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7.1 INTRODUCTION. 

In preview chapters, we limited our study and discussions to static electric fields characterized 

by electric field intensity   or electric flux density  . Now our study, discussions and attention 

on static magnetic fields, which are characterized by magnetic field intensity   or magnetic flux 

density  . There are similarities and dissimilarities between electric and magnetic fields. As   

and   are related according to       for linear material space,   and   are related according 

to     . Table (7.1) shows the analogy between electric and magnetic field quantities [2]. 

We have noticed that, an electrostatic field is produced by static or stationary charges. If the 

charges are moving with constant velocity, a static magnetic (magnetostatic) field is produced. 

Therefore, the source of the steady magnetic field may be a permanent magnet, an electric field 

changing linearly with time, or a direct current. This current flow may be due to magnetization 

currents as in permanent magnets, electron-beam currents as in vacuum tubes, or conduction 

currents as in current-carrying wires. In this chapter, will treat the magnetic fields of constant 

currents we consider magnetic fields of constant currents in free space [1,2,3]. 

Our study of static magnetic field is an indispensable necessity. The development of the motors, 

transformers, microphones, compasses, telephone bell ringers, television focusing controls, 

advertising displays, magnetically levitated high-speed vehicles, memory stores, magnetic 

separators, and so on, involve magnetic phenomena and play an important role in our everyday 

life [2]. 

There are two major laws governing magnetostatic fields:  

(1) Biot-Savart's Law: Biot-Savart's law is the general law of static magnetic fields and it's like 

Coulomb's law in electric field.  

(2) Ampere's Circuit Law: as Gauss's law is a special case of Coulomb's law, Ampere's law is a 

special case of Biot-Savart's law and is applied in problems involving symmetrical current 

distribution [2]. 

As we discussed the electric field, we shall confine our initial discussion for magnetic fields in 

free space conditions, and then effect of that fields in material media will also be saved for 

discussion [1]. 

.  
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Table (7.1) Analogy between electric and magnetic field quantities. 

No. Terms Electric field Magnetic field 

1 Basic laws 

  
    

      
   

∮      

 

      

   
        

    
 

∮      

 

      

2 Force law             

3 Source element           

4 Field intensity   
 

 
          

 

 
        

5 Flux density   
 

 
           

 

 
          

6 Relationship between fields            

7 Potentials 

      

  ∫
    

    
 

              

  ∫
      

   
 

8 Flux 

  ∮      

 

 

       

   
  

  
 

  ∮      

 

 

     

   
  

  
 

9 Energy density    
 

 
        

 

 
     

10 Poisson's equation      
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7.2 BIOT-SAVART'S LAW. 

Biot-Savart's Law: states that at any point   the magnitude of the magnetic field intensity    

produced by the differential current element     is proportional to the product of the current  , 

the magnitude of the differential length   , and the sine of the angle   between the element and 

the line joining point   to the element and is inversely proportional to the square of the distance 

  between point   and the element as shown in Figure (7.1). That is, 

    
        

  
                                                                                                                                              

or 

    
       

  
                                                                                                                                            

The direction of the magnetic field intensity is normal to the plane containing the differential 

filament and the line drawn from the filament to the point P. where,   is the constant of 

proportionality. In SI units,       , so equation (7.2) becomes [1]. 

 

Fig. (7.1) magnetic field    at point   due to current element     . 

   
       

     
                                                                                                                                                

The Biot-Savart law, described above, may be written concisely using vector notation as: 

   
      

    
 

     

    
                                                                                                                          

Thus, the direction of    can be determined by the right-hand rule with the right-hand thumb 

pointing in the direction of the current, the right-hand fingers encircling the wire in the direction 

of    as shown in Figure (7.2a). Alternatively, we can use the right-handed screw rule to 

determine the direction of   : with the screw placed along the wire and pointed in the direction 

of current flow, the direction of advance of the screw is the direction of    as in Figure (7.2b). 
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Fig. (7.2) Determining the direction of    using (a) the right-hand rule (b) the right-handed 

screw rule. 

 

Fig. (7.3) Conventional representation of   or   (a) out of the page and (b) into the page. 

