Pre-stressed Concrete Beams

ا.د.خطاب / دیالی

Prestressed reinforced concrete beams

"Prestressed" means a stress that acts even though no external applied loads are acting. The principle of prestressing has been used for centuries, for example, canons, wooden barrels wheels ...etc.

Mild shear reinf.

Production

ادخطاب / دیالی

1-the prestressed tendons are tensioned

2-Pouring concrete.

3- After the concrete had hardened sufficiently, the tendons were cut and the prestressing force is suddenly **transmitted** to the concrete by bond.

Advantages of Prestressing:

1-Crackfree under service loads (no corrosion + effective section).

2-More accommodation of both shrinkage and creep.

3-Shear strength is more consistent than in nonprestressed ones.

4-Higher ability to absorb energy (impact resistance).

5-Higher fatigue resistance.

6-Higher live load.

7-Less deflection.

8-Larger span/depth ratio (for example, nonprestressed slabs 1/28, while prestressed can be 1:45).

9-Higher quality and quantity.

10-More repetitive

Disadvantages of prestressing

1-Higher cost

- 2-Complicated formwork.
- 3-Anchorage and plates are required.

4-Close control.

5-Significant force losses

bonded, aluminium, steel, or other metal **unbonded**, greased to sheathing conduits. steel tubing or rods or tensioning and to protect them from rubber cores that are cast in the concrete corrosion. and removed later. Cement grout is injected into the duct for bonding. The grout is also useful in protecting the steel from corrosion.

facilitate

د خطاب / دیالے

Concrete 4 to 8 ksi (28 to 56 MPa)

In this type of structures, high strength concrete is required because:

- 1-High bond strength is required in pre-tensioning construction.
- 2-High bearing strength is required to resist the high bearing stresses at ends in posttensioning construction.
- 3-High *E* is required to reduce the initial strain values and the strain values of creep.

Properties of Prestressing Steel

- 1) Higher strength
- 2) More ductility
- 3) More bendability
- 4) Higher bond
- 5) Lower relaxation
- 6) Less corrosion.

1 ksi=6.89476 MPa

د خطاب / دیالی

Forms of Pre-stressing Steel

Bars. Bars are available in the following sizes: 10, 12, 16, 20, 22, 25, 28 and 32 mm.

type	Diameter in mm	Tensile strength f _{pu}	Yield Strength f _{py}
Plain	19-35	1035 MPa	85%f _{pu}
Deformed	15-36	1035 MPa	$80\% f_{pu}$

Wires. A pre-stressing wire is a single unit made of steel. The nominal diameters of the wires are 2.5, 3.0, 4.0, 5.0, 7.0 and 8.0 mm. The different types of wires are as follows: 1) Plain wire: No indentations on the surface. 2) Indented wire: There are circular or elliptical indentations on the surface.

Cables. A group of tendons form a prestressing cable. The cables are used in bridges.

Strands. 1) Two-wire strand, 2) Three-wire strand, 3) Seven-wire strand.

Grade	Diameter in mm	Tensile strength f _{pu}	Yield Strength f _{py}
Grade 250 (1725 MPa)	6.35-15.24	1725 MPa	85%f _{pu} , except 90%f _{pu}
Grade 270 (1860 MPa)	9.53-15.24	1860 MPa	for relaxation strand

Tendons. A group of strands or wires are placed together to form a pre-stressing tendon. The tendons are used in post-tensioned members. The following figure shows the cross section of a typical tendon. The strands are placed in a duct which may be filled with grout after the post-tensioning operation is completed.

