad
s S
'8! S '8!
& &
8, 8
al at
'8! 2 '8!
(2 O'r-eldamped (2
D / Critically damped <
K3 or\\_£_/ &
(3 / 8!
:;: . "'--—--lendeltlamped | | :;:
::: 0 0.5 1 1.5 I?:_,) :::
& Fig.1: responses for three degrees of damping. %
Pal rat
3 3
3 3
& &
) . . . O
® | HW. 5: InFig.4.1, let R = 202, L = 0.4H, C = 25mF, v(0) = 0, i(0) = 10mA. Find (3
E:i v(t) fort > 0. §
& Answer: —400te” v (t)mV. &
& &
o e
o 2
ral R R . R : <
& | Example 6:Find v(t) for t > 0 in the RLC circuit of Fig.1. 8!
::: Solution: :::
D« ) . i Pal
::: When t <0, the switch is open; the 306 04”1 ;::
. H - - - . WY vy ‘
;:j inductor acts like a short circuit while the N ;:j
I:l capacitor behaves like an open circuit. The sov (=) =0/ S0Q S 20uF==v ::1
< B . . ~ ™ i
& initial voltage across the capacitor is the [ :&
ral 4
9 same as the voltage across the 50 — 2 9
&5 : : : &
% resistor; that is, Fig.1. '8
(3 50 5 %
% v(0) = (40) = 2 x40 = 25V (1) '
% 30+50 8 %
Pat Pat
&3 _— : : &5
;:j The initial current through the inductor is ;:j
) »

& &
s 1(0) 20 0.54 s
D<A - ———— = —VUu. Pal
(< 30 + 50 e
S (3
'8! '8!
S (3
'8! '8!
S (3
'8! '8!
'8! '8!
'8! '8!
'8! VA '8!
. g 4
0 oreTe o 0

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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s The direction of i is as indicated in Fig.1. to conform with the direction of I, in Fig.4.1, g
¢ which is in agreement with the convention that current flows into the positive terminal of an 8

& inductor. We need to express this in terms of dv/dt, since we are looking for v. &
el g
el : g
a( dv(0 0)+Ri(0 25-50x%0.5 x
S ) _ _vORI©O) _ 5 — 0 2) &
W dt RC 50x20%X10 &
el g
& When t > 0, the switch is closed. The voltage source along with the 30 — £ resistor is 0
8 L . : gt
:3: separated ffom the rest of the circuit. The parallel RLC circuit acts independently of the :2:
A . . . . _ O
(3 voltage source, as illustrated in Fig.2. Next, we determine that the roots of the characteristic 03
& equation are s
el g
= 300 04H 62
8! 1 oo [, &
§ o= = - =500 W T %
3 2RC  2x50x20x10~ i 03
3 1 1 av () X S0Q S 20uF—/— &
el _ _ _ T e
Px‘ a)o - - - 354‘ ‘_;" \‘ %
S VLC  V04x20x1076 \ R
a — 2 _ 2 . T 8!
§ Sz = Tatyat—wg Fig.2 The circuitin Fig.1 whent>0. The ¢
o parallel RLC circuit on the right-hand &
o =—500% V250,000 — 124,9976 = —500 + 354 side acts independently of the circuiton &

- - - A
(< the left-hand side of the junction. al
::1 or %
'8! '8!
Pal Pat
;:: s, = —854,s, = —146 :g:
62 03
CR— '8!
::1 Since a > w,, we have the overdamped response ;:j
'8! '8!
Pat Pat
:g v(t) = Ae 8% + A o146t ) é}
® : . '8!
I:l At t = 0, we impose the condition in Eq. (1), ::1
'8! '8!
Pat Pat
S v(0)=25=A4A;+4; > Ay =25—4, 4 %
62 03
& : - : s
I:l Taking the derivative of v(t) in Eq. (3), ::j
'8! '8!
'8! '8!
8! dv _ _ !
::: E = —854A1€ 8541 - 14‘61428 146t :::
'8! '8!
'8! : e '8
I:l Imposing the condition in Eqg. (2), ;:j
'8! '8!
Pat Pat
% dv(0)
'8 = 0 = —8544, — 1464, e
% dt &
'8! '8!
& Or 2
o 62
'8! YA g
8 Cu)- 5
2 o '8

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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P‘i

Pal Pat
% 0 = 8544, + 1464, (5) @
at at
'8! '8!
§ Solving Egs. (4) and (5) gives §
A A
s S
§ A, = —5.156,4, = 30.16 8
A A
s S
§ Thus, the complete solution in Eq. (3) becomes §
A A
s S
s v(t) = —5.156e78%4 4 30.16e 146ty '8!
al at
s S
8 S
s S
s S
s S
& | H.W. 6: Refer to the circuit in Fig.1. Find v(t) for t > 0. 0
& Answer: 100(e 10t — =25ty =0 &
s ) S
'8! '8!
3 : . +
8! N < = , a!
'8 3A(4) 20Q= 10HzZ 4mF—7 '8
A s ) _ o
3 3
3 3
0 Fia.1 !
o e
'8! '8!
S (3
S (3
E:i 5) Step Response of a Series RLC Circuit E:i
%3 &5
3 . . . : 3
::1 Consider the series RLC circuit shown in R I i ::1
& Fig.5.1. Applying KVL around the loop t=0 X L ™ &
ral YWY <
§ fore>0, 4 .8
Yal (<
8 di ; v, () C=—Fv 5
ral dat — Pal
ral Pal
o But S
R &
>.1 dv . . . . . P.1
::: i=C— Fig.5.1Step voltage applied to a series RLC circuit :::
::: Substituting for i in Eq. (8.39) and rearranging terms, :::
::} d?v N R dv N v W - ::}
Pat . e — = = . Pal
& dt? Ldt LC LC (52) e
S (3

