Cinnala and D			771
Signals and Systems	2017-2018	Dr. Montadar Abas Taher	
Second Year, First Semester		or . munraudi. Ang? 1986.	
in the solidard	Lecture # 6	montadar@jeee.org	

2. Systems and Classification of Systems

In this section, we classify systems into six basic categories:

(i) linear and non-linear systems;

(ii) time-invariant and time-varying systems;

(iii) systems with and without memory;

(iv) causal and non-causal systems;

(v) invertible and non-invertible systems;

(vi) stable and unstable systems.

In the following discussion, we make use of the following notations:

CT system	x(t)	\rightarrow	y(t);
DT system			y[k];

2.2.1 Linear and non-linear systems

A CT system with the following set of inputs and outputs:

 $x_1(t) \rightarrow y_1(t) \text{ and } x_2(t) \rightarrow y_2(t)$

is linear if it satisfies the additive and the homogeneity properties described below:

additive property:	$x_1(t) + x_2(t) \rightarrow y_1(t) + y_2(t);$	(2.28)
homogeneity property:	$\alpha x_1(t) \rightarrow \alpha y_1(t);$	(2.20)

or: A CT system with the following sets of inputs and outputs:

is linear if

$$x_1(t) \rightarrow y_1(t) \text{ and } x_2(t) \rightarrow y_2(t)$$

$$\alpha x_1(t) + \beta x_2(t) \rightarrow \alpha y_1(t) + \beta y_2(t) \qquad (2.30)$$

for any arbitrary set of values for α and β , and for all possible combinations of inputs and outputs.

Likewise, a DT system with

$$x_1[k] \rightarrow y_1[k] \text{ and } x_2[k] \rightarrow y_2[k],$$

is linear if

$$\alpha x_1[k] + \beta x_2[k] \rightarrow \alpha y_1[k] + \beta y_2[k]$$
(2.31)

for any arbitrary set of values for α and β , and for all possible combinations of inputs and outputs.

signals and systems: by Dr. Montadar Abas Taher 49 2017-2018

B: 1 10			78
Signals and Systems	2017-2018	De Mentedes AL T.	
Second Year, First Semester	2017 2010	Dr. Montadar Abas Taher	
and in i cal, i i st delitestel.		montadar@ieee.org	

Example 2.10: Consider the CT systems with the following input-output relationships:

(a) differentiator	$y(t) = \frac{dx(t)}{dt}$	(2.33)
(b) exponential amplifier(c) amplifier	$ \begin{aligned} x(t) &\to e^{x(t)} \\ y(t) &= 3x(t) \end{aligned} $	(2.34)
(d) amplifier with additive	bias $y(t) = 3x(t) + 5$	(2.35) (2.36)
Det i i i i		

Determine whether the CT systems are linear.

Solution

(a) From Eq. (2.33), it follows that

$$x_1(t) \to \frac{dx_1(t)}{dt} = y_1(t)$$

and

$$x_2(t) \to \frac{dx_2(t)}{dt} = y_2(t)$$

which yields

$$\alpha x_1(t) + \beta_1 x_2(t) \rightarrow \frac{\mathrm{d}}{\mathrm{d}t} \{ \alpha x_1(t) + \beta_1 x_2(t) \} = \alpha \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} + \beta \frac{\mathrm{d}x_2(t)}{\mathrm{d}t}.$$

Since

$$\alpha \frac{\mathrm{d}x_1(t)}{\mathrm{d}t} + \beta \frac{\mathrm{d}x_2(t)}{\mathrm{d}t} = \alpha y_1(t) + \beta y_2(t),$$

the differentiator as represented by Eq. (2.33) is a linear system. (b) From Eq. (2.34), it follows that

and

$$\mathbf{u}(t) \rightarrow \mathbf{e}^{\mathbf{x}_1(t)} = \mathbf{y}_1(t)$$

$$x_2(t) \rightarrow e^{x_2(t)} = y_2(t),$$

giving

$$\alpha x_1(t) + \beta x_2(t) \rightarrow e^{\alpha x_1(t) + \beta x_2(t)}$$

Since

$$e^{\alpha x_1(t) + \beta x_2(t)} = e^{\alpha x_1(t)} \cdot e^{\beta x_2(t)} = [y_1(t)]^{\alpha} + [y_2(t)]^{\beta} \neq \alpha y_1(t) + \beta y_2(t),$$

the exponential amplifier represented by Eq. (2.34) is not a linear system.

