The control system

A liquid stream at a temperature T_i , enters an insulated, well-stirred tank at a constant flow rate w (mass/time). It is desired to maintain (or control) the temperature in the tank at T_R by means of the controller. If the indicated (measured) tank temperature T_m differs from the desired temperature T_R , the controller senses the difference or *error*, $E = T_R - T_m$

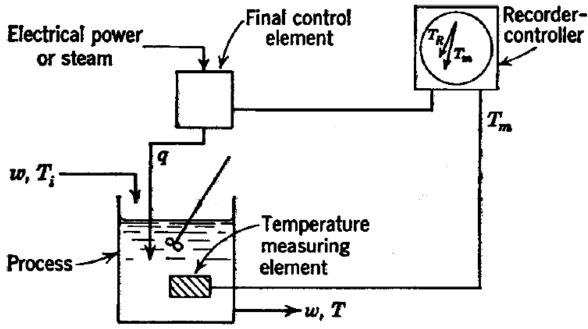


Figure (9-1) Control system for a stirred-tank heater.

There are two types of the control system:-

1) Negative feedback control system

Negative feedback ensures that the difference between T_R and T_m is used to adjust the control element so that tendency is to reduce the error. $E = T_R - T_m$

2) Positve feedback control system

If the signal to the compartos were obtained by adding T_R and T_m we would have a positive feedback systems which is inherently unstable. To see that this is true, again assume that be system is at steady state and that $T=T_R=T_i$.

If T_i were to increase, T and T_m would increas which would cause the signal from the compartor to increase, with the result that the heat to the system would increase.

At s.s. $T=T_R=T_{in}$ E =T_R+T_m

Servo Problem versus Regulator Problem

Servo Problem

There is no change in load T_i , and that we are interested in changing the bath temperature (change in the desired value (set point) with no disturbance load).

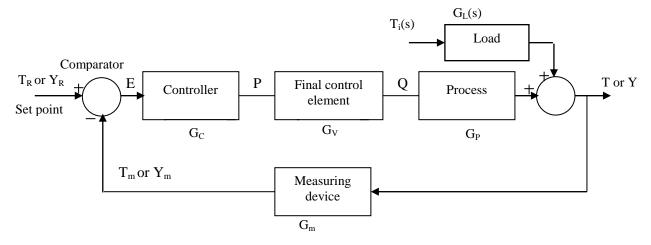
* Requlating problem

The desired value T_R is to remain fixed and the purpose of the control system is to maintain the controlled variable T_R in spite of change in load if there is a change in the input variable (disturbance load).

Control system elements

Control system elements are:-

- 1) Process
- 2) Measuring element
- 3) Controller
- 4) Final Control Element



Closed Loop Feedback control

Development of block Diagram

Process

The procedure for developing the transfer function remain the same. An unsteady-state energy balance around the heating tank gives.

$$W Cp(T_i - T_o) + q - W Cp(T - T_o) = \rho Cp V \frac{dT}{dt}$$

Where T_o is the reference temperature
At steady state, $\frac{dT}{dt} = 0$

$$W Cp(T_{is} - T_o) + q_s - W Cp(T_s - T_o) = \rho Cp V \frac{dT}{dt} = 0$$

By substracting both equations

$$W Cp((T_i - T_{is}) - (T - T_{s})) + q - q_s = \rho Cp V \frac{d(T - T_{s})}{dt}$$

Note that the refernece temperature T_o cancels in the subtraction. If we introduce the deviation variables.

$$\overline{T}_{i} = T_{i} - T_{is}$$

$$\overline{T} = T - T_{s}$$

$$Q = q - q_{s}$$

$$W Cp(\overline{T}_{i} - \overline{T}) + Q = \rho Cp V \frac{d\overline{T}}{dt}$$
Taking the laplace transform gives
$$W Cp(\overline{T}_{i}(s) - \overline{T}(s)) + Q(s) = \rho Cp Vs\overline{T} \qquad \div W Cp$$

$$\frac{\rho V}{W} s\overline{T} + \overline{T}(s) = \frac{Q(s)}{WCp} + \overline{T}_{i}(s)$$
The last expression can be written as
$$\overline{T}(s) = \frac{1}{(\tau s + 1)} \frac{Q(s)}{WCp} + \frac{\overline{T}_{i}(s)}{\tau s + 1}$$
Where
$$\tau = \frac{\rho V}{W}$$

$$\overline{T}(s) \text{ or } Y(s) = \text{ controlled variable}$$

$$O(s) \text{ or } m(s) = \text{ monipulate d variable}$$

Q(s) or m(s) = manipulated variable

 $\overline{T}_{i}(s)$ or d(s) = disturbance variable

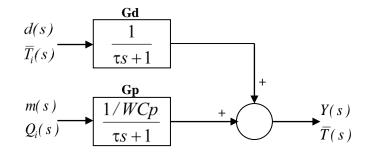
If there is a change in Q(t) only then $\overline{T_i}(t) = 0$ and the transfer function relating \overline{T}_{i} to Q is

$$\frac{\overline{T}(s)}{Q(s)} = \frac{1}{(\tau s + 1)} \frac{1}{WCp}$$

Process Control /Lec. 9 Fourth Class

If there is a change in $\overline{T}_i(s)$ only then Q(t)=0 and the transfer function relating \overline{T} to \overline{T}_i is

$\overline{T}(s)$	1
$\overline{\overline{T}_i}(s)$	$\overline{(\tau s+1)}$



Block Diagram for process

 $Y(s) = G_p \cdot m(s) + G_d \cdot d(s)$

Measuring Element

The T.F. of the temperature-measuring element is a first order system

$$\frac{\overline{T}_m(s)}{\overline{T}(s)} = \frac{k_m}{\tau_m s + 1} \implies \overline{T}_m(s) = G_m \overline{T}(s)$$
$$G_m = \frac{k_m}{\tau_m s + 1}$$
Where \overline{T} and \overline{T}_m are deviation variables defined as $\overline{T} = T - T_s$

$$\overline{T}_{m} = T_{m} - T_{ms}$$

$$K_{m} = steady \ state \ gain = \frac{\Delta Output}{\Delta input}$$

 τ_m =time lag (time constant)=(1-9) sec

$$\overline{T}(s) \longrightarrow G_{m} = \frac{K_{m}}{\tau_{m} s + 1} \longrightarrow \overline{T}_{m}(s)$$

Figure Block diagram of measuring element

<u>Controller and final control element</u> The relationship for proportional controller is

 $\frac{P(s)}{G(s)} = G_c(s)$

$$E(s) \longrightarrow K_c \longrightarrow Q(s)$$
$$Q(s) = K_c E(s)$$

Where

$$P = P - P_s$$
$$E = \overline{T}_R - \overline{T}_m$$

G(s) for propertional controller $G_c(s) = K_C$ $\overline{T}_{R} = \overline{T}_{m} = \overline{T}$ at steady state