%' which has the same form as Eq. (3.3). More specifically, the coefficients are the same (and 8|

® . : . : o 2
I:l that is important in determining the frequency parameters) but the variable is different. I:l
::: VA :::
K3 <(23)> &
(> ovoTaroY (>

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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% (Likewise, see Eq. (5.9).) Hence, the characteristic equation for the series RLC circuit is not

¢ affected by the presence of the dc source. o
e S
§ The solution to Eq. (5.2) has two components: the transient response v, (t) and the steady- Eg;
;% state response vy (t) ; that is, I;I
e S
$ U0 = ve(D) + s (0) (53) %
® The transient response v, (t) is the component of the total response that dies out with time. &
s The form of the transient response is the same as the form of the solution obtained in &ection g
& 3 for the source-free circuit, given by Egs. (3.13), (3.20), and (3.25). Therefore, the transient 03
s . S
& repsonse v,(t) for the overdamped, underdamped, and critically damped cases are: *
s S
& v (t) = Ajesit + A et (Overdamped) (5.4a) Ei:
'8! ' 2
Eg} V() = (44 + Ayt)e ™ (Critically damped) (5.4b) §
Eg v (t) = (A, cos wyt + A, sin wyt)e ™ (Underdamped) (5.4c) Eg
Eg The steady-state response is the final value of v(t) . In the circuit in Fig.5.1, the final value Eg
;2: of the capacitor voltage is the same as the source voltage V.. Hence, ;3:
s %
$ () =v() =V (65 &
::: Thus, the complete solutions for the overdamped, underdamped, and critically damped cases :2:
S are:
ral ) Pal
& v() =V + A€t + A,et (Overdamped) (5.6a) %
'8! ' '8!
& v =V, + (A + At)e” (Critically damped) (5.6b) Eg
'8! 3
::1 v(t) =V, + (A, cos wyt + A, sin wyt)e % (Underdamped) (5.6¢) :::

& The values of the constants 4; and A, are obtained from the initial conditions: v(0) and %
e dv(0)/dt. Keep in mind that v and i are, respectively, the voltage across the capacitor and g
%' the current through the inductor. Therefore, Eq. (5.6) only applies for finding v. But once #|

(3 ) ) i 2 Q3
I:i the capacitor voltage v, = v is known, we can determine i = Cdv/dt, which is the same I:i
Pat . . . . Pat
::: current through the capacitor, inductor, and resistor. Hence, the voltage across the resistor :::
% is vg = iR, while the inductor voltage is v, = Ldi/dLt. (3
(I g (3
0 . _ . 8
I:l Alternatively, the complete response for any variable x(t) can be found directly, because it ::1
Pat Pat
% has the general form S
&3 03
'8! '8!
8§ x(t) = x55(t) + x,(1) 5.7) &
? )

'8! '8!
'8! '8!
'8! VA '8!
3 (a3 s

AN

>
X
M
M
M
M
M
M
M
M
M
M
M
M
B
M
M
M
M
M
M
M
M
M
M
i
i
i
i
i
i
Ry
X
Ry
Ry
Ry
I
:’:
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
’Y
X
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s Where the x,; = x(0) is the final value and x,(t) is the transient response. The final value &
¢ is found as in Section 8.2. The transient response has the same form as in Eq. (5.4), and the ¢

"a A
& associated constants are deter- mined from Eq. (5.6) based on the values of x(0) and %
ral rad
$ dx(0)/dt. S
e a
Igl Example 7: For the circuit in Fig. 1, find v(t) and i(t) for t > 0. Consider these cases: Igl
&|R=50,R=40,andR = 10 0
e . e
¢ Solution: R 1H 3
62 o o IH o X (3
:3: CASE 1 When R = 50. For t < 0, the switch is r_.. e j :2:
O . . . I + O
rat P = rat
e closed for_ a Igng tl_me. The capacitor be_haves like ,, . @ 025 F —L o S0 8
& an open circuit while the inductor acts like a short ‘ - 0
% circuit. The initial current through the Figure 8.19 2
al . . . Pad
:2: inductor is Fig. 1 :2:
A A
o a
'8 24 8!
al — — "al
g (0)=c7==44 &
o 5+1 02
o al
ral .. . . Pal
:2: and the initial voltage across the capacitor is the same as the voltage across the 1 — 2 :::
A . . O
;g resistor; that is, *
'8! S
& v(0) =1i(0) = 4V K
% v(0) =1i(0) =
'8! '8
(3 SN : : gt
;:j For t > 0, the switch is opened, so that we have the 1 — (2 resistor disconnected. What :f:
I:j remains is the series RLC circuit with the voltage source. The characteristic roots are I:I