signals and systems: by Dr. Montadar Abas Taher 50 2017-2018

Signals	and S	ysten	15
Second	Year,	First	Semeste

2017-2018

$$x_1(t) \to 3x_1(t) = y_1(t)$$

and

 $x_2(t) \rightarrow 3x_2(t) = y_2(t),$

giving

 $\alpha x_1(t) + \beta x_2(t) \rightarrow 3\{\alpha x_1(t) + \beta x_2(t)\} = 3\alpha x_1(t) + 3\beta x_2(t)$ $= \alpha y_1(t) + \beta y_2(t).$

Therefore, the amplifier of Eq. (2,35) is a linear system.

(d) From Eq. (2.36), we can write

 $x_1(t) \rightarrow 3x_1(t) + 5 = y_1(t)$

and

$$x_2(t) \to 3x_2(t) + 5 = y_2(t),$$

giving

$$\alpha x_1(t) + \beta x_2(t) \rightarrow 3[\alpha x_1(t) + \beta x_2(t)] + 5.$$

Since

 $3[\alpha x_1(t) + \beta x_2(t)] + 5 = \alpha y_1(t) + \beta y_2(t) - 5,$

the amplifier with an additive bias as specified in Eq. (2.36) is not a linear system.

Example 2.11

Consider two DT systems with the following input-output relationships:

(a) differencing system	y[k] = 3(x[k] - x[k - 2]);	(2.37)
(b) sinusoidal system	y[k] = sin(x[k]).	(2.38)

r.[b] -

Determine if the DT systems are linear.

Solution

(a) From Eq. (2.37), it follows that:

and

$$x_1[k] \to 3x_1[k] - 3x_1[k-2] = y_1[k]$$
$$x_2[k] \to 3x_2[k] - 3x_2[k-2] = y_2[k],$$

2x [1] ---

signals and systems: by Dr. Montadar Abas Taher 51 2017-2018

Signals and Systems Second Year, First Semester	2017-2018	Dr. Montadar Abas Taher	80
		montadar@ieee.org	

giving

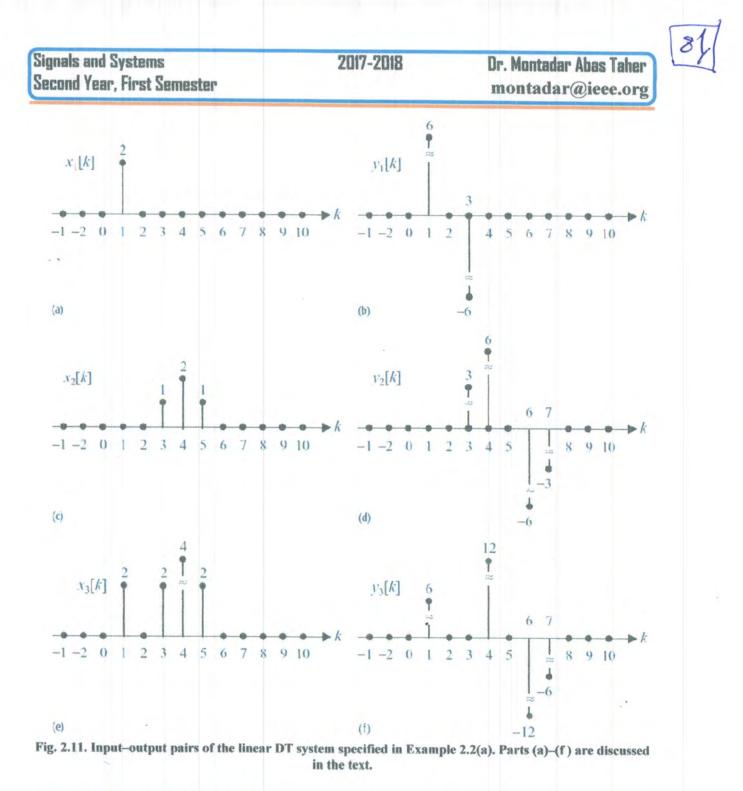
 $\alpha x_1[k] + \beta x_2[k] \twoheadrightarrow 3\alpha x_1[k] - 3\alpha x_1[k-2] + 3\beta x_2[k] - 3\beta x_2[k-2].$

