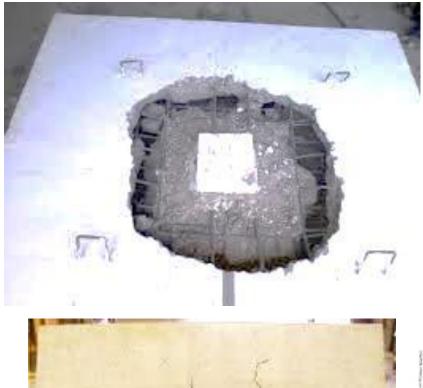
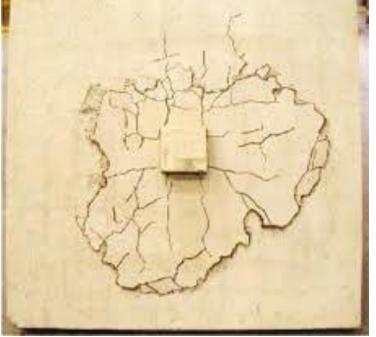
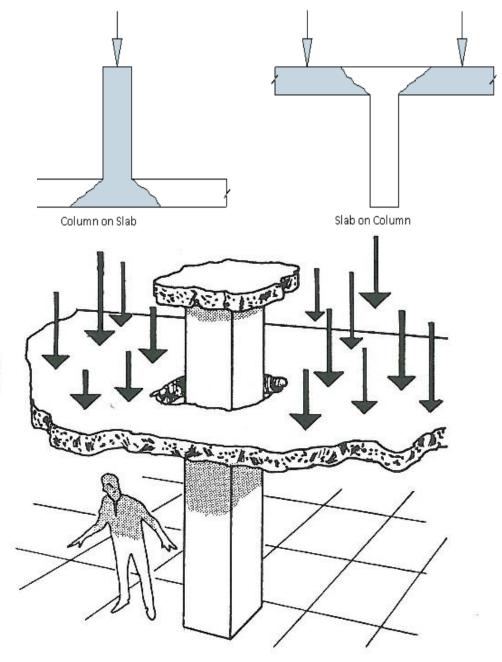

Shear in Slabs

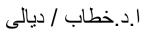
Prof. Dr. Khattab Saleem Abdul-Razzaq



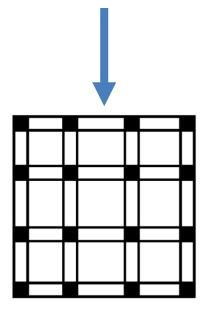


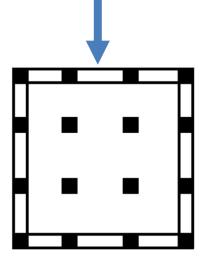


ادخطاب / دیالی

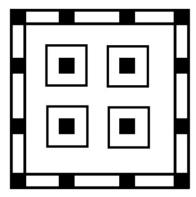


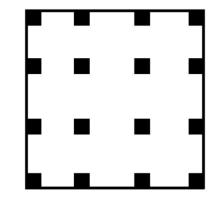
اد خطاب / دیالی




There are two types of shear in rc slabs:

1. One-way shear only


2- Both 1-way and 2-way shear



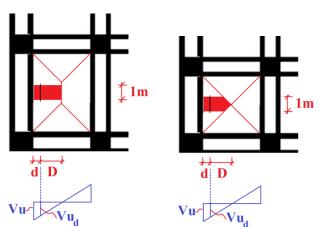
rc slab with beams between all supports, with edge beam

rc slab without internal beams, with edge beam

rc flat plate slab

The **<u>flat slab</u>** includes either drop panels or column capitals at columns.