. »
& determined as follows: &
'8! '8
'8! '8
::1 @ =T 2.5, wo VLC ~ V1x025 2 :::
'8! '8
'8! '8
ral Pal
:g S12 =—a = faz—wg =-1,—4 :g
'8! '8
I _ '8
I:l Since @ > w,, we have the overdamped natural response. The total response is therefore I:l
'8! '8
03 —t —4t 0>
% v(t) = v+ (A1e™" + A,e™) 8
'8! '8
® . : : . .
I:l where v is the steady-state response. It is the final value of the capacitor voltage. In Fig. I:l
Pal Pal
3 ®
'8! '8
& v(t) =24+ (Ae7t + Ae™) &
8 = 1€ 2€ 1)
'8 _ . N . '8
& We now need to find 4, and 4, using the initial conditions. &
'8! '8
Pal Pal
8 v(0) =4=24+4;+4, $

A

3 Oie 3
! e, 23

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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8

& or at
< at
< at
a Pt
A A
< at
Pl ral
'8 The current through the inductor cannot change abruptly and is the same current through the S
’3‘ capacitor at t = 0" because the inductor and capacitor are now in series. Hence, ’3‘
a! Yal
< at
< at
(3 dv(0) dv(0) 4 4 (2
w i((0)=C =4 = =—=——=16 Pal
$ (0) L dt C 025 S
® Before we use this condition, we need to take the derivative of v in Eq. (). &
< at
al at
o dv e
s — = —Ae t —44,e™* s
8 de 1 2 (3) %
< at
w Att=0, 5
< at
< at
< at
Yl d Pt
& dv(0) =
ad =16 =—-4, — 44 at
:21 dt 1 2 (4) :::
3 o ) 8!
I:l From Egs. (2) and (4), A, = —64/3 and A, = 4/3. Substituting 4, and 4, in Eq. (1), we &
< <
s get 3
(2 (2
(2 6
% 4 S
& v(t) =24+ 3 (—16e~t + e )V 5 &
rat Pad

¢ Since the inductor and capacitor are in series for t > 0, the inductor current is the same as ¢

ral Pal
02 : 0
& the capacitor current. Hence, &
0 &
o d 02
& v 0
% i(t) =C— 02
02 dt 0
I:l Multiplying Eqg. (3) by € = 0.25 and substituting the values of A; and A, gives I:I
< _ 4 —t —4t P
§ 0= et 6)
Pat Pat
& Note that i(0) = 44, as expected. e
0 0
& &
02 0
Pal . - ey . . Pal
% CASE 2 When R = 4. Again, the initial current through the inductor is el
5 (0) LY K
1(0) = =4,
(3 4+1 &
& 0
8 vAg 3
& <(26)> &

AR R

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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' and the initial capacitor voltage is i
&) S
el g
§ v(0) = 1i(0) = 4.8V E:i
&) A
al . gt
;3; For the characteristic roots, :g:
&) S
el g
'8! R 4 8
a! Yal
% o= = — = 2 %
a 2L 2Xx1 P
el g
D< . . . <
:3: while w, = 2 remains the same. In this case, s; = s, = —a = —2, and we have the :2:
A - . e
¢ critically damped natural response. The total response is therefore 03
el g
Eg v(t) = vgs + (Ay + Ayt)e2t Eg
el e
¢ and, as before vy, = 24V, *
el e
% v(D) = 24+ (A + AyD)e ™ 7 %
O . e ey .- . O
;g To find A; and A, we use the initial conditions. We write 03
o 1_7(0).= 48=24+A, > A, =—-19.2 (8) &
;:j Since i(0) = Cdv(0)/dt = 4.8 :::
3 &
. Or e
'8! '8!
Pal Pat
s dv(0) 4.8 &
03 = =19.2 '8
& dt C s
'8! '8!
Pat Pat
:g From Eq. (7), :g
s w -2t &
(3 — = (=24, — 2tA, + Ay)e 9) &
Pat Pat
I§1 Att =0, :g
'8! '8!
Pat dv(o Pat
I§1 T =19.2 = 24, + 4, (10) I?
Pat Pat
:§1 From Egs. (8) and (10), 4, = —19.2 and 4, = —19.2. Thus, Eq. (7) becomes :?
'8! '8!
& v(t) =24-192(1+ e *V (1) &
I:j The inductor current is the same as the capacitor current; that is, ::1
'8! '8!
'8! d !
C v '8!
% O=Cg ,
'8! '8!
'8! L e : '8!
% Multiplying Eq. (9) by C = 0.25 and substituting the values of A, and 4, gives 3
'8! '8!
% i() = (48+9.60)e72A (12) ¥
:& Note that i(0) = 4.84, as expected. ::<
o VA s
»:< Dy $