Since

 $3\alpha x_1[k] + 3\alpha x_1[k-2] + 3\beta x_2[k] - 3\beta x_2[k-2] = \alpha y_1[k] + \beta y_2[k],$

the differencing system, Eq. (2.37), is linear.

- To illustrate the linearity property graphically, we consider two DT input signals $x_1[k]$ and $x_2[k]$ shown in the two top-left subplots in Figs. 2.11(a) and (c).
- The resulting outputs y₁[k] and y₂[k] for the two inputs applied to the differencing system, Eq. (2.37), are shown in the two top-right stem subplots in Figs. 2.11(b) and (d), respectively.
- A linear combination, x₃[k] = x₁[k] +2x₂[k], of the two inputs is shown in the bottom-left subplot in Fig. 2.11(e).
- The resulting output y₃[k] of the system for input signal x₃[k] is shown in the bottomright subplot in Fig. 2.11(f).
- By looking at the subplots, it is clear that the output $y_3[k] = y_1[k] + 2y_2[k]$.
- In other words, the output y₃[k] can be determined by using the same linear combination
 of outputs y₁[k] and y₂[k] as the linear combination used to obtain x₃[k] from x₁[k] and
 x₂[k].



(b) From Eq. (2.38), it follows that:

$$x_1[k] \to \sin(x_1[k]) = y_1[k], \quad x_2[k] \to \sin(x_2[k]) = y_2[k],$$

giving

 $\alpha x_1[k] + \beta x_2[k] \rightarrow \sin(\alpha x_1[k]) + \sin(\beta x_2[k]) \neq \alpha y_1[k] + \beta y_2[k];$

therefore, the sinusoidal system in Eq. (2.38) is not linear.

signals and systems: by Dr. Montadar Abas Taher 53 2017-2018

Signals and Systems	2017-2018	Dr. Montadar Abas Taher	6
Second Year, First Semester		montadar@ieee.org	

Example 2.12

Consider the AM system with input-output relationship given by

 $s(t) = [1 + 0.2m(t)] \cos(2\pi \times 10^8 t).$

Determine if the AM system is linear.

Solution

From Eq. (2.39), it follows that: $m_1(t) \rightarrow [1 + 0.2m_1(t)] \cos(2\pi \times 10^8 t) = s_1(t)$

and

 $m_2(t) \rightarrow [1 + 0.2m_2(t)] \cos(2\pi \times 10^9 t) = s_2(t)$

giving

$$\alpha m_1(t) + \beta m_2(t) \rightarrow [1 + 0.2\{\alpha m_1(t) + \beta m_2(t)\}] \cos(2\pi \times 10^8 t) \neq \alpha s_1(t) + \beta s_2(t).$$

Therefore, the AM system is not linear.

2.2.2 Time-varying and time-invariant systems

A system is said to be time-invariant (TI) if a time delay or time advance of the input signal leads to an identical time-shift in the output signal.

A CT system with $x(t) \rightarrow y(t)$ is time-invariant if $x(t - t_0) \rightarrow y(t - t_0)$ (2:40)

for any arbitrary time-shift t_0 .

Likewise, a DT system with	$x[k] \rightarrow y[k]$	is time-invariant if	
	$x[k - k0] \rightarrow y$	[k - k0]	(2.41)

for any arbitrary discrete shift k_0 .