As in electric fields we can have different charge configurations, we can have different current 

distributions: line current, surface current, and volume current as shown in Figure (7.4). If we 

define   as the surface current density (in amperes meter) and   as the volume current density 

(in amperes meter square). The differential current element    , where    is in the direction of 

current, may be expressed in terms of surface current density K or volume current density  , 

Thus: 

         ⃑⃑                                                                                                                                             

 

Fig. (7.4) Current distributions: (a) line current, (b) surface current, (c) volume current. 
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Thus, in terms of the distributed current sources, the Biot-Savart law as equation (7.4) becomes: 

  ∫
      

     

 

                                                                                                                                

  ∫
       

     

 

                                                                                                                          

  ∫
 ⃑⃑       

     

 

                                                                                                                         

Magnetic field intensity due to a straight current carrying conductor. 

Let us apply equation (7.6) to determine the field due to a straight current carrying filamentary 

conductor of finite length AB as in Figure (7.5). We assume that the conductor is along the z-

axis with its upper and lower ends respectively subtending angles    and    at point  , the point 

at which   is to be determined. If we consider the contribution    at point   due to an element 

   at        . 

   
     

    
                                                                                                                                                 

But                and                 ,   so 

                                                                                                                                                    

Hence, 

  ∫
     

  [     ]   
                                                                                                                            

 

Fig. (7.5) Field at point   due to a straight filamentary conductor. 
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Letting            ;                  ;    and equation (7.11) becomes 

  ∫
     

  [     ]   
    

 

  
∫

              

          

  

  

    
 

   
  ∫     

  

  

   

or 

  
 

   
                                                                                                                                  

This expression is generally applicable for any straight filamentary conductor of finite length. 

Notice from equation (7.12) that   is always along the unit vector    (i.e., along concentric 

circular paths) irrespective of the length of the wire or the point of interest  .  

As a special case, when the conductor is semi-infinite with respect to   so that point   is now at 

         while   is at        ;       ,      , and equation (7.12) becomes: 

  
 

   
                                                                                                                                                      

Another special case is when the conductor is infinite in length. For this case, point   is 

at         while   is at        ;        ,      , so equation (7.12) reduces to: 

  
 

   
                                                                                                                                                      

To find unit vector    in equations (7.12) to (7.14) is not always easy. A simple approach is to 

determine,   , from 

                                                                                                                                                          

where,  

    is a unit vector along the line current and  

    is a unit vector along the perpendicular line from the line current to the field point [2]. 

Example 7.1: 

The conducting triangular loop in Figure (7.6a) carries a current of     . Find the magnetic field 

intensity   at         due to side   of the loop [2]. 

Solution: 

This example illustrates how equation (7.12) is applied to any straight, thin, current-carrying 

conductor. The key point to keep in mind in applying equation (7.12) is figuring out   ,   ,   
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and   . To find   at         due to side   of the loop in Figure (7.6a), consider Figure (7.6b), 

where side   is treated as a straight conductor. Notice that we join the point of interest         to 

the beginning and end of the line current. Observe that   ,    and   are assigned in the same 

manner as in Figure (7.5) on which equation (7.12) is based. 

                               
 

√  
                 

To determine    

                                                             

Hence, 
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Fig. (7.6) For Example 7.1: (a) conducting triangular loop, (b) side 1 of the loop 

Example 7.2: 

Find the magnetic field intensity   at point           due to the current filament shown in 

Figure (7.7a). 

Solution: Let,        , where    and    are the contributions to the magnetic field 

intensity at           due to the portions of the filament along   and  , respectively. 

   
 

   
                 

At          ,   √        ,       ,      , and   , is obtained as a unit vector 

along the circular path through   on plane     as in Figure (7.7b). The direction of    is 

determined using the right-handed screw rule or the right-hand rule. From the geometry in Figure 

(7.7b), 
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Fig. (7.7) for example 7.2: (a) current filament along semi-infinite x- and z-axes;    and    for 

   only; (b) determining    for   . 

At          ,   √        ,       ,      , and   , is obtained as a unit vector 

along the circular path through   on plane     as in Figure (7.7b). The direction of    is 

determined using the right-handed screw rule or the right-hand rule. From the geometry in Figure 

(7.7b), 

                 
 

 
   

 

 
   

Alternatively, we can determine    from equation (7.15). At point  ,    and    are as illustrated 

in Figure (7.7a) for   . Hence, 

         ( 
 

 
   

 

 
  )  

 

 
    

 

 
    

Hence, the magnetic field intensity    is: 

   
 

     
     

         

 
                       

The magnetic field intensity    can be also obtained in cylindrical coordinates as 

   
 

     
     (   )                 

Similarly, for    at  ,    ,      ,       
 

 
 and       or  

                    

Hence, the magnetic field intensity    is: 

   
 

     
(  

 

 
)                  

Thus, the magnetic field intensity   is:              
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                                      or                                 

Notice that although the current filaments appear semi-infinite (they occupy the positive z- and 

x-axes), it is only the filament along the z-axis that is semi-infinite with respect to point P. Thus 

   could have been found by using equation (7.13), but the equation could not have been used to 

find    because the filament along the x-axis is not semi-infinite with respect to P. 