The **<u>flat plate slab</u>** is just a flat plate!!!


rc slab with drop panels, with edge beam

اد خطاب / دیالی

1. one-way shear

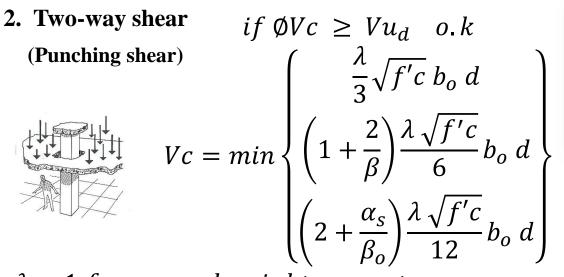
$$Vu_d = Wu * D$$
$$\emptyset Vc = \frac{0.75}{6} \sqrt{f'c} b d$$

if $\emptyset Vc \geq Vu_d$ o.k

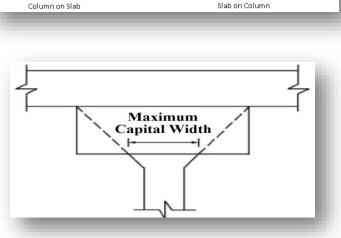
area

G

G


G

ا د خطاب / دبالی

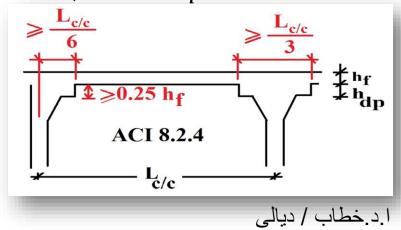

Vu=max shear at the face of support Vud= shear at d from the support face Wu= ultimate load (1.2D+1.6L)D= distance from span centre to d (in short direction) ϕ Vc= factored concrete shear resistance (without reinf.) ϕ = shear reduction factor=0.75 **Tributary** d= effective depth (h - 20mm concrete cover - 0.5 bar diameter) Æ G. G. b=1m

if $\emptyset Vc < Vu_d$ not o.k, so:

- Increase slab thickness
- Increase f'c

 $\lambda = 1$ for normal weight concrete $b_o = Circumference of the critical section$ $d = average \ effective \ depth$

 $20^{\circ} - 45^{\circ}$


Slab on Column

 $\alpha_s = 40$ for int., 30 for ext., and 20 for corner column. $\beta_o = \frac{b_o}{d}$

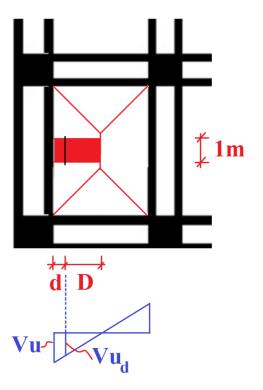
 $\beta = longer$ to shorter section dimensions for col., or col. capital.

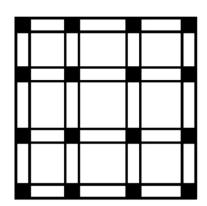
if $\emptyset Vc < Vu_d$ not o. k, so:

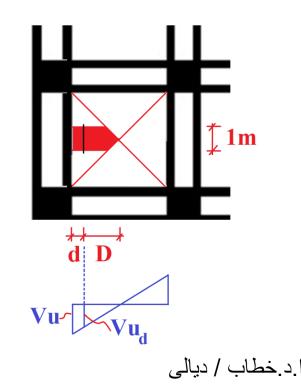
- Increase column section dimensions
- Increase slab thickness
- Increase f'c
- Add col. capital
- Use drop panel, in case of flat plate.
- Add reinforcement.

1. Slab with beams between all supports: (only 1-way shear)

- Vu=max shear at the face of support
- Vud= shear at d from the support face
- Wu= ultimate load (1.2D+1.6L)
- D= distance from span centre to d (in short direction)
- ϕ Vc= factored concrete shear resistance (without reinf.)
- ϕ = shear reduction factor=0.75
- d= effective depth (h 20mm concrete cover 0.5 bar diameter)