Example 13: Consider two CT systems represented mathematically by the following inputoutput relationship:

(i)	system I	$y(t) = \sin(x(t));$	(2.42)
(ii)	system II	$y(t) = t\sin(x(t)).$	(2.43)

Determine if systems (i) and (ii) are time-invariant.

signals and systems: by Dr. Montadar Abas Taher 54	montadar@ieee.org
2017-2018	

(2.39)

Signals and Systems Second Year, First Semester 2017-2018

Solution:

(i) From Eq. (2.42), it follows that:

$$\mathbf{x}(t) \to \sin(\mathbf{x}(t)) = \mathbf{y}(t)$$

and

$$x(t - t_0) \to \sin(x(t - t_0)) = y(t - t_0).$$

Since $sin[x(t - t_0)] = y(t - t_0)$, system I is time-invariant.

- We demonstrate the time-invariance property of system I graphically in Fig. 2.13,
- where a time-shifted version x(t 1) of input x(t) produces an equal shift of one time unit in the original output y(t) obtained from x(t).

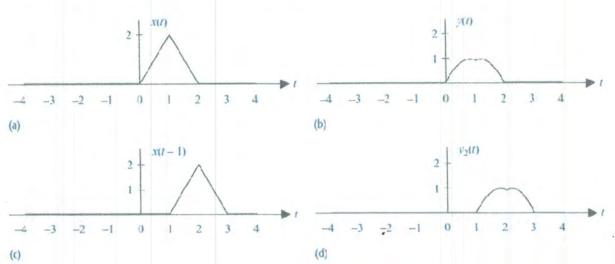


Fig. 2.13. Input-output pairs of the CT time-invariant system specified in Example 2.13(i).
(a) Arbitrary signal x(t). (b) Output of system for input signal x(t). (c) Signal x(t - 1). (d) Output of system for input signal x(t - 1). Note that except for a time-shift, the two output signals are identical.

(ii) From Eq. (2.43), it follows that:

$$x(t) \rightarrow t \sin(x(t)) = y(t)$$
.

If the time-shifted signal $x(t - t_0)$ is applied at the input of Eq. (2.43), the new output is given by $x(t - t_0) \rightarrow t \sin(x(t - t_0))$.

The shifted output $y(t - t_0)$ is given by

Since
$$y(t - t_0) = (t - t_0) \sin(x(t - t_0))$$
.
 $t \sin[x(t - t_0)] \neq y(t - t_0)$, system II is not time-invariant.

The time-invariance property of system II is demonstrated in Fig. 2.14, where we observe that a right shift of one time unit in input x(t) alters the shape of the output y(t).

signals and systems: by Dr. Montadar Abas Taher 55 2017-2018

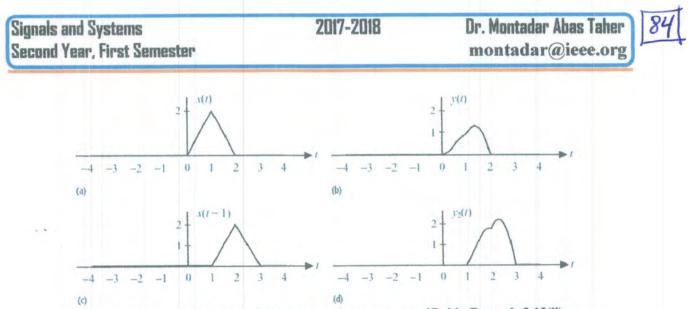


Fig. 2.14. Input-output pairs of the time-varying system specified in Example 2.13(ii).
 (a) Arbitrary signal x(t). (b) Output of system for input signal x(t). (c) Signal x(t - 1). (d) Output of system for input signal x(t - 1). Note that the output for time-shifted input x(t - 1) is different from the output y(t) for the original input x(t).

Example 2.14: Consider two DT systems with the following input-output relationships:(i) system Iy[k] = 3(x[k] - x[k-2]);(2.44)(ii) system IIy[k] = k x[k].(2.45)

Determine if the systems are time-invariant.

Solution:

(i) From Eq. (2.44), it follows that:

$$x[k] \to 3(x[k] - x[k-2]) = y[k]$$
$$x[k-k_0] \to 3(x[k-k_0] - x[k-k_0-2]) = y[k-k_0]$$

Therefore, the system in Eq. (2.44) is a time-invariant system.