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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& CASE 3 When R = 1. The initial inductor current is o
gl el
3 (0) —24 124 4
® i(0) = = '8!
& 1+1 3
# and the initial voltage across the capacitor is the same as the voltage across the 1 — 2 ¥
& resistor, (3
gl el
gl el
¢ v(0)=1i(0) =12V *
'8! '8!
$ a . 0.5 8
S ‘T2 2xa 63
a! Yol
< 8!
¢ Since a = 0.5 < wy = 2, we have the underdamped response 03
gl / el
(7 — 2 2 _ . O
¥ S12 =~ + [a®—w§j=-0.5%;1936 3
gl el
gl el
®  The total response is therefore o
8 v(t) = 24+ (A; cos 1.936t + A, sin 1.936t)e 05 (13) %
62 - - 8
::1 We now determine A, and A4,. We write 03
(3 '8!
E§ v(0)=12=24+4, = A, = —12 (14) E§
K3 Since i(0) = Cdv(0)/dt = 12, :::
8w &
& dv(0 — 12 — ’al
::: dt Cc 48 (15) :::
% But 3
(3 ¢
(3 ¢
& dv 0.5t : &
& —— =e7"°"(—1.9364, sin 1.936t + 1.936A4, cos 1.936t) &
& dt (16) %
& —0.5e7%5t (A4, cos 1.936t + A, sin 1.936t) K3
& At =0, 63
% dv(0) %
'8} =48 = (=0 + 1.9364,) — 0.5(4, + 0) (s
6 e . %!
% Substituting A; = —12 gives A, = 21.694, and Eq. (13) becomes (>
(S

E:i v(t) = 24 + (21.694 sin 1.936t — 12 cos 1.936t)e 2>tV (17) E:i
:& The inductor current is ;:‘
(3 3
::: BAg :::
K9 <(28)> (3

AR R

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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§ -
$ (O=Cg
% Multiplying Eq. (16) by C = 0.25 and substituting the values of A; and A4, gives

e i(t) = (3.1sin 1.936¢t + 12 cos 1.936t)e %A (18)
% Note that i(0) = 12A, as expected.

K3 Fig.2 plots the responses for the three cases. From this figure, we observe that the critically
w damped response approaches the step input of 24 I/ the fastest.

ra .

ﬁ v(HV A

}X‘

Yat 40

}X‘

\/

al - Underdamped
ral 35 + e
e

e

Yal 30 -

Critically damped

%
hal 5L / RN
3 33

(3

0
g
0
g
0
g
0
g
g
0
g
g4
03
0
0
0
0
0
0
0
0

'8! 20 |- '8!
'8 '8
& &
% 15 \ ’i‘
'8! . '8!
%! 10 Overdamped at
'8! '8!
'8! '8!
s ’al
'8 > '8
'8! '8!
'8! '8!
< 0 1 1 | 1 1 | 1 1 > N
(3 0 1 2 3 4 5 6 T8 () e
'8! '8!
3 Fig.2 response for three degrees of damping. :g
ral 4
'8! '8!
'8! '8!
& &
% | H.W. 7: Having been in position a for a long time, the switch in Fig.1 is moved to position | $
'8! — i '8!
e | batt =0.Find v(t) and vy (t) fort > 0. (s
ral 4
& Answer: 10—(1.1547 sin 3.464t + 2 cos 3.464t)e 2V, 2. 31”2 sin 3.464tV. ¢
¢S 03
::: 10 a b 25H 100 :::
K (\ t=0 TR 03
R \ &
s v (@ 203 GFEd v () s
R ] - &
R &
R &
R 02
& 62
R &
R 62
R &
8 VA 3
Pal Pal
S Dy 3

'2’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X'X'X’X’X’X'X'X’X’X’X’X’A’X’i’X’A’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’A‘
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Fig.1 S
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
'8! '8!
A A
& 6) Step Response of a Parallel RLC Circuit I 0
¢ Consider the parallel RLC circuit shown in L(}) =0 RZ L2 c=: 0
® Fig.6.1. We want to find i due to a sudden ‘ ! - 03
E:i application of a dc current. Applying KCL Eg;
;3: at the top node for t > 0, Fig.6.1 Parallel RLC circuit with an applied current. ;3:
A A'
= v . dv _ ;;4
::: R+l+Cdt—Is (6.1) :::
& &
& But 3
& &
8, d
8 v=L— 8
A A
I:l Substituting for v in Eq. (6.1) and dividing by LC, we get &
ral rat
::: d2i 1 di i I :;:
X —=+=—=+—-—== (6.2) &
& dt?2 T Rcdt  LC  LC o _ (3
;:j which has the same characteristic equation as Eq. (4.3). ;ij
'8! _ _ _ '8!
I:i The complete solution to Eq. (6.2) consists of the transient response i;(t) and the steady- I:i
< . D
& state response i that is, e
'* > (3
'8! '8!
::: i(t) = it(t) + iss(t) (63) :::
Pat . . . . Pat
::: The transient response is the same as what we had in Section 4. The steady-state response :::
;g is the final value of i. In the circuit in Fig.6.1, the final value of the current through the ;g
I:l inductor is the same as the source current I;. Thus, I:I
'8! '8!
ral Pal
;? i(t) =1, +Ajestt + A et (Overdamped) (6.4a) ;g
Yal . Pal
I§1 i(t) =1, +(A; + Ayt)e ™ (Critically damped) (6.4b) I§1
Pat Pat
:? i(t) =1 + (A cos wyt + A, sin wyt)e * (Underdamped) (6.4c) :i:
Pl ] . . . . ha!
:3: The constants A; and A, in each case can be determined from the initial conditions for i and ;::
:? di/dt. Again, we should keep in mind that Eq. (6.4) only applies for finding the inductor ;§j
I:l current i. But once the inductor current i, = i is known, we can find v = Ldi/dt, which is I:I
::1 the same voltage across inductor, capacitor, and resistor. Hence, the current through the ::1
'8! '8!
::: VA :::
Pal Pal
K30