Note: <u>Steel</u>: <u>Full prestressing:</u> only pre or post stressed steel <u>Partial prestressing:</u> mix of mild and pre or post stressed steel

ا د خطاب / دیالی

Typical Stages of loading: <u>1-Initial stage:</u>

1-a) Prestressing bed stage:

• Full prestressing force (Pi):

 $fsi \leq 94\% fpy < 0.8 fpu < manufacturer recommendation$

1-b) Applying beam own weight

- Full prestressing force (Pi)
- Mg

<u>2-Service stage</u>:

2-a) Prestress loss (Pe): install in bridge

• Loss happened in prestressing force

2-b) Applying full load (Pe):

- Loss happened in prestressing force
- Wg+Ws=Mg+ML+MD

ا د خطاب / دیالی

2-Service stage: (after prestress loss) Pe=prestressing force after losing <Pi

$$fe_{top} = \frac{-Pe}{A} + \frac{Pe * e * c_t}{I}$$
$$fe_{bot} = \frac{-Pe}{A} - \frac{Pe * e * c_b}{I}$$

$$fe_{top} = \frac{-Pe}{A} + \frac{Pe * e * c_t}{I} - \frac{Mg * c_t}{I} - \frac{Ms * c_t}{I}$$

$$fe_{bot} = \frac{-Pe}{A} - \frac{Pe * e * c_b}{I} + \frac{Mg * c_b}{I} + \frac{Ms * c_b}{I}$$

$$Tens.(+)$$

ادخطاب / دیالی

ا د خطاب / دیالی

Permissible Stresses

Concrete compressive stress limits immediately after transfer of prestress

	Concrete compressive stress
Location	limits
End of simply-supported members	$0.70 f_{ci}'$
All other locations	$0.60 f_{ci}'$

Concrete tensile stress limits immediately after transfer of prestress, without additional bonded reinforcement in tension zone

Location	Concrete tensile stress limits
Ends of simply-supported members	$0.50 \sqrt{f_{ci}'}$
All other locations	$0.25 \sqrt{f_{ci}'}$

Concrete compressive stress limits at service loads

	Concrete compressive stress
Load condition	limits
Prestress plus sustained load	$0.45f_{c}'$
Prestress plus total load	$0.60 f_c'$

Serviceability requirements for prestressed and nonprestressed members

	Prestressed			
	Class U	Class T	Class C	Nonprestressed
Assumed behavior	Uncracked	Transition between uncracked and cracked	Cracked	Cracked
Section properties for stress calcula- tion at service loads	Gross section 24.5.2.2	Gross section 24.5.2.2	Cracked section 24.5.2.3	No requirement
Allowable stress at transfer	24.5.3	24.5.3	24.5.3	No requirement
Allowable compressive stress based on uncracked section properties	24.5.4	24.5.4	No requirement	No requirement
Tensile stress at service loads 24.5.2.1	$\leq 0.62 \sqrt{f_c'}$	$0.62 \sqrt{f_c'} < f_t \le 1.0 \sqrt{f_c'}$	No requirement	No requirement
Deflection calculation basis	24.2.3.8, 24.2.4.2 Gross section	24.2.3.9, 24.2.4.2 Cracked section, bilinear	24.2.3.9, 24.2.4.2 Cracked section, bilinear	24.2.3, 24.2.4.1 Effective moment of inertia
Crack control	No requirement	No requirement	24.3	24.3
Computation of Δf_{ps} or f_s for crack control	_	—	Cracked section analysis	$M/(A_s \times \text{lever arm})$, or $2/3f_y$
Side skin reinforcement	No requirement	No requirement	9.7.2.3	9.7.2.3

Classification of prestressed flexural members based on f_t

Assumed behavior	Class	Limits of f _t	
uncracked	\mathbf{U}	$f_t \leq 0.62 \sqrt{f_c'}$	*
Transition between uncracked and cracked	Т	$0.62 \sqrt{f_c'} < f_t \le 1.0 \sqrt{f_c'}$	
cracked	С	$f_t > \ 1.0 \ \sqrt{f_c'}$	

*for prestressed 2-way slabs

Detailed Loss of Prestressing

The initial prestressing force (Pi) will be reduced to effective prestressing force (Pe) due to the following reasons:

1-Elastic shortening of Concrete (ES)

- 2-Creep of Concrete (CR)
- 3-Shirnkage of Concrete (SH)
- 4-Steel Relaxation (RE)

5-Anchorage Slip loss (ANC)

1-Lump Sum Prestressing Losses

Approximate lump sum values for average steel and concrete properties and for average curing conditions are presented in the following table:

	Case	Pre-tensioning%	Post-tensioning
1	Elastic shortening of Concrete (ES)	4%	1%
2	Creep of Concrete (CR)	6%	5%
3	Shrinkage of Concrete (SH)	7%	6%
4	Steel Relaxation (RE)	8%	8%
	Total	25%	20%

2-Detailed Losses

1. Elastic shortening of Concrete (ES)

$$ES = K_{es} E_s \frac{f_{cir}}{E_{ci}} \qquad MPa$$

where:

$$f_{cir} = \frac{Pi}{A} + \frac{Pi * e^2}{A} - \frac{Mg * e}{I}$$

K_{es}=1 for pre-tensioned members
K_{es}=0.5 for post-tensioned members
E_{ci}= 4700 \sqrt{f'ci}
E_s=200000 MPa
Pi=fpi*Aps

2-Creep of Concrete (CR)

$$CR = K_{cr} \; \frac{E_s}{E_c} \; (f_{cir} - f_{cds})$$

where:

 $f_{cds} = \frac{M_d * e}{I}$ $K_{cr}=2$ for pre-tensioned members K_{cr} =1.6 for post-tensioned members $E_c = 4700 \sqrt{f'ci}$ E_s=200000 MPa Pi=fpi*Aps

5

3

7

3-Shirnkage of Concrete (SH)

$$SH = 8.2 * 10^{-6} K_{sh} E_s \left(1 - \frac{0.06}{25} * \frac{V}{S}\right) (100 - RH) MPa$$

where:

 $K_{sh}=1$ for pre-tensioned members K_{sh} = Table for post-tensioned members Days after curing end to RH=relative humidity 1 prestress application Es=200000 MPa Ksh 0.92 0.85 0.8 0.77 0.73 0.64 0.58 0.45 V/S=Volume / Surface area of evaporation

10

20

ا د خطاب / دبالی

30

60

4-Steel Relaxation (RE)

$$RE = [K_{re} - J (SH + CR + ES)]C$$

where:

Kre, J and C from tables:

Carl I	TTO IS	- the second	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1
Y		- Land	- mar	Line p	
Contraction of the local division of the loc	-	- Andrew The	-		
	and and	-	-top-		
			and the state	- Company	
		Contraction of the second	-	-	
			and the second second		
And and a second second second	a state of the sta	min The set	and some sin	and the second	1

Table 2	Values of	Kre and J
---------	-----------	-----------

· · ·			
Type of tendon ²	K _{re} (MPa)	J	
1860 MPa Grade stress-relieved strand or wire	138	0.15	
1720 MPa Grade stress-relieved strand or wire	128	0.14	
1655 MPa or 1620 MPa Grade stress-relieved wire	121	0.13	
1860 MPa Grade low-relaxation strand	35	0.040	
1720 MPa Grade low-relaxation wire	32	0.037	
1655 MPa or 1620 MPa Grade low- relaxation wire	30	0.035	
1000 MPa or 1100 MPa Grade stress- relieved bar	41	0.05	خط

MPa

 Table 2. Values of Coefficient C

f _{pi} /f _{pu}	Stress-relieved	Stress-relieved bar or low-
	strand or wire	relaxation strand or wire
0.80		1.28
0.79		1.22
0.78		1.16
0.77		1.11
0.76		1.05
0.75	1.45	1.00
0.74	1.36	0.95
0.73	1.27	0.90
0.72	1.18	0.85
0.71	1.09	0.80
0.70	1.00	0.75
0.69	0.94	0.70
0.68	0.89	0.66
0.67	0.83	0.61
0.66	0.78	0.57
0.65	0.73	0.53
0.64	0.68	0.49
0.63	0.63	0.45
0.62	0.58	0.41
0.61	0.53	0.37
0.60	0.49	0.33

۱_د

— •

5-Anchorage Slip loss (ANC)

$$ANC = \Delta_{fs} = \frac{\Delta_a E_s}{L}$$
 MPa

where:

 Δ_a =Anchorage deformation L =Length of tendon E_s=200000 MPa

Friction Losses in Post-tensioned members

1-Wobble: means that, the tendon is not perfectly straight when it is stretched, but it is slightly twisted. To overcome that twisting, some additional force is needed.