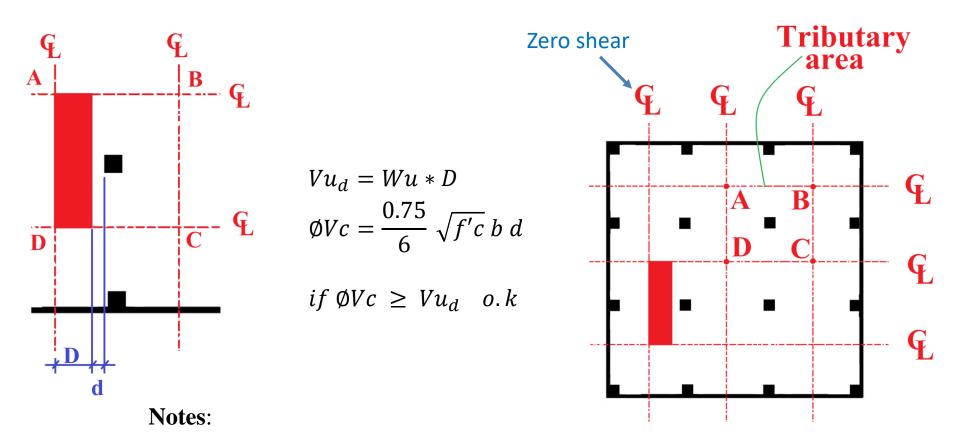

b=1m


V =force

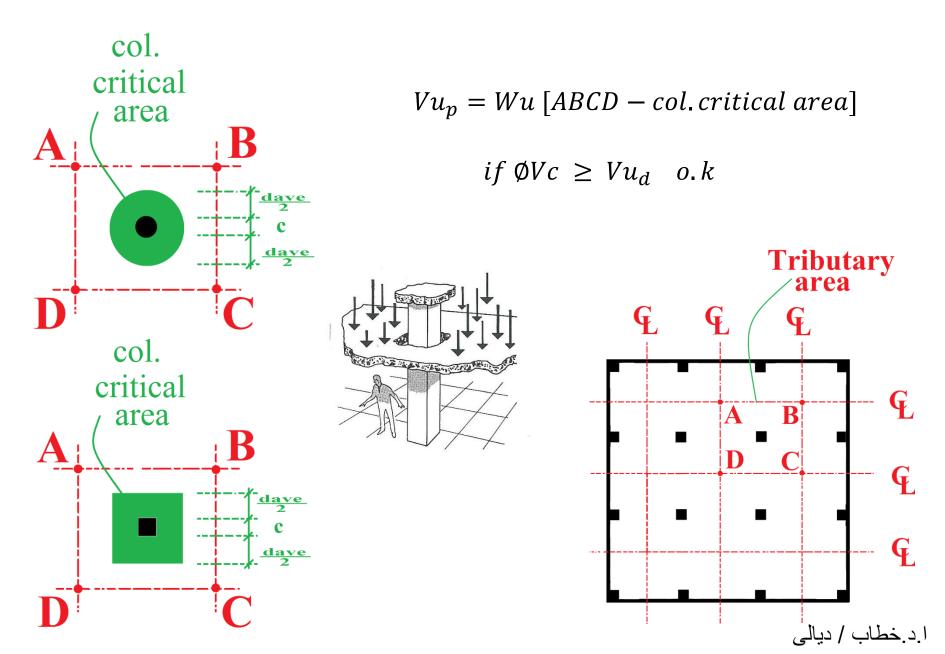

v = stress

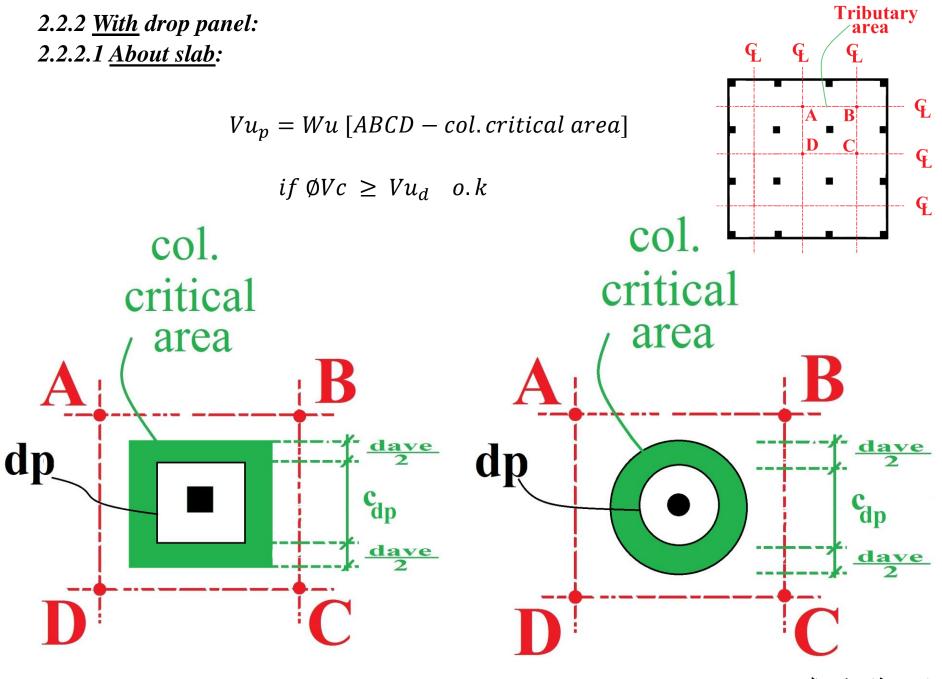
$$Vu_d = Wu * D$$
$$\emptyset Vc = \frac{0.75}{6} \sqrt{f'c} \ b \ d$$

 $if \ \emptyset Vc \ge Vu_d \quad o.k$

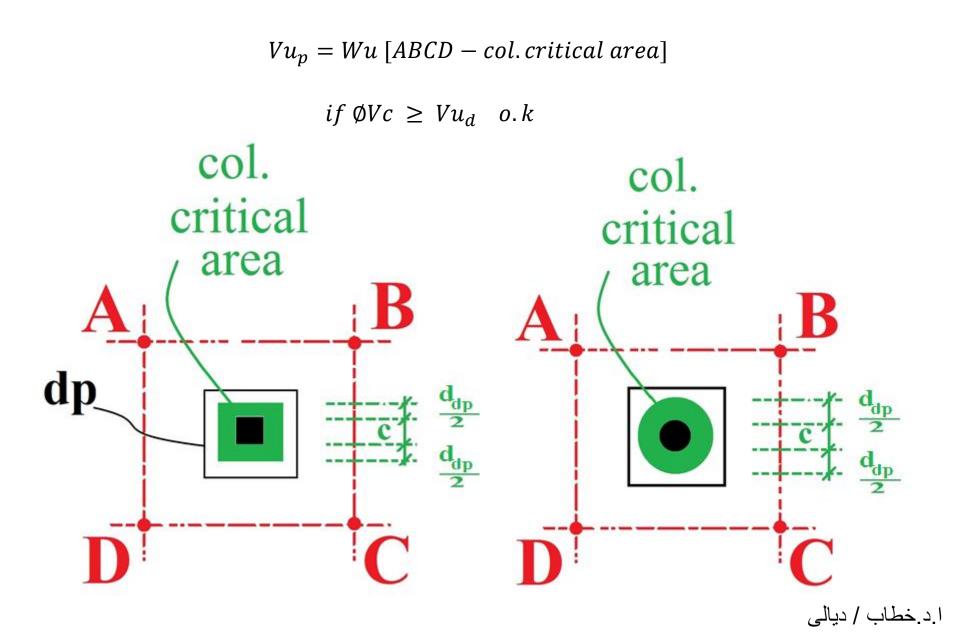


2. Slabs without beams between supports: (both 1&2-way shear) shear at centrelines=zero


2.1 One-way shear (wide beam shear) in slabs without beams between supports:



- Convert circular column to equivalent square one in 1-way.
- Use (dave=h-20-bar diam.) for 2-way and d for 1-way.