(ii) From Eq. (2.45), it follows that:

$$x[k] \rightarrow kx[k] = y[k]$$

and

$$x[k - k_0] \rightarrow kx[k - k_0] \neq y[k - k_0] = (k - k_0)x[k - k_0].$$

Therefore, system II is not time-invariant.

In Fig. 2.15, we plot the outputs of the DT system in Eq. (2.45) for input x[k], shown in Fig. 2.15(a) and a shifted version x[k - 2] of the input, shown in Fig. 2.15(c). The resulting outputs are plotted, respectively, in Figs. 2.15(b) and (d). As expected, the Fig. 2.15(d) is not a delayed version of Fig. 2.15(b) since the system is time-variant.

signals and systems: by Dr. Montadar Abas Taher 56 2017-2018

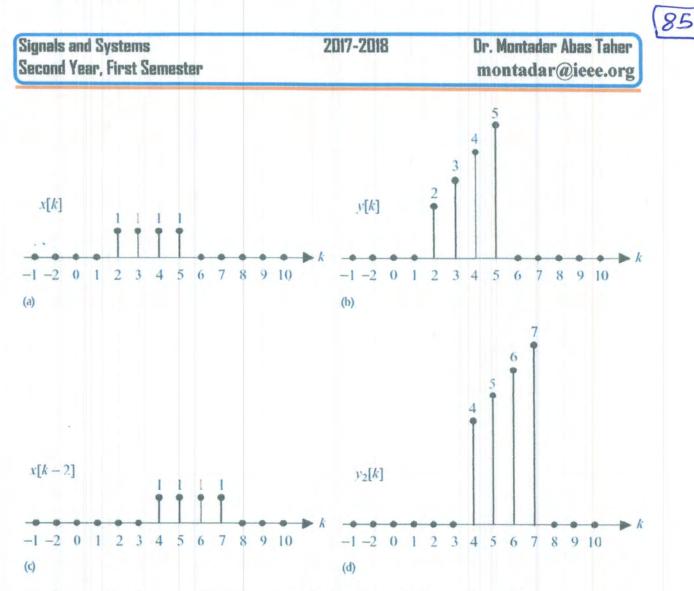


Fig. 2.15. Input-output pairs of the DT time-varying system specified in Example 2.14(ii). The output $y_2[k]$ for the time-shifted input $x_2[k] = x [k-2]$ is different in shape from the output y[k] obtained for input x[k]. Therefore the system is time-variant. Parts (a)-(d) are discussed in the text.

2.2.3 Systems with and without Memory

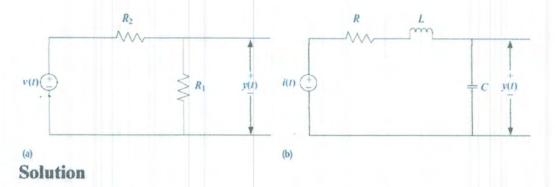
- A CT system is said to be without memory (*memoryless or instantaneous*) if it's output y(t) at time $t = t_0$ depends only on the values of the applied input x(t) at the same time $t = t_0$.
- > On the other hand, if the response of a system at $t = t_0$ depends on the values of the input x(t) in the past or in the future of time $t = t_0$, it is called a dynamic system, or a system with memory.
- > Likewise, a DT system is said to be *memoryless* if its output y[k] at instant $k = k_0$ depends only on the value of its input x[k] at the same instant $k = k_0$. Otherwise, the DT system is said to have memory.

Signals and Systems	2017-2018	Dr. Montadar Abas Taher
Second Year, First Semester		montadar@ieee.org

86

Example 2.15

Determine if the two electrical circuits shown are memoryless.



The relationship between the input voltage v(t) and the output voltage y(t) across resistor R_{\perp} in the electrical circuit of Fig. 2.16(a) is given by

$$y(t) = \frac{R_1}{R_1 + R_2} v(\tau).$$
(2.46)

For time $t = t_0$, the output $y(t_0)$ depends only on the value $v(t_0)$ of the input v(t) at $t = t_0$. The electrical circuit shown in Fig. 2.16(a) is, therefore, a memoryless system.