AN

X
X
M
M
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M
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M
M
M
M
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M
i
i
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i
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s resistoris i = v/R, while the capacitor currentis i = Cdv/dt. Alternatively, the complete g
A A
# response for any variable x(t) may be found directly, using 0
e e
e e
8 x(0) = x6s () + x:(8) (65) &
% where x., and x; are its final value and transient response, respectively. '8!
D SS t P
e a
ral . . . . . . rad
% | Example 8: In the circuit of Fig.1, find i(t) and i (t) for t > 0. &
A - A
s Solution: "t
o ] . e 200 P
% For ¢t <0, the switch is open, and the =0 7<* AVM— '8
A = s A
& circuit is partitioned into two inde- l e . &
& pendent subcircuits. The 4-A current  4A () 20HZ  200=  swF——¢  (2)30u-nV &
'8! _ _. : - '8
% flows through the inductor, so that &
& i(0) =44 Fig.1 &
o a

e Since 30u(—t) = 30 when t < 0 and 0 when t > 0, the voltage source is operative for t < &
¢ 0. The capacitor acts like an open circuit and the voltage across it is the same as the voltage 8
% across the 20 — 2 resistor connected in parallel with it. By voltage division, the initial %

'8! : : 0
)& capacitor voltage is ral
& &
33 8
$ 0(0) = —————(30) = 15V $
& 20 + 20 8
'8! S
ral . . . . . X
s : witch i : we hav ircuit wi u urce. g
; For t > 0, the switch is closed, and we have a parallel RLC circuit with a current source ’:‘
33 : , : : N : &
;:j The voltage source is zero which means it acts like a short-circuit. The two 20 — 2 resistors ;:j
I:l are now in parallel. They are combined to give R = 20(|20 = 10£2. The characteristic roots I:I
ral . Pal
::: are determined as follows: :::
$ )
'8! '8
® a= = — =6.25 0>
& 2RC  2x10x8x10 &
& &
o 1 1 o}
63 VLC +20x8x1073 &
'8! '8
S S
$ s, =—at |a?—w?=—-6.25+V390625— 625 = —6.25 + 5.7282 02
sl ©1,2 0 3
Y

& Of &
0> Q3
'8 '8
& s, =—11978,s, = —0.5218 &
'8! '8
D« . Pal
;3: Since a > w,, we have the overdamped case. Hence, ;3:
® A 3
8 <l 5
8! vTaadv, 3

p-O-O-O-O-O-O-O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-OXOXORORO-O-RO-O- -0 O0-O-O-OOO-O-O-O-O-OOX R
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P‘i