اد خطاب / دیالی

2.2 Two-way shear in slabs without beams between supports: *2.2.1 <u>Without</u> drop panel:*

ادخطاب / دیالی

Moments applied on columns and walls:

1-Internal column and walls (ACI 318-14, 8.10.7.2):

$$M_{sc} = 0.07[q_{DU} + 0.5 q_{LU})l_2 l_n^2 - q'_{DU} l'_2 l'^2_n]$$

where

 q_{DU} =factored dead load applied on longer span q_{LU} =factored live load applied on longer span q'_{DU} =factored dead load applied on shorter span l_2 = strip width in the longer span l'_2 = strip width in the shorter span l_n =clear in the longer direction l'_n =clear in the shorter direction

Note: If the spans on both sides of the column are equal, and the strip has the same width (l_2) :

$$M_{sc} = 0.035 \ q_{LU} l_2 \ l_n^2$$

2-External columns and walls:

The moment that is transferred from the external slabs to the external supports = total external negative moment of the design strip (i.e. before distribution to column and middle strips).

Note: the moments are distributed between the lower and the upper columns by dividing according to (EI/L)

8.10.7.2 At an interior support, columns or walls above and below the slab shall resist the factored moment calculated by Eq. (8.10.7.2) in direct proportion to their stiffnesses unless a general analysis is made.

$$M_{sc} = 0.07[(q_{Du} + 0.5q_{Lu})\ell_2\ell_n^2 - q_{Du'}\ell_2'(\ell_n')^2] \qquad (8.10.7.2)$$

where $q_{Du'}$, $\ell_{2'}$, and $\ell_{n'}$ refer to the shorter span.

Transfer of Moments at Columns

- We previously studied that shear stresses are distributed uniformly around the circumference b_o....
- But: if the column is under unbalanced moments on both sides, the hypothesis of uniform distribution will not be accurate...
- Part of the moment will be transferred as shear, added to one side and subtracted from the other side ...
- Moments transfer from slab to column through:

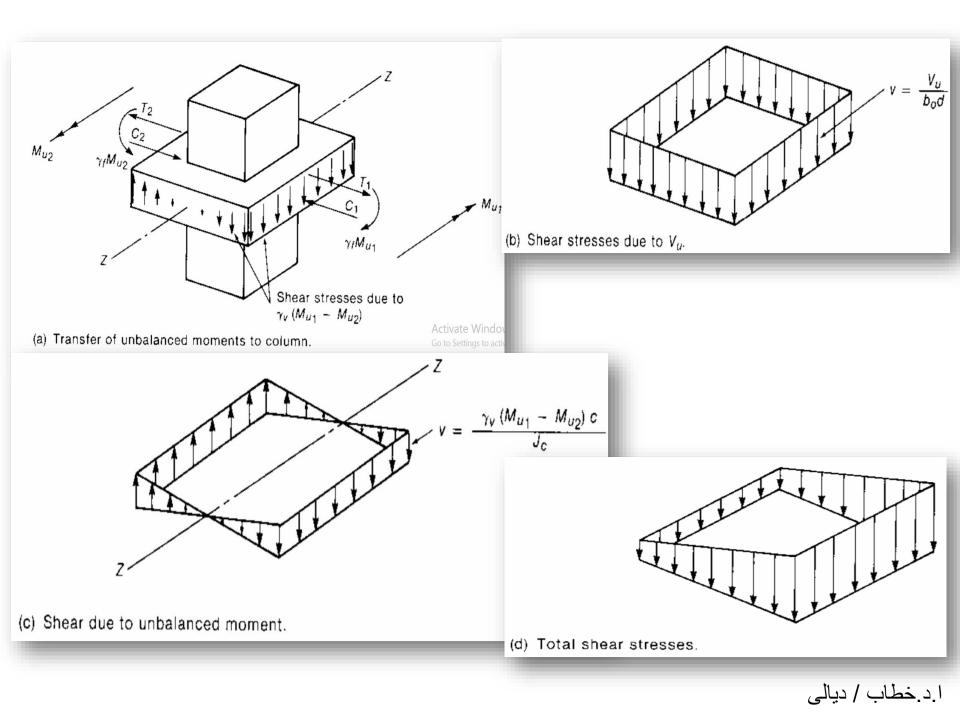
1-Flexure (M_{uf}) + 2-Shear (M_{uv})