7.3 CURL OF A VECTOR 

The curl of a vector field   is an axial (or rotational) vector whose magnitude is the maximum 

circulation of   per unit area as the area tends to zero and whose direction is the normal direction 

of the area when the area is oriented so as to make the circulation maximum.  

The area    is bounded by the curve L and    is the unit vector normal to the surface    and is 

determined using the right-hand rule. Then the component of the curl of   in the direction    is 

defined as: 

           (    
    

∮     

  
)                                                                                                        

To obtain an expression for     from the definition in equation (7.16), consider the differential 

area in the   -plane as in Figure (7.8). The line integral in equation (7.16) is obtained as: 

d

b

c

a

P

y
x

z
dy

dz

 

Fig. (7.8) Contour used in evaluating the  -component of     at point            . 

∮      

 

 (∫  

  

∫  

  

∫  

  

∫

  

)                                                                                                 

We expand the field components in a Taylor series expansion about the center point             

as in equation (3.30) and evaluate equation (7.17).  
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On side a-b,         and          , so. 

∫      

  

   [             
  

 

   

  
|
 
]                                                                                          

On side b-c,         and          , so. 

∫      

  

   [             
  

 

   

  
|
 

]                                                                                           

On side c-d,         and          , so. 

∫      

  

    [             
  

 

   

  
|
 
]                                                                                       

On side d-a,         and          , so. 

∫      

  

    [             
  

 

   

  
|
 

]                                                                                        

Substituting equations (7.18) to (7.21) into equation (7.17) and noting that        , we have 

   
    

∮
     

  
 

   

  
 

   

  
 

or 

          
   

  
 

   

  
                                                                                                                              

The  -and  -components of the curl of   can be found in the same maner. 

          
   

  
 

   

  
                                                                                                                              

          
   

  
 

   

  
                                                                                                                              

The definition of     in equation (7.16) is independent of the coordinate system. In Cartesian 

coordinates the curl of   is found. 

Curl   in Cartesian coordinate:  

           

[
 
 
 
      

 

  

 

  

 

  
      ]

 
 
 

                                                                                                            

    [
   

  
 

   

  
]    [

   

  
 

   

  
]    [

   

  
 

   

  
]                                                           
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Curl   in cylindrical coordinate: 

           
 

 

[
 
 
 
       

 

  

 

  

 

  
       ]

 
 
 

                                                                                                      

    [
 

 

   

  
 

   

  
]    [

   

  
 

   

  
]    

 

 
[
      

  
 

   

  
]                                           

Curl   in spherical coordinate: 

           
 

       

[
 
 
 
 
              

 

  

 

  

 

  
            ]

 
 
 
 

                                                                            

    
 

      
[
         

  
 

   

  
]   

 

 
[

 

    

   

  
 

      

  
]   

 
 

 
[
      

  
 

   

  
]                                                                                                        

Note the following properties of the curl: 

1. The curl of a vector field is another vector field. 

2. The curl of a scalar field  ,    , makes no sense. 

3.                   

4.                                    

5.                    

6- The divergence of the curl of a vector field vanishes, that is,           . 

7. The curl of the gradient of a scalar field vanishes, that is,       . 

The curl of a vector field   at a point   may be regarded as a measure of the circulation or how 

much the field curls around  . For example, Figure (7. 9a) shows that the curl of a vector field 

around   is directed out of the page. Figure (7. 9b) shows a vector field with zero curl [2]. 

 

Fig. (7. 9a) Illustration of a curl: (a) curl at   points out of the page; (b) curl at   is zero. 
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7.4 STOKES’ THEOREM 

From Ampere’s circuital law we derived one of Maxwell's equations,      . This equation 

should be considered the point form of Ampere’s circuital law and applies on a “per-unit-area” 

basis. Also we shall devote a major share of the material to the mathematical theorem known as 

Stokes’ theorem, and then we may obtain Ampere’s circuital law from      . In other 

words, we can able to obtain the integral form from the point form or vies versa [1]. 

Consider the surface S of Figure (7.10) which is broken up into incremental surfaces of area   . 