The relationship between the input current i(t) and the output voltage y(t) in Fig. 2.16(b) is given by

$$\mathbf{y}(t) = \frac{1}{C} \int_{-\infty}^{t} i(\tau) \mathrm{d}\tau, \qquad (2.47)$$

To compute the output voltage $y(t_0)$ at time t_0 , we require the value of the current source for the time range $(-\infty, t_0]$, which includes the entire past. Therefore, the electrical circuit in Fig. 2.16(b) is not a memoryless system.

Another examples of systems are shown in the following table:

Table 2.1. Examples of CT and DT systems with and without memory

Continuous-time		Discrete-time	
Memoryless systems	Systems with memory	Memoryless systems	Systems with memory
y(t) = 3x(t) + 5	y(t) = x(t-5)	y[k] = 3x[k] + 7	y[k] = x[k - 5]
$y(t) = \sin\{x(t)\} + 5$	y(t) = x(t+2)	$y[k] = \sin(x[k]) + 3$	y[k] = x[k+3]
$\mathbf{y}(t) = \mathbf{e}^{\mathbf{x}(t)}$	y(t) = x(2t)	$y[k] = e^{x[k]}$	y[k] = x[2k]
$y(t) = x^2(t)$	y(t) = x(t/2)	$y[k] = x^2[k]$	y[k] = x[k/2]

signals and systems: by Dr. Montadar Abas Taher 58 2017-2018

2.2.4 Causal and Non-causal systems

A CT system is causal if the output at time t_0 depends only on the input x(t) for $t \le t_0$. A DT system is causal if the output at time instant k_0 depends only on the input x[k] for $k \le k_0$.

- Note that all memoryless systems are causal systems because the output at any time instant depends only on the input at that time instant.
- Systems with memory can either be causal or non-causal.
- Causality is a required condition for the system to be physically realizable.
- > A non-causal system is a predictive system and cannot be implemented physically.

CT systems		DT systems	
Causal	Non-causal	Causal	Non-causal
y(t) = x(t-5) $y(t) = \sin\{x(t-4)\} + 3$ $y(t) = e^{x(t-2)}$ $y(t) = x^{2}(t-2)$ y(t) = x(t-2) + x(t-5)	y(t) = x(t+2) $y(t) = sin\{x(t+4)\} + 3$ y(t) = x(2t) y(t) = x(t/2) y(t) = x(t-2) + x(t+2)	y[k] = 3x[k-1] + 7 y[k] = sin(x[k-4]) + 3 $y[k] = e^{x[k-2]}$ $y[k] = x^{2}[k-5]$ y[k] = x[k-2] + x[k-8]	y[k] = x[k+3] y[k] = sin(x]k+4]) + 3 y[k] = x[2k] y[k] = x[k/2] y[k] = x[k+2] + x[k-8]

Example 2.16

(i)	CT time-delay system	$y(t) = x(t-2) \Rightarrow$ causal system;
(ii)	CT time-forward system	$y(t) = x(t+2) \Rightarrow$ non-causal system;
(iii)	DT time-delay system	$y[k] = x[k-2] \Rightarrow$ causal system;
(iv)	DT time-advance system	$y[k] = x[k+2] \Rightarrow$ non-causal system:
(v)	DT linear system	$y[k] = x[k-2] + x[k+10] \Rightarrow$ non-causal
		system.

2.2.6 Stable and Unstable systems

Before defining the stability criteria for a system, we define the bounded property for a signal.

A CT signal x(t) or a DT signal x[k] is said to be bounded in magnitude if

CT signal	$ x(t) \leq B_x < \infty$ for $t \in (-\infty, \infty)$;	(2.48)
DT signal	$ x[k] \leq B_x < \infty$ for $k \in (-\infty, \infty)$,	(2.49)

where B_x is a finite number.