. _ _ 8
:g l(t) — Is +A.1€ 119-78t +A2€ 0.5218t o N - (1) :ﬁ:
s where [; = 4 is the final value of i(t) . We now use the initial conditions to determine 4; &
A A
§ and A,. Att =0, §
A A
ral el
S (0)=4=4+A+A4, > A, = A 2)
A A
ral . . . ) . rad
:% Taking the derivative of i(t) in Eq. (1), I;I
s S
:i: di —-11978t —0.5218t :i:
® — =—11.9784,¢ —0.52184,e~" &
. dt '8
ral al
ral rad
% sothatatt =0, &
A A
s S
at  di(o Pal
% T2 =-11.9784, — 052184, 3) %
A A
s S
w But al
s S
s s
val di(o di(o 15 15 Pa
5 LE2 = p(0) =155 =2 =2 =075 $
s S
Eg} Substituting this into Eq. (3) and incorporating Eg. (2), we get §
A A
e S
% 0.75 = (11.978 — 0.5218)4;, = A, = 0.0655 3
E:i Thus, A; = —0.0655 and A, = 0.0655. Inserting A; and A, in Eq. (1) gives the complete :gi
%S - 8
¢ solution as "8
'8! '8!
'8! '8!
& i(t) =4+ 0.0655(e™ 05218t — g~11978t) 4 &
'8! '8!
ral Pal
;g From i(t) , we obtain v(t) = Ldi/dt and ;g
'8! '8!
* v(t) L di ®
. _ _ _ 11978t —0.5218t 3
w ig(t) =——=——=10.785¢ — 0.0342¢ A !
S " =20 “20a 3
&5 &5
'8! '8!
'8! '8!
'8! '8!
'8! '8!
P< " - N - N - <
::: H.W. 8: Find i(t) and u(t) for t > 0 in the circuit of Fig.1. :::
9§ Answer: 12(1 — cos t)4, 60 sin tV. 8
&3 3
'8! : '8!
(> L I '8
3 &
% A + 2 %
o 12uA (§) v =— 02F = SH g
P“ M, & ! ”‘
'8! '8!
'8! '8!
'8! : '8!
$ Fig.1 &
3 &5
'8! '8!
'8! VA '8!
: (2% :
! e, 23
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& 7) General Second-Order Circuits *
s . . %
3 !\Iow that we have mastered_ series an_d parallel RLC c!rcwts, we are prepareo_l to apply the (3
3 ideas to any second-orde_r circuit having one or more independent sources V\_/lth f:onstant 3
(3 values. Although the series and parallfel R_I.C_cwcm_ts are the second-order circuits of 3
(3 greatest interest, ot_her second—o_rder_ circuits including op amps are also useful. Given a 3
(S second—order circuit, we determine its step response x(t) (which may be voltage or current) (3
(S by takln_g the folloyvlng fo_ur_ steps: _ (3
S 1. We first determine the initial conditions x(0) and dx(0)/dt and the final value x() , (3
¢ as discussed in Section 2. '8!
5 s
s S

s 2. We turn off the independent sources and find the form of the transient response x.(t) by &
a applying KCL and KVL. Once a second-order differential equation is obtained, we Eg
¢ determine its characteristic roots. Depending on whether the response is overdamped, &
& critically damped, or underdamped, we obtain x, (¢) with two unknown constants as we did &

0

¢ In the previous sections. 8
"al "al
'8! : '8!
& 3. We obtain the steady-state response as &
e ral
e ral
8 Xss(t) = x() (71
;:j where x (o) is the final value of x, obtained in step 1. *
'8! '8!
ral . . al
% 4. The total response is now found as the sum of the transient response and steady-state :i
val al
% response (3
'8! '8
& &
¥

(1) = % () + Xs(1) 72
'8 We finally determine theconstants associated with the transients response by imposing the s
e . ... .. ] . O
;:j initial conditions x(0) and dx(0)/dt, determined in step 1. ;:j
'8! _ _ e
I:i We can apply this general procedure to find the step response of any second-order circuit, I:i
n . . . . . Pal
;:: including those with op amps. The following examples illustrate the four steps. ;::
3 03
'8! _ _ — _ (3
I:i Example 9: Find the complete response v and then i for t > 0 in the circuit of Fig.1 I:i
Pal . Pal
::: Solution: 40 1 1H :::
% We first find the initial and final values. At t = 07, A A :&
Yal ] L. ) ] SATAT" vl )
% the circuit is at steady state. The switch is open; the l 3
3 . o - o =2Q S
® equivalent circuit is shown in Fig.2(a). It is evident A Q3
o _ 12V (1) lF=—108
& from the figure that p= : _
'8! (3
'8 3
'8! _ 3
::1 v(07) =12V, i(07)=0 Fig.1 ::1
Pal Pal
8 VA 3
K3 <(33)> &
'20X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’PX'z'%K’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’X’2‘
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8

s Att = 07, the switch is closed; the equivalent circuit is in Fig.2(b). By the continuity of g
A . . e
# capacitor voltage and inductor current, we know that ®
e e
ra . L R
:3: v(0") =v(07) =12V,i(0") =i(07) =0 (1) :g:
x Toget dv(0%)/dt, we use Cdu/dt = i, or dv/dt = i./C. s &
¢ Applying KCL at node a in Fig.2(b), F .8
K rat
v(0%) 8
® (0T — i + (2
§ 10 = ic(0") +— [ :
e S <
'8! @ '8!
:f: — + E i N = —6A4 . :f:
o 0= lc(o )+ > = lc(o ) = —6 40 1H _I_, 2
% AMAA— T %
'8! ’— lfc. 8
'8! -+ '8
:f: Hence, 12v (3) 2030 =05F :ﬁ:
5 = 3! '8
§ @O _ 6oy @) | 3
al =—=— a
5 dt 0.5 T 8!
# The final values are obtained when the inductor is replaced by ® &

w« a short circuit and the capacitor by an open circuit in Fig.2(b), Fig.2 Equivalent circuit of 1§