If we apply the definition of the curl to one of these incremental surfaces, then: 

∮       

  
        

where   the subscript indicates the right-hand normal to the surface and the      indicates that 

the closed path is the perimeter of an incremental area   . This result may also be written [1]. 

∮       

  
                                     ∮                              

where    is a unit vector in the direction of the right-hand normal to   . 

Stokes's theorem states that the circulation of a vector field   around a closed path L is equal 

to the surface integral of the curl of   over the open surface   bounded by L. Figure (7.10) 

provided that   and     are continuous on   [2].  

∮      ∫     

 

                                                                                                                              

If   is chosen to be the vector fields, Stokes’ theorem gives 

∮      ∫     

 

                                                                                                                              

    

Fig. (7.10) Determining the sense of    and    involved in Stokes's theorem. 
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7.5 AMPERE'S CIRCUIT LAW 

Ampere's circuit law sometimes called Ampere's work law: states that the line integral of the 

tangential component of the magnetic field strength (intensity)   around a closed path is exactly 

equal to the direct current enclosed by that path [1,3]. 

∮                                                                                                                                                        

Ampere's law is applied to determine the magnetic field intensity   when symmetrical current 

distribution exists. Ampere's law is a special case of Biot-Savart's law [2].  

Two conditions must be met: 

1. At each point of the closed path the magnetic field intensity   is either tangential or normal to 

the path. 

2. The magnetic field intensity   has the same value at all points of the path where   is 

tangential [3]. 

By applying Stoke's theorem to the left-hand side of equation (7.33), we obtain 

     ∮      

 

 ∫     

 

                                                                                                                

But 

     ∫  ⃑⃑ 

 

                                                                                                                                                  

By comparing equations (7.34) and (7.35) yield. 

     ⃑⃑                                                                                                                                                        

This is the third Maxwell's equation to be derived; it is essentially Ampere's law in differential 

(or point) form whereas equation (7.33) is the integral form. From equation (7.36), we should 

observe that      ⃑⃑   ; that is, magnetostatic field is not conservative [2]. 

 

 

 



Chapter: 7                                                                                The Steady Magnetic Field 

14 
 

7.6 APPLICATIONS OF AMPERE'S LAW 

7.6.1 Infinite Line Current 

To find the magnetic field intensity   produced by an infinitely long filament carrying a current. 

The filament located on the z-axis in free space as in Figure (7.11), and the current flows in the 

direction given by   . We determine which components of   are present by using the Biot-

Savart law. Without specifically using the cross product, the direction of    is perpendicular to 

the plane containing    and   and therefore is in the direction of   . Hence the only component 

of   is   , and the magnitude of the field is a function only of   but not of   and z. Since this 

path encloses the whole current  , according to Ampere's law. The streamlines are therefore 

circles about the filament, and the field may be mapped in cross section as in Figure (7.11) [1]. 

  ∮      

 

 ∫(     )  (      )    ∫            

   
 

   
 

or 

  
 

   
                                                                                                                                                      

  

Fig. (7.11) Ampere's law applied to an infinite filamentary line current. 

7.6.2 Infinite Sheet of Current 

Consider an infinite sheet of current flowing in the positive  -direction and located in the plane 

   . A sheet has a uniform surface current density            as shown in Figure (7.12), 

the magnetic field intensity   cannot vary with   or  . If the sheet is subdivided into a number 

of filaments, it is evident that no produced an    component. The Biot-Savart law shows that the 

contributions to    produced by a symmetrically located pair of filaments cancel (    ). 
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Therefore only an    component is present. Applying Ampere's law to the rectangular closed 

path 1-2-3-4-1 (Amperian path) which are either parallel or perpendicular to    gives [1]. 

∮                                                                                                                                               

Due to the infinite extent of the sheet, the sheet can be regarded as consisting of such filamentary 

pairs so that the characteristics of   for a pair are the same for the infinite current sheets, that 

is   on one side of the sheet is the negative of that on the other side [2]. 