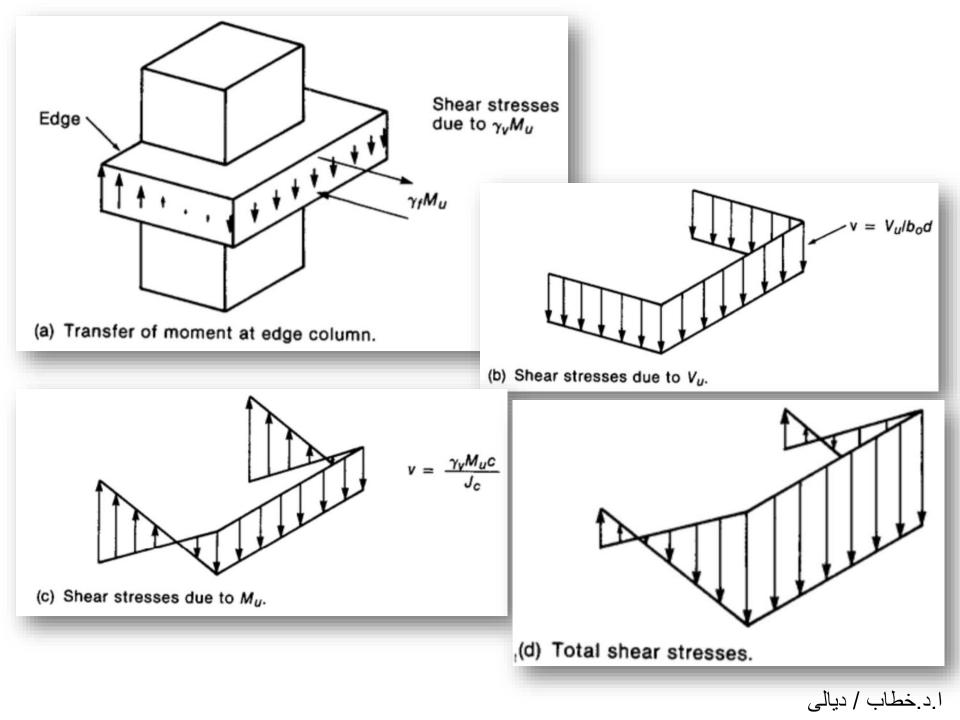
Distribution of unbalanced Moments

 $M_{uf} = \gamma_f Mu$ (ACI 318-14, 8.4.2.3.2)

$$\mathbf{M}_{uv} = \boldsymbol{\gamma}_{v} \mathbf{M} \mathbf{u} = (1 - \boldsymbol{\gamma}_{f}) \mathbf{M} \mathbf{u}$$

 $\Upsilon_f = 0.6$ for square column, i.e., $\Upsilon_v = 0.4$


More specifically: $\gamma_f = \frac{1}{1 + \frac{2}{3} \sqrt{\frac{b_1}{h_2}}}$


8.10.7.3 The gravity load moment to be transferred between slab and edge column in accordance with 8.4.2.3 shall not be less than $0.3M_{o}$.

 γ_f = factor used to determine the fraction of M_{sc} transferred by slab flexure at slab-column connections

Where b_1 and b_2 are critical section width, parallel and perpendicular to the analysis direction, respectively.

According to ACI 318-14, 8.10.7.3, transferred moment from slab to edge column $\geq 30\% M_o$.