2- Friction: due to the curvature of the tendon

$$P_x = P_j \ e^{-(k*l_x + \mu*\alpha_x)}$$

where:

Px=prestressing force evaluated at distance lxPj=prestressing force at jacking ende=base of natural logarithms

k=wobble friction coefficient

lx=distance from jacking end of prestressing steel

 μ =post-tensioned curvature friction coefficient

 α_x =total angular change of tendon profile from tendon jacking end to point under considerations. αx is also equal to the change in the slope of the curved profile of tendon (the difference between the slopes at two points gives the value of the subtended angle α).

Flexural strength

The external moment from the applied loads is resisted by the internal force couple:

TZ=CZ

The strength of a pre-stressed beam can be predicted by the same methods developed for ordinary reinforced concrete beams:

For rectangular cross section or flanged section such as (I or T) beams in which the stress block depth is equal to or less than the average flange thickness, the nominal flexural strength is: b - b + b = b

$$M_{n} = A_{ps} f_{ps} (d_{p} - \frac{a}{2})$$

$$a = \frac{A_{ps} f_{ps}}{0.85 f' c b}$$

$$or \qquad M_{n} = \rho_{p} f_{ps} b d_{p}^{2} (1 - 0.588 \rho_{p} \frac{f_{ps}}{f' c})$$

$$T = A_{ps} f_{ps} (d_{p} - \frac{a}{2}) + b_{w}$$

Flexural design strength= \emptyset Mn where \emptyset : strength reduction factor = 0.9

If the stress block depth exceeds the average flange thickness the total prestressed tensile steel area is divided into two parts for computational purposes. The first part A_{pf} acting on the stress f_{ps} provides a tensile force to balance the compression in the overhanging parts of the flange thus

(f_{ps}) the stress in the steel at failure may be taken equal to the following according to the ACI-code (2014), ch.24. If effective pre-stress in the steel fse ≥ 0.5 fpu:

a. For member with **bonded** tendons

$$f_{ps} = f_{pu} \left[1 - \frac{\gamma_p}{\beta_1} \left[\rho_p \frac{f_{pu}}{f'c} + \frac{d}{d_p} (\omega - \omega') \right] \right]$$

where $\omega = \rho \frac{fy}{f'c} \omega' = \rho' \frac{fy}{f'c} \rho_p = \frac{A_{ps}}{b d_p}$

b: width of compression face

 β_1 : the familiar relations between stress block depth and depth to the neutral axis γp : is a factor that depends on the type of pre-stressing steel

$$\gamma p = 0.55$$
 for $f_{py}/f_{pu} \ge 0.80$ high strength bars
0.40 for $f_{py}/f_{pu} \ge 0.85$ ordinary strand
0.28 for $f_{py}/f_{pu} \ge 0.90$ low-relaxation strand
b- For members with **unbounded** tendons with

$$1 - \frac{span}{depth} \le 35$$

$$f_{ps} = f_{se} + 70 + \frac{f'c}{100 \rho_b}$$

$$f_{ps} \le f_{py}$$

$$f_{ps} \le (f_{se} + 420)$$

$$2 - \frac{span}{depth} > 35$$

$$f_{ps} = f_{se} + 70 + \frac{f'c}{300 \rho_b}$$

$$f_{ps} \le f_{py}$$

$$f_{ps} \le (f_{se} + 210)$$

ACI-code requires the total tensile reinforcement must be adequate to support a factored load of at least 1.2*cracking load of beam

$\varphi Mn \ge 1.2Mcr$

To find (*Mcr*) the stress in the bottom fibre *fr* :

$$f_r = -\frac{Pe}{Ac} - \frac{Pe * e * C_2}{I_c} + \frac{M_{cr} C_2}{I_c}$$
$$\therefore M_{cr} = f_r \frac{I_c}{C_2} + P_e \ e + \frac{P_e}{Ac} \left(\frac{I_c}{C_2}\right) = \frac{I_c}{C_2} \left(f_r + \frac{P_e * e * C_2}{I_c} + \frac{P_e}{Ac}\right)$$
Modulus of rapture of concrete $f_r = 0.62\sqrt{f'c}$

To control cracking in prestressed concrete member with unbounded reinforcement, some bonded reinforcement must be added in the form of non-prestressed reinforcement bars uniformly distributed over area of bonded reinforcement

$$As = 0.004 A_{ct}$$

Where A_{ct} area of that part of cross section between the flexural tensile face and the center of the gross concrete cross-section.