A system is referred to as **bounded-input**, **bounded-output** (**BIBO**) stable if an arbitrary bounded-input signal always produces a bounded-output signal.

CT system	$ y(t) \leq B_y < \infty$ for $t \in (-\infty, \infty)$;	(2.50)
DT system	$ y[k] \leq B_y < \infty$ for $k \in (-\infty, \infty)$.	(2.51)

signals and systems: by Dr. Montadar Abas Taher 59 2017-2018

Signals and Systems	2017-2018	Dr. Montadar Abas Taher	2
Second Year, First Semester		montadar@ieee.org	

Example 2.17: Determine if the following CT systems are stable.

(i) Incrementally linear system: y(t) = 50x(t) + 10. (2.52) (ii) Integrator: $y(t) = \int_{-\infty}^{t} x(\tau) d\tau$ (2.53)

Solution: (i) Assume $|x(t)| \leq B_x$ for all t.

Based on Eq. (2.52), it follows that:

 $y(t) \leq 50B_x + 10 = B_y$ for all t.

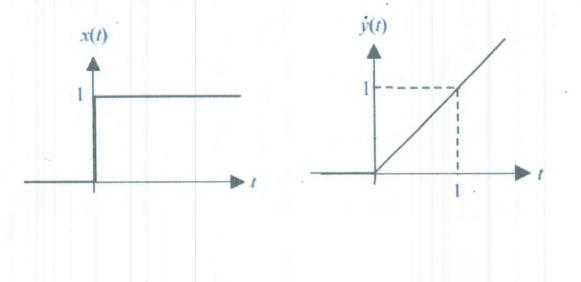
As the magnitude of y(t) does not exceed $50B_x + 10$, which is a finite number, the incrementally linear system given in Eq. (2.52) is a stable system.

(ii) This system integrates the input signal from $= -\infty$ to t.

Assume that a unit-step function x(t) = u(t) is applied at the input of the integrator. The output of the system is given by

 $y(t) = tu(t) = \begin{cases} 0 & t < 0 \\ t & t \ge 0. \end{cases}$

Signal y(t) is plotted. It is observed that y(t) increases steadily for t > 0 and that there is no upper bound of y(t). Hence, the integrator is not a BIBO stable system.



Signals and Systems	2017-2018	Dr. Montadar Abas Taher	0
Second Year, First Semester		montadar@ieee.org	

Example 2.18: Determine if the following DT systems are stable.

(i) $y[k] = 50 \sin(x[k]) + 10.$	(2.54)
(ii) $y[k] = e^{x[k]}$.	(2.55)
(iii) $y[k] = \sum_{m=-2}^{2} x[k-m]$	(2.56)
(iv) $y[k] = \sum_{m=-\infty}^{k} x[m]$	(2.57)

Solution:

(i) $y[k] = 50 \sin(x[k]) + 10$.

- Note that sin(x[k]) is bounded between [-1, 1] for any arbitrary choice of x[k].
- The output y[k] is therefore bounded within the interval [-40, 60]. Therefore, system (i) is stable.

(ii) $y[k] = e^{x[k]}$.

Assume $|x[k]| \leq B_x$ for all . Based on Eq. (2.52), it follows that:

 $y[k] \leq e^{B_x} = B_y$ for all k.

o Therefore, system (ii) is stable.

(iii) $y[k] = \sum_{m=-2}^{2} x[k-m]$ The output is expressed as follows:

y[k] = x[k-2] + x[k-1] + x[k] + x[k+1] + x[k+2].

If $|x[k]| \le B_x$ for all k, then $|y[k]| \le 5B_x$ for all k. Therefore, the system is stable.

(iv) $y[k] = \sum_{m=-\infty}^{k} x[m]$

- The output is calculated by summing an infinite number of input signal values.
- Hence, there is no guarantee that the output will be bounded even if all the input values are bounded.
- o System (iv) is, therefore, not a stable system.