% givin S hat
;%: giving the circuit in Fig.1 for: (a) ;g
C 12 : t<0,(b)t>0 S
Pat = —= = = ) ' al
5 i(00) = — = 24,v(c0) = 2i(c0) = 4V 3) :
3 _ _ _ 8
I:l Next, we obtain the form of the transient response for t > 0. By turning off the 12-V voltage ¥
val . .- . . . . . ral
% source, we have the circuit in Fig.3. Applying KCL at node a in Fig.3 gives 62
Y
::: . v 1dv i P::
>.: 2 2 dt ".\.-"'._.'JL'.‘-"'-., SRR L - a :‘:
¥
3 : : T 3
¢ Applying KVL to the left mesh results in + '8!
)
(3 202 v 3F o
'8! , di - 8!
& 4i+1 d—; +v=0 (5) ‘ *
. - . . Y
E:i Since we are interested in u for the moment, we substitute = ::3
o i from Eq. (4) into Eq. (5). We obtain Fig.3 Obtaining the form &
(< of the transient response 9
3 dv  1dv , 1d? 3
§ 2v4 2Ll 1Y %
& dt 2 dt 2dt &
03
)
s AU dv s
n{ —  — = Pal
% a2 +5 Ir +6v=0 3
'8! : : . : 03
;:j From this, we obtain the characteristic equation as ;:j
& A &
'8 AT 0
K3 <(34)= &

AR A
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s s°+55+6=0 '8!
® with roots s = —2 and s = —3. Thus, the natural response is 0
e e
:ﬁ: £) = Ae~2t 4+ Be~3t :g
& vn(t) = de € (6) &
ral rad
;;; where A and B are unknown constants to be determined later. The steady-state response is ;;;
e a
e e
s Uss(t) =v() =4 (7)
ral . rad
:2: The complete response is ;i:
A A
g v(O)=vtvs =4+ Ae™?t + Be~3t (8) &
e . : N L
;2; We now determine A and B using the initial values. From Eq. (1), v(0) = 12. Substituting ;2:
A A'
# thisinto Eq. (8) att = 0 gives 3
o al
val Pal
% 12=4+A+B > A+B=8 9
::: Taking the derivative of v in Eq. (8), :2:
A A
o al
. dv <
s — = —2Ae %t —3Be73t (10) &
adt Pal
Egi Substituting Eq.(2) into Eq.(10), at t=0 gives §
w —12=-2A-3B=2A+3B =12 (11) %
& From Egs. (9) and (11), we obtain &
¢ A=12, B=—4 8
'8! '8!
& so that Eq. (8) becomes &
'8! '8
ral Pal
I§1 v(t) = 4 + 12e2t — 4e73tY, t>0 (12) ;g
;:j From v, we can obtain other quantities of interest by referring to Fig.2(b). To obtain i, for ;:j
& example, :::
'8! '8
CH 1d 0>
¥ i=-+-==2+6e 2 —2e7% — 1272 + e~ 3
§ L i g 49 %
S =2—6e “" +4e "4, t>0 o
< . . ) . Pl
o Notice that i(0) = 0, in agreement with Eq. (1). S
&3 0
'8 '8
::1 H.W. 9: Determine v and i for t > 0 in the circuit of Fig.1. ::1
Pat Pat
s Answer: 12(1 — e )V, 3(1 — e5H)A. | | 3
(2 = 5
’.‘ = ot < '0‘
S 10Q = IA * : =40Q %!
'8 S~ N '8
'8! i '8
':‘ 1 - ! %
Pat —— == Pal
& 0 F T =0 Z2H 6
0 - [ &
3 : ®
'8! '8
'8! '8
3 vig 3
3 p Dy 3
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P‘i

8 . . — . 8
¢ | Example 10: Find v, (t) for ¢ > 0 in the circuit of Fig.1. *
® Solution: 1y 0
» . T 30 2 ()
# This is an example of a second-order circuit with two AT 0
® inductors. We first obtain the mesh currents i; and i,, L ) 02
< ) ) i 5
% which happen to be the currents through the inductors. 7, v () Zy Sy g
% e _ A~ T - A
¢ We need to obtain the initial and final values of these ﬂ/- - o
e S
¢ currents. (3
al at
e S
< ) 5
;% Fort <0, 7u(t)=0,sothati;(07)=0=1i,(07). Fig.1 I;I
e S
& Fort >0, 7u(t)="7,so thatthe equivalent circuit is as shown in Fig.2(a). Due to the ¥
D< .. . <
::: continuity of inductor current, :3:
A A'
e S
\< . + o —_ _ . + . — _ N
& (07 =1(07)=0,i,(07) =i,(07) =0 1) ¥
% +Y — +Y — L0t (0] = 8!
s VL, (07) = 1,(07) = 1[(#1(07) = i,(07)] = 0 2 %
O . . . O
% Applying KVL to the left loop in Fig.2(a) att = 07, *
e s
ral . Pal
:g 7 =3i;(07) + v, (07) + v,(07) :%
::: 30 1=3 30 *
E:i —' N +IEII:— l i e ' —?- l i E:i
(2 1 1 O
I:l v (3) 1Q2% U3 L,=1H v (5) 10 = [ :::
e <’ 2 3 63
S (3
S (3
S (3
S (3
% (a) ®) %
3 8!
- . . o 3
% Fig.2 Equivalent circuit of that in Fig.1 for: (a) t > 0, (b)t — co. '8
S (3
S (3
S (3
¥ Of (3
S (3
0 y — &
3 v, (07) =7V !
Pal Pal
8 8
Pal ] . <
8 Since Lydi; /dt = vy, S
®  di;(0*) v, 7 o
& — —=—=7=14V/s (3) &
(> dt L, 1 (3
(I . 62
::: Similarly, since L,di,/dt = v, :::
£ oo _m @
% dt L, %
S (3
'8! '8!
'8! '8!
Pal Pal
8 VA 3
& <(36)> &