Shear in Prestressed Simply Supported Beams

Prestressed beam behaves like an ordinary concrete beam about failure, such as cracking:

$$V_u \le \phi V_n$$
 where $\phi=0.75$
 $V_n=V_c+V_s$

At a distance (h/2) from the face of support, the first critical section lies.

d = the distance from extreme compression fibre to centroid of prestressed and, non-prestressed longitudinal reinforcement if any, noting that $d \ge 0.8h$.

$$\rho_v = \frac{Av}{b_w * s}$$
 web reinforcement ratio

 A_v = area for 2-legs

 $V_{c}\text{=}\min \{V_{ci} \text{ or } V_{cw}\}$ determined by flexure-shear cracking and web-shear cracking

$$V_{ci} = 0.05\lambda\sqrt{f'c} \ b_w \ d_p + V_d + \frac{V_i M_{cr}}{M_{max}} \quad \text{where} \quad V_{ci} \ge 0.14\sqrt{f'c} \ b_w \ d$$
$$M_{cr} = \frac{I}{C_2} \left(0.5 \ \lambda \sqrt{f'c} + f_{pe} - f_d\right)$$

Values of M_{max} and Vi are calculated from the load combination maximum moment to occur at the section

 V_d = shear force at section due to unfactored dead load

 f_d = stress due to unfactored dead load at tension face of the section

 f_{pe} = compressive stress at section face resulting from effective prestress force alone.

 V_i = factored shear force at section due to externally applied loads occurring simultaneously with M_{max}

Web-shear cracks, start in the web due to high diagonal tension, and then spread diagonally both upward and downward.

 $V_{cw} = (0.29\sqrt{f'c} + 0.3f_{pc})b_w d_p + V_p$

 f_{pc} : the compression stress after losses at the centroid of concrete section; $V_p = P_e$ $sin(\theta)$

Approximate equation for prestressed member with $A_{ps} f_{pe} \ge 0.4$ ($A_{ps} f_{pu} + As fy$)

$$V_{c} = (0.05\sqrt{f'c} + 4.8\frac{V_{u} d_{p}}{M_{u}})b_{w} d_{p}$$

$$0.17\sqrt{f'c} b_{w} d \leq V_{c} \leq 0.42\sqrt{f'c} b_{w} d$$

$$\frac{V_{u} d_{p}}{M_{u}} \leq 1.0$$

 V_u and M_u : factored shear and moment at section considered resulting from total factored loads and M_d : moment because of unfactored dead load (moment related to f_d)

Required area of web reinforcement

$$V_{s} = \frac{(V_{u} - \emptyset V_{c})}{\emptyset} \qquad V_{s} = \frac{Av * fy * a}{S}$$
$$\frac{(Vu - \emptyset Vc)}{\emptyset} = \frac{Av * fy * d}{S} \rightarrow Av = \frac{(Vu - \emptyset Vc)S}{\emptyset fy d}$$
$$S = \emptyset \frac{fy \ d \ Av}{Vu - \emptyset Vc}$$

Minimum web reinforcement: minimum area of shear reinforcement must be provided when $Vu > 0.5 \phi Vc$ minimum area is to be taken equal to the smaller of:

$$Av_{min} = 0.062\sqrt{f'c} \frac{b_w S}{f_{yt}} \ge \frac{0.35 b_w S}{f_{yt}}$$

or:

$$Av_{min} = \frac{A_{ps} f_{pu} S}{S_v f_{yt} d} \sqrt{\frac{d}{b_w}}$$

fyt: specified yield strength (fy) of the transvers reinforcement (N/mm²) Max Spacing

$$S \le 0.75h \text{ or } 600mm$$
 $V_s \le 0.33\sqrt{f'c} b_w d$
 $S \le \frac{0.75h}{2} \text{ or } 300mm$ $V_s > 0.33\sqrt{f'c} b_w d$