$\gamma_f = \frac{1}{1 + \frac{2}{3}\sqrt{\frac{b_1}{b_2}}}$

Modifications of Moment transfer ratios

εt

Table 8.4.2.3.4—Maximum modified values of γ_f for nonprestressed two-way slabs

Column location	Span direction	V _{ug}	ε _t (within b _{slab})	Maximum modified γ _f
Corner column	Either direction	$\leq 0.5 \phi v_c$	≥0.004	1.0
Edge column	Perpen- dicular to the edge	≤0.75¢v _c	≥0.004	1.0
	Parallel to the edge	≤0.4¢v _c	≥0.010	$\frac{1.25}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{b_1}{b_2}}} \le 1.0$
Interior column	Either direction	≤0.4¢v _c	≥0.010	$\frac{1.25}{1 + \left(\frac{2}{3}\right)\sqrt{\frac{b_1}{b_2}}} \le 1.0$

 $\varepsilon_t \ge 0.004$ when $\rho \leq \rho_{max} = 0.85 \beta_1 \frac{f'c}{fy} \frac{\varepsilon_u}{\varepsilon_u + 0.004}$ is reinforcement strain closest to the tension face in the effective slab width (b_{salb}) . dimension b_{salb}=perpendicular of $column(c_2)+2(1.5h).$ h=either slab thickness or drop panel thickness 1

$$\varepsilon_t \ge 0.01$$
 when
 $\rho \le 0.85 \beta_1 \frac{f'c}{fy} \frac{\varepsilon_u}{\varepsilon_u + 0.01}$

ا د خطاب / دبالی

Check slab after moment transfer (for flat plate and flat slabs)

<u>A-Check shear stresses due to M_{uf} :</u>

- 1. 1-Use DDM or EFM to find Msc applied on the column
- 2. Calculate Υ_f
- 3. Modifications of Moment transfer ratios (Table 8.4.2.3.4)
- 4. Calculate $M_{uf} = Y_f M u$
- 5. Calculate b_{slab} (b_{salb} =perpendicular dimension of column(c_2)+2(1.5h).)

6.
$$\emptyset Mn = \emptyset \rho b_{slab} d^2 f y (1 - 0.59 \rho \frac{f y}{f' c})$$

Where ρ for perpendicular strip

7. if $M_{uf} \le \phi Mn$ ok, otherwise reinforcement should be added to resist the difference between M_{uf} and ϕMn

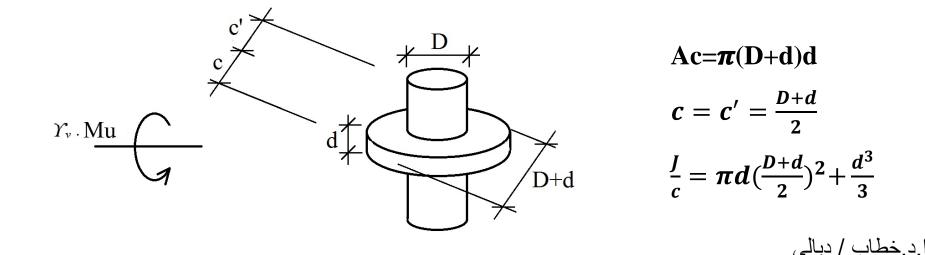
<u>B-Check punching shear stresses due to M_{uv} and V_{u} :</u>