AR R
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S . . :
;3; As t — oo, the circuit reaches steady state, and the inductors can be replaced by short ;2:
2 a2
® circuits, as shown in Fig.2 (b). From this figure, o
g g
g 7 g
s i(0) = i,(0) =<4 (5) &
al 1 2 3 8!
® Next, we obtain the form of the transient responses by removing the voltage source, as 02
val . . . . Pal
:% shown in Fig.3. Applying KVL to the two meshes yields I;I
val ral
::: 4i — i+ = 6 :::
& Th-hTyg = (6) :i
'8! o
% and o
- 1di, . K3
Eg 1,2 + EE_ 1,1 = 0 (7) Eg
3 From Eq. (6)(,1' S
N . . 1di v
§ =4ty ®) %
¢ Substituting Eq. (8) into Eq. (7) gives 1 3
Yl Iy Pt
& 30 2 v
3 g 100 4dh 1d% Y E%
® ' 2dt 5dt 10dtz S
§ 7 t13—--+300,=0 | 8
(3 %
¢ '8!
(3 - i isti i &
E:i From this we obtain the characteristic equation as Fig.3 Obtaining the form ::3
(D . 8
52+ 135+30=0 of the transient response 3
'8! '8!
ral . . . Pal
;g which has roots s = —3 and s = —10. Hence, the form of the transient response is ;g
'8! '8!
E:i i1, = Ae™3t + Be~10¢ (9) E:i
::: where A and B are constants. The steady-state response is :::
62 3
'8! '8!
s . . 7 S
::: liss = U (oo) - EA (10) :::
::1 From Egs. (9) and (10), we obtain the complete response as ;:j
E§ iy (t) = g + Ae3t + Be~10¢ (11) Eg
3 : : - (S
I:l We finally obtain A and B ffom the initial values. From Egs. (1) and (11), ::1
'8! 7 '8!
& 0=—-+A+B (12) %
3 3 3
3 : L : : I . 0>
I:l Taking the derivative of Eq. (11), setting t = 0 in the derivative, and enforcing Eq. (3), we I:I
E:i obtain E:i
2 03
¢S '8!
¢ 14=-34-10B (13) %
% From Eqgs. (12) and (13), A = —4/3 and B = —1. Thus, o
2 03
(3 VA s
vl
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) Pal
(S 3
al at
. 7 4 .
< 7 _% -3t __-10t Pal
% L(t)=5—ze e (14) 0
ral .. i . . . . el
:% We now obtain i, from i;. Applying KVL to the left loop in Fig.2 (a) gives I;I
e S
AT L G P | %
& 1224t 2 12 dt &
e e
ral . . .. . ral
:% Substituting for i; in Eq. (14) gives I;I
e S
&  Substituting for /; in Eq. (8.10.14) gives :g
e S
* - 28 16 _ or . or 5
(3 if) = =T+ ——e ' — 4¢7 1% + 267 4 50710 (3
(3 P (8.10.15) S
< _ 10,15 &
~ 10 . 62
:i: _— £,_3F _I_ E:'_]-OI :i:
:;: 3 3 :;:
A A
:f: From Fig. 8.29. :ﬁ:
s s
:f: v,(1) = 1[iy(H) — i5(1)] (8.10.16) Eﬁ:
D< 8
:g Substituting Eqs. (8.10.14) and (8.10.15) into Eq. (8.10.16) yields :g
G2 A 1on S
;g v(f) = 2(e > — e 1% (8.10.17) (3
val Pal
:g Note that v,(0) = 0, as expected from Eq. (8.10.2). :%
(S 28 16 %
al . _ - — - s
N i (t) =7+ ——e 3 —4e7100 2073t 4 510 e
% 3 3 (15) %
5 — Z _ E —3¢ —10t e
8 = e +e 8!
(3 . 3 3 (3
% From Fig.1, &
8 0,(8) = 1[ix () — 15 (0)] (16) ¥
. R - . »
&  Substituting Egs. (14) and (15) into Eq. (16) yields &
s = 2(e~3t — p-10t s
8 () = 2(e3 — e7100) a7 &
ral Pal
o Note that v, (0) = 0, as expected from Eq. (2). S
&3 &3
'8! '8!
'8! '8!
'8! '8!
'8! '8!
Pal Pal
;gj H.W. 10: For t > 0, obtain v, (t) in the circuit of Fig.1. (Hint: First find v, and v,.) ;ij
& Answer: 8(e™" — e OV, t > 0. &
e 1Q o 1Q o s
R Tt &
! 20u() vV (1) L= —3F g
2 . 2 3 KD
R T 02
Pal Pal
'8! - '8!
s VA s
Y
s =(38) 3
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