  {

                        

                       
                                                                                                                        

  

Fig. (7.12) Application of Ampere's law to an infinite sheet for closed path 1-2-3-4-1 

∮      ∫ ∫ ∫ ∫ 

 

 

 

 

 

 

 

 

     

∮                                                                                                    

From equations (7.38) and (7.40), we obtain    
 

 
  . Substituting    in equation (7.39) gives: 

  

{
 
 

 
 

 

 
                                          

 
 

 
                                       

                                                                                 

In general, for an infinite sheet of current density        , 

  
 

 
                                                                                                                                                     

where    is a unit vector normal to the current sheet directed from the current sheet to the point 

of interest [2]. 
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7.6.3 Infinitely Long Coaxial Transmission Line 

Consider an infinitely long transmission line consisting of two concentric cylinders having their 

axes along the z-axis. The line and its cross section is shown in Figure (7.13), where the z-axis is 

out of the page in cross section. The inner conductor has radius   and carries current   while the 

outer conductor has inner radius   and thickness   and carries return current   . To determine   

everywhere assuming that current is uniformly distributed in both conductors. Since the current 

distribution is symmetrical [2]. 

 

 

Fig. (7.13) the line and cross section of the transmission line; the positive z-direction is out of the 

page. 

We apply Ampere's law along the Amperian path for each of the four possible regions:  

     ;              ;               ;     and           . 

For region      , we apply Ampere’s law to path    giving 

∮        

  

      ∫  ⃑⃑       
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Since the current is uniformly distributed over the cross section, 

 ⃑⃑  
 

   
                                    

     ∫  ⃑⃑       

 

 ∫ (
 

   
  )           

 

 
 

   
∫∫      

  

 

 

 

 
 

   
    (

  

 
)  

    

  
 

Hence equation (7.43) becomes  

∮      

  

 ∫(     )  (      )    ∫     ∫                 
    

  
 

or 

   
   

    
                                                                                                                                                     

For region       we use path    as the Amperian path, 

∮      

  

 ∫(     )  (      )    ∫     ∫                   

                   

   
  

   
                                                                                                                                                       

Since the whole current   is enclosed by   . Notice that equation (7.45) is the same as equation 

(7.14) and it is independent of  .  

For region        , we use path    getting 

∮        

  

                                                                                                                                  

where 

       ∫  ⃑⃑       

 

 

 ⃑⃑  is the current density of the outer conductor and is along     that is, 

 ⃑⃑   
 

 [         ]
    

Thus 

       
 

 [         ]
∫ ∫      
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      [  
     

      
] 

Substituting this in equation (7.46), we have 

   
  

    
[  

     

      
]                                                                                                                         

For region      , we use path   , getting 

∮        

  

                    

                                                                                                                                                                 

Putting equation (7.44) to (7.48) together gives 

  

{
 
 
 
 
 

 
 
 
 
 

   

     
                                              

  

    
                                                

  

    
[  

     

      
]                             

                                                         

                                                                    

The magnitude of   is sketched in Figure (7.14). Ampere's law can only be used to find   due to 

symmetric current distributions for which it is possible to find a closed path over which   is 

constant in magnitude [2]. 

 

Fig. (7.14) The magnetic field intensity as a function of radius   in an infinitely long coaxial 

transmission line with the dimensions shown. 
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7.6.4 An  -turn solenoid carrying filamentary current. 

By applying Ampere’s circuital law to an infinitely long solenoid of radius   and uniform 

current density     , the center of the solenoid is the z-axis as shown in Figure (7.15a). The 

result of magnetic field intensity is [1]. 

                                                                                                                                                    

                                                                                                                                                         

If the solenoid has a finite length   and consists of   closely wound turns of a filament that 

carries a current   Figure (7.15b), then the magnetic field intensity   at points well within the 

solenoid is given closely by [1]. 

  
  

 
                                                                                                                                     

 

Fig. (7.15) (a) An ideal solenoid of infinite length with a circular current sheet. (b) An  -turn 

solenoid of finite length  . 

7.6.5 An  -turn toroid carrying filamentary current. 

For the toroids shown in Figure (7.16a), it can be shown that the magnetic field intensity for the 

ideal case is: 

    

    

 
                                                                                                                              

                                                                                                                                                   

A toroid whose dimensions are shown in Figure (7.16b) has   turns and carries filamentary 

current  . To determine the magnetic field intensity   inside and outside the toroid apply 

Ampere's circuit law to the Amperian path, which is a circle of radius   show in Figure (7.16b). 
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Since   wires cut through this path each carrying current  , the net current enclosed by the 

Amperian path is   . Hence, 

∮      

 

                       

or 

  
  

   
                                                                                                                          

where    is the mean radius of the toroid. An approximate value of   is 

         
  

    
 

  

 
                                                                                                                                

Notice that this is the same as the formula obtained for   for points well inside a very long 

solenoid (   ). Thus a straight solenoid may be regarded as a special toroidal coil for which 

    . Outside toroid, the current enclosed by an Amperian path is        , hence [1,2].  