Signals and Systems Second Year, First Semester

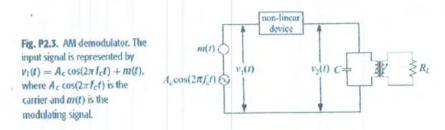
2017-2018

Problems:

2.3 Figure P2.3 shows the schematic of a square-law demodulator used in the demodulation of an AM signal. Demodulation is the process of extracting the information-bearing signal from the modulated signal. The input-output relationship of the non-linear device is approximated by (assuming $v_1(t)$ is small)

$$v_2(t) = c_1 v_1(t) + c_2 v_1^2(t),$$

- where c_1 and c_2 are constants, and $v_1(t)$ and $v_2(t)$ are, respectively, the input and output signals.
 - (i) Show that the demodulator is a non-linear device.
 - (ii) Determine whether the non-linear device is (a) time-invariant,(b) memoryless, (c) invertible, and (d) stable.



2.9 The following CT systems are described using their input-output relation-ships between input x(t) and output y(t). Determine if the CT systems are (a) linear, (b) time-invariant, (c) stable, and (d) causal.

(i)
$$y(t) = x(t-2);$$

(ii) $y(t) = x(2t-5);$
(iii) $y(t) = x(2t) - 5;$
(iv) $y(t) = tx(t+10);$
(v) $y(t) = \begin{cases} 2 & x(t) \ge 0 \\ 0 & x(t) < 0; \end{cases}$
(vi) $y(t) = \begin{cases} 0 & t < 0 \\ x(t) - x(t-5) & t \ge 0; \end{cases}$
(vii) $y(t) = 7x^{2}(t) + 5x(t) + 3;$
(viii) $y(t) = sgn(x(t));$
(ix) $y(t) = sgn(x(t));$
(ix) $y(t) = \int_{-\infty}^{t_{0}} x(\lambda)d\lambda + 2x(t);$
(x) $y(t) = \int_{-\infty}^{t_{0}} x(\lambda)d\lambda + \frac{dx}{dt};$
(xi) $\frac{d^{4}y}{dt^{4}} + 3\frac{d^{3}y}{dt^{3}} + 5\frac{d^{2}y}{dt^{2}} + 3\frac{dy}{dt} + y(t) = \frac{d^{2}x}{dt^{2}} + 2x(t) + 1.5$

signals and systems: by Dr. Montadar Abas Taher $\overline{62}$ 2017-2018

Signals and Systems	2017-2018	Dr. Montadar Abas Taher	1-4
Second Year, First Semester		montadar@ieee.org	

- 2.10 The following DT systems are described using their input-output relation-ships between input x[k] and output y[k]. Determine if the DT systems are (a) linear, (b) time-invariant, (c) stable, and (d) causal.
 - (i) y[k] = ax[k] + b; (ii) y[k] = 5x[3k - 2];
 - (iii) $v[k] = 2^{x[k]}$;

 - (iv), $y[k] = \sum_{m=-\infty}^{k} x[m];$
 - (v) $y[k] = \sum_{m=k-2}^{k+2} x[m] 2|x[k]|;$
 - (vi) y[k] + 5y[k-1] + 9y[k-2] + 5y[k-3] + y[k-4]= 2x[k] + 4x[k-1] + 2x[k-2].
- (vii) v[k] = 0.5x[6k 2] + 0.5x[6k + 2].

2.11 For an LTIC system, an input x(t) produces an output y(t) as shown in Fig. P2.11. Sketch the outputs for the following set of inputs:

(i) 5x(t); (ii) 0.5x(t-1) + 0.5x(t+1); (iii) x(t+1) - x(t-1); (iv) $\frac{dx(t)}{dt} + 3x(t)$.

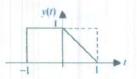
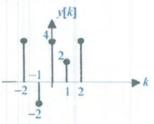


Fig. P2.11. CT output y(t) for Problem 2.11.



2.12 For a DT linear, time-invariant system, an input x[k] produces an output y[k] as shown in Fig. P2.12. Sketch the outputs for the following set of inputs:

(i) 4x[k-1]: (iii) x[k+1] - 2x[k] + x[k-1]; (ii) 0.5x[k-2] + 0.5x[k+2]; (iv