

Antennas & Wave Propagation

Electronic Dep.

3rd Stage

Lecture Five

Power Radiation and radiation resistance of linear antennas

Prepared By

Asst. Lect. Ayad Q. Abdulkareem

Electrically Short Dipole Antennas

For Linear current distribution

$$P = 80 \,\pi^2 \left(\frac{l}{2\lambda}\right)^2 \times I_{\rm rms} \,\, \text{Watts}$$

$$P = 20 \,\pi^2 \left(\frac{l}{\lambda}\right)^2 \cdot I_{\rm rms} \,\, \text{Watts}$$

$$R_r = 20 \,\pi^2 \left(\frac{1}{\lambda}\right)^2 \,\Omega$$

$$R_r \cong 200 \left(\frac{l}{\lambda}\right)^2 \Omega$$

Always Remember

- ✓ For linear distribution $l_{eff} = \frac{l}{2}$
- ✓ For Sinusoidal distribution $l_{eff} = \frac{2 l}{\pi}$

Electrically Short Dipole Antennas

For sinusoidal current distribution

$$P = 80 \,\pi^2 \cdot \left(\frac{l_e}{\lambda}\right)^2 \cdot I_{\text{rms}}^2$$

$$= 80 \,\pi^2 \left(\frac{2l}{\pi \lambda}\right) \cdot I_{\text{rms}}^2$$

$$P = 320 \left(\frac{l}{\lambda}\right)^2 I_{\text{rms}}^2 \quad \text{watts}$$

$$R_r = 320 \left(\frac{l}{\lambda}\right)^2 \Omega$$

Monopole Antenna

For Linear current distribution

$$P = 10 \, \pi^2 \left(\frac{l}{\lambda}\right)^2 \cdot I_{\text{rms}}^2 \text{ Watts}$$

$$R_r = 10 \, \pi^2 \left(\frac{l}{\lambda}\right)^2 \Omega$$

$$R_r = 10 \, \pi^2 \left(\frac{2h}{\lambda}\right)^2 \Omega$$

$$= 40 \, \dot{\pi}^2 \left(\frac{h}{\lambda}\right) \Omega$$

$$R_r \cong 400 \left(\frac{h}{\lambda}\right)^2 \Omega$$

Power radiated and radiation resistance will be half of corresponding dipoles

Monopole Antenna

For sinusoidal current distribution

$$R_r = 160 \left(\frac{l}{\lambda}\right)^2 \Omega$$

$$R_r = 160 \left(\frac{2h}{\lambda}\right)^2 \text{ W}$$

$$R_r = 640 \left(\frac{h}{\lambda}\right)^2 \Omega$$

Power radiated and radiation resistance will be half of corresponding dipoles

Half – Wave Dipole Antenna

$$P = 80 \,\pi^2 \left(\frac{l_e}{\lambda}\right)^2 \cdot I_{\rm rms}^2$$

But

$$l_{\text{eff}} = \frac{2l}{\pi}$$
 for sinusoidal

$$P = 80 \,\pi^2 \left(\frac{2l}{\pi \lambda}\right)^2 \cdot I_{\rm rms}^2$$

for half wave dipole physical length $l = \lambda/2$ means

$$P = 80 \,\pi^2 \cdot \left[\frac{2}{\pi} \cdot \frac{\lambda}{2\lambda} \right]^2 \cdot I_{\rm rms}^2$$

and

$$P = 80 I_{\rm rms}^2$$
 Watts.
 $R_r = 80 \Omega$

$$R_r = 80 \Omega$$

Actually the value of R_r , for half wave dipole is 73 W.

Vertically Earthed Antenna

In case of vertically grounded short antenna, antenna should be quite short and all rays will be parallel to ground (i.e., $\sin \theta = \sin 90^{\circ} = 1$). If we take sinusoidal current distribution then power due to vertically short dipole is given by

$$P = 80 \,\pi^2 \cdot \left(\frac{l_e}{\lambda}\right)^2 \, I_{\rm rms}^2$$

But in case of grounded vertical antenna of effective length (l_s) , due to image effect apparent height will be 2 l, so

$$P = 80 \,\pi^2 \cdot \left(\frac{2l_e}{\lambda}\right)^2 I_{\rm rms}^2$$
$$= 320 \,\pi^2 \left(\frac{l_e}{\lambda}\right)^2 I_{\rm rms}^2$$

$$= 320 \,\pi^2 \left(\frac{l_e}{\lambda}\right)^2 I_{\rm rms}^2$$

$$R = 320 \,\pi^2 \left(\frac{l_e}{\lambda}\right)^2 \,\Omega$$

Thanks for Listening

Any Question Please...