                                                                                                                                                                  

 

2a

  
o

  
oI

I
H

 

Fig. 7.16 a toroid with a circular cross section. 
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Example 7.3: Planes     and     carry current             and           , 

respectively. Determine   at 

(a)         

(b)           

Solution: Let the parallel current sheets be as in Figure (7.17). Also let 

        

where    and    are the contributions due to the current sheets     and    , respectively 

use of equation (7.23). 

 

Fig. (7.17) For Example 7.3; parallel infinite current sheets 

(a) At        , which is between the plates          , 

   
 

 
     

 

 
               

   
 

 
     

 

 
                 

Hence, 

                    

(b) At          , which is above the two sheets           , 

   
 

 
     

 

 
               

   
 

 
     

 

 
                 

Hence,                                                               

Example 7.4: 

Plane     carries current            . Find   at (a)        ; (b)          

Solution: 

  
 

 
                               

 

 
      (   )             

  
 

 
                                

 

 
      (  )              
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Example 7.5: A toroid of circular cross section whose center is at the origin and axis the same as 

the z-axis has      turns with         ,       . If the toroid carries a        current, 

find | | at (a)                and (b)               

Solution: 

| |  {

  

   
                                

                                                                    

 

(a) at         ,   √                 

| |    

(b) at        ,   √      √           

| |  
  

   
 

            

   √       
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7.7 MAGNETIC FLUX AND MAGNETIC FLUX DENSITY: 

7.7.1 Magnetic Flux Density   

In free space, the magnetic flux density   is related to the magnetic field intensity   according to 

                                                                                                                                                               

where  

   is measured in webers per square meter (     ) or in the (IS) International System of 

Units is tesla (T). 

 The older unit of the magnetic flux density is the gauss (G), where 1T or 1       is 

equal to       G. 

    is a constant is not dimensionless known as the permeability of free space in henrys 

per meter      .[1] 

                                                                                                                                               

7.7.2 Magnetic Flux   

Let, the magnetic flux represented by   and define as the flux passing through any designated 

area, Thus, the magnetic flux through a surface   is given by [1,2]. 

    ∫      

 

                                                                                                                                        

where,  

The magnetic flux   is measured in webers (  ). The sign on   may be positive or negative 

depending upon the choice of the surface normal in    [3].  

The magnetic flux lines due to a straight long wire are formed concentric circles about the 

filament wire as shown in Figure (7.18). Though Figure (7.18) is for a straight, current-carrying 

conductor, it is generally true that magnetic flux lines are closed and do not cross each other 

regardless of the current distribution [1,2]. 

 

Fig. (7.18) Magnetic flux lines due to a straight wire with current coming out of the page. 
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Fig. (7.19) Flux leaving a closed surface due to: (a) isolated electric charge, (b) magnetic charge 

If we desire to have an isolated magnetic pole by dividing a magnetic bar into two, we end up 

with pieces each having north and south poles as illustrated in Figure (7.20). We find it 

impossible to separate the north pole from the south pole [2]. 

 

Fig. (7.20) Successive division of a bar magnet results in pieces with north and south poles. 

Unlike electric flux lines, magnetic flux lines always close upon themselves as in Figure (7.17). 

This is due to the fact that it is not possible to have isolated magnetic poles or magnetic charges. 

For this reason Gauss’s law for the magnetic field is [1,2]. 

∮      

 

                                                                                                                                                     

By applying the divergence theorem to equation (7.61), we obtain 

∮      

 

 ∫    

 

                

                                                                                                                                                                

This equation is the fourth Maxwell's equation to be derived. Equation (7.61) or (7.62) shows 

that magnetostatic fields have no sources or sinks. Equation (7.62) suggests that magnetic field 

lines are always continuous [2]. 
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7.8 MAXWELL'S EQUATIONS FOR STATIC E.M. FIELDS 

Having derived Maxwell's four equations for static electromagnetic fields, we may take a 

moment to put them together as in Table (7.2) [2]. 

Table (7.2) Maxwell's Equations for Static EM Fields 

No. Differential or Point Form Integral Form Remarks 

1           ∮      

 

 ∫   

 

      Gauss's law 

2        ∮      

 

   
Nonexistence of 

magnetic monopole 

3       ∮      

 

   
Conservativeness of 

electrostatic field 

4      ⃑⃑  ∮        

 

      ∫  ⃑⃑       

 

 Ampere's law 

 

7.9 MAGNETIC SCALAR AND VECTOR MAGNETIC POTENTIALS 

We can define a potential associated with static magnetic field B. The magnetic potential could 

be scalar    or vector  . To define    and   involves recalling two important identities [2]. 