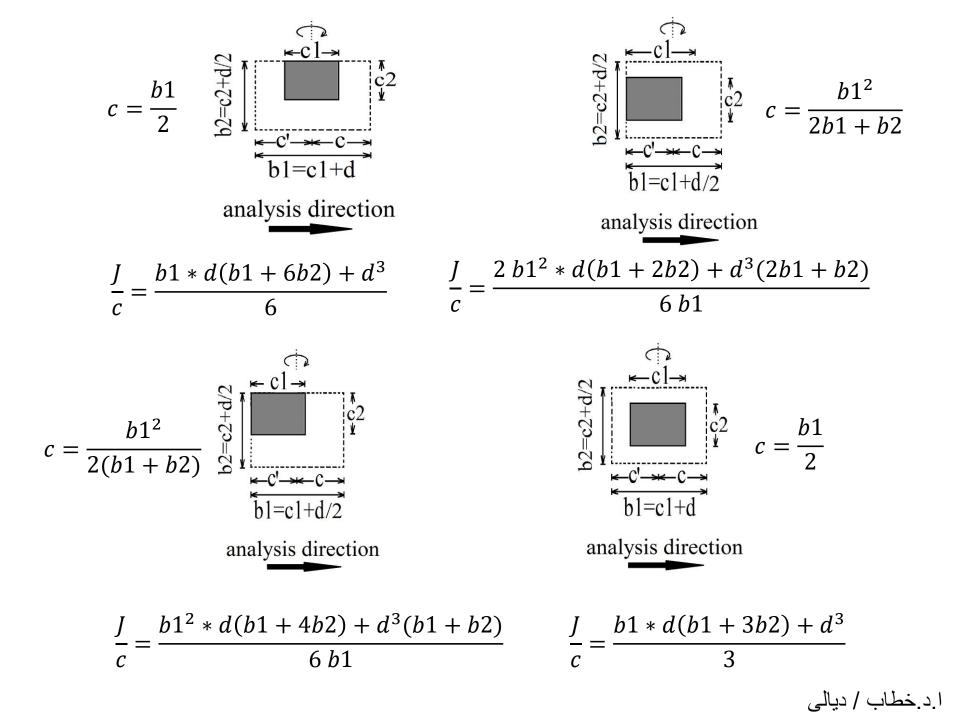
- 1. 1-Use DDM or EFM to find Msc applied on the column
- 2. Calculate Vu at d/2
- 3. Calculate Υ_f
- 4. Modifications of Moment transfer ratios (Table 8.4.2.3.4)
- 5. Calculate $M_{uv} = (1 Y_f) M u$
- 6. Calculate J and c, in addition to $(Ac = critical area = b_0 * d)$ and (c'=b1-c)J = Critical shear section characteristic

c, c'= distance from the (centre to the end) of the critical area

7. Calculate *vul* $(vu1 = \frac{Vu}{Ac} + \frac{Muv c}{J})$ and $(vu2 = \frac{Vu}{Ac} - \frac{Muv c'}{J})$ 8. Calculate φvc

$$Vc = min \begin{cases} \frac{\lambda}{3}\sqrt{f'c} \ b_o \ d \\ \left(1 + \frac{2}{\beta}\right) \frac{\lambda \sqrt{f'c}}{6} \ b_o \ d \\ \left(2 + \frac{\alpha_s}{\beta_o}\right) \frac{\lambda \sqrt{f'c}}{12} \ b_o \ d \end{cases}$$


ا.د.خطاب / دیالی


9. If $\varphi vc \ge vu1$ then ok, otherwise

vu1 $\leq \varphi vv$ ok, otherwise additional strengthening is needed:

- Integral beam $vc_{cracked} = \frac{\lambda}{6}\sqrt{f'c}$, $vu_{max} = \frac{\phi\lambda}{2}\sqrt{f'c}$ vu1≤vu,max ok, otherwise increase f'c or d
- Shear stud reinforcement $vc_{cracked} = \frac{\lambda}{4}\sqrt{f'c}$, $vu_{max} = \frac{2\emptyset\lambda}{3}\sqrt{f'c}$ vu1 \leq vu,max ok, otherwise increase f'c or d

<u>Note</u>: for shear studs or integral beam stirrups, spacing will be: $S = \frac{Av*fy*d}{Vs} = \frac{Av*fy*d}{Vn-Vc} = \frac{\varphi Av*fy*d}{Vu-\varphi Vc} = \frac{(\varphi Av*fy*d)/(b_o d)}{(Vu-\varphi Vc)/(b_o d)} = \frac{\varphi Av*fy*d}{(Vu-\varphi Vc)/b_o}$