                                                                                                                                                          

                                                                                                                                                         

7.9.1 MAGNETIC SCALAR 

As in electric field (     ) the magnetic scalar potential    in amperes is related to magnetic 

field intensity  . The existence of a scalar magnetic potential, whose negative gradient gives the 

magnetic field intensity. In other words the magnetic field intensity   is to be defined as the 

gradient of a scalar magnetic potential, then current density must be zero throughout the region 

in which the scalar magnetic potential is defined [1,2]. 

                         ⃑⃑                                                                                                                          

where  ⃑⃑      equation (7.36). Substitution equation (7.65) in equation (7.36) we get. 

 ⃑⃑                                                                                                                                  
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The magnetic scalar potential    is only defined in a region where ( ⃑⃑   ). We should also note 

that    satisfies Laplace's equation just as   does for electrostatic fields. Thus [2]. 

                                                          

                       ⃑⃑                                                                                                                              

We shall see later that    continues to satisfy Laplace’s equation in homogeneous magnetic 

materials; it is not defined in any region in which current density is present [1]. 

7.9.2 MAGNETIC VECTOR POTENTIAL 

Our choice of a vector magnetic potential is indicated by noting that. 

       

We can define the vector magnetic potential   in (    ) such that.  

                                                                                                                                                            

We defined 

  ∫
  

       
                                                                                                                                               

We can define 

  ∫
      

   
 

                                                                                                                                   

  ∫
      

   
 

                                                                                                                              

  ∫
    ⃑⃑   

   
 

                                                                                                                            

Also we can obtain equations (7.70) to (7.72) from equations (7.6) to (7.8). Now, we can derive 

equation (7.70) from equation (7.6) in conjunction with equation (7.68). To do this, we write 

equation (7.6) as 

  
  

  
∫

     

  

 

                                                                                                                                       

where   is the distance vector from the line element    at the source point (  ,   ,   ) to the 

field point ( ,  ,  ) as shown in Figure (7.22) and   | |, that is, 

  |     |  [                    ]
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Hence, 

 (
 

 
)   

                          

[                       ]
 

 

  
 

  
 

or 

 

  
   (

 

 
)  

  

  
                                                                                                                                      

 

Fig. (7.22) Illustration of the source point (  ,   ,   ) and the field point ( ,  ,  ). 

 

where the differentiation is with respect to  ,  , and  . Substituting this into equation (7.54), we 

obtain. 

   
  

  
∫      (

 

 
)

 

                                                                                                                           

By applying the vector identity 

                                                                                                                                   

Where   is a scalar field and   is a vector field. Taking       and     , we have 

    (
 

 
)  

 

 
       (

  

 
) 

Since   operates with respect to ( ,  ,  ) while    is a function of (  ,   ,   ),       . 

Hence, 

    (
 

 
)     (

  

 
)                                                                                                                          

With this equation, equation (7.75) reduces to 

    ∫
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Comparing equation (7.78) with equation (7.68) shows that 

  ∫
      

   
 

 

By substituting equation (7.68) into equation (7.65) and applying Stokes's theorem, we obtain 

  ∫      

 

 ∫         

 

 ∮      

 

 

or 

  ∮      

 

                                                                                                                                                 

Thus the magnetic flux through a given area can be found using either equation (7.60) or (7.79). 

Also, the magnetic field can be determined using either    or  . The    can only be used in a 

source-free region. The use of the magnetic vector potential provides a powerful, elegant 

approach to solving EM problems [2].  

Example 7.6: Given the magnetic vector potential    
  

 
       , calculate the total 

magnetic flux crossing the surface       ,        ,      . 

Method 1: 

       
   

  
   

 

 
                                             

  ∫      

 

 
 

 
∫  ∫        

 

   

  

   

 
  

 
         

Method 2: We use 

  ∮      

 

             

where   is the path bounding surface  ;   ,   ,   , and    are, respectively, the evaluations of 

∫      along the segments of   labeled 1 to 4 in Figure 7.20. Since   has only a Z-component, 

        

         
 

 
[    ∫  

 

 

     ∫  

 

 

]   
 

 
[        ]          
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Figure 7.18 For Example 7.4. 

Example 7.7:  

Find the flux between the conductors of the coaxial line of Figure (7.21).  

Solution: The magnetic field intensity was found to be 

  

   
                

      
    

   
    

The magnetic flux contained between the conductors in a length   is the flux crossing any radial 

plane extending from     to     and from,     to    . 

    ∫      

 

 ∫ ∫
   

   

 

   

 

   

             
   

  
∫ ∫

  

 

 

   

 

   

    
    

  
  

 

 
 

 

Fig. (7.21) for example 7.7 

Example 7.8: A current distribution gives rise to the vector magnetic potential  

                            . Calculate 

(a) B at           (b) The flux through the surface defined by    ,      ,        

Solution:               
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[
 
 
 
      

 

  

 

  

 

  
      ]

 
 
 

 [
   

  
 

   

  
]    [

   

  
 

   

  
]    [

   

  
 

   

  
]    

    

[
 
 
 
      

 

  

 

  

 

  

           ]
 
 
 

 [      ]   [     ]   [     ]   

                                     

  ∫      

 

 

  ∫ ∫[([      ]   [     ]   [     ]  )          ]

 

   

 

    

 

  ∫∫[[     ]       ]

 

 

 

  

 ∫      

 

  

∫    

 

 

 (
  

 
 

 

 
)  

 

 
       

Second method: 

  ∫      

 

 ∫        

 

 

 ∫       

 

  

 ∫       

 

 

 ∫        
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Problems 

7.1.[2] Find the magnetic field intensity   at point          due to side 3 of the triangular loop 

in Figure below. [                               ] 

 

 

Solution  
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7.2.[2] The positive y-axis (semi-infinite line with respect to the origin) carries a filamentary 

current of    in the     direction. Assume it is part of a large circuit. Find the magnetic field 

intensity   (a) at point          and (b) at point           . 

[                                                     ] 

Solution  

 

7.3.[2] A circular loop located on        ,     carries a direct current of     along   . 

Determine   at         and         . 

[                                         ] 

Solution  

Consider the circular loop shown in Figure 7.8(a). The magnetic field intensity dH at point  

         contributed by current element     is given by Biot-Savart's law: 
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Hence 

 

By symmetry, the contributions along    add up to zero because the radial components produced 

by pairs of current element      apart cancel. This may also be shown mathematically by 

writing    in rectangular coordinate systems (i.e.,                 ) 

 

Figure 7.8 For Example 7.3: (a) circular current loop, (b) flux lines due to the current loop. 

Integrating      or      over        gives zero, thereby showing that     . 

Thus 
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Or 

 

(a) Substituting      ,    ,     gives 

         
        

 [    ]   
            

(b) Notice from      above that if   is replaced by   , the z-component of    remains the 

same while the  -component still adds up to zero due to the axial symmetry of the loop. Hence: 

                              

The flux lines due to the circular current loop are sketched in Figure (7.8b). 

7.4.[2] A thin ring of radius 5 cm is placed on plane     cm so that its center is at         cm. 

If the ring carries      along   , find magnetic field   at (a)           cm (b)          cm. 

[                                          ] 

Solution  
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7.5.[2] A solenoid of length   and radius   consists of N turns of wire carrying current  . Show 

that at point   along its axis, 

  
  

 
                

where      ,    and    are the angles subtended at   by the end turns as illustrated in 

Figure 7.9. Also show that if    , at the center of the solenoid, 

       

 

Figure 7.9 For Example 7.4; cross section of a solenoid. 

Solution: 

Consider the cross section of the solenoid as shown in Figure 7.9. Since the solenoid consists of 

circular loops, we apply the result of Example 7.3. The contribution to the magnetic field   at   

by an element of the solenoid of length    is 

 

    
       

 [     ]   
 

          

 [     ]   
 

where               . From Figure 7.9,      
 

 
 that is, 

                  
[     ]   

  
       

Hence, 

     
  

 
       

Or 
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∫       

  

  

 

Thus 

  
  

 
                

As required. Substituting      , gives 

  
  

  
                

At the center of the solenoid, 

      
   

[   (
 

 
)
 

]
   

        

And 

  
   

 [   (
 

 
)
 

]
   

   

If     or      ,         

       
  

 
   

7.6.[2] If the solenoid of Figure 7.9 has       turns, a length of    cm, a radius of   cm, and 

carries a current of       along   , find   at (a)         cm (b)          cm (c)          cm. 

[                                                               ] 

Solution: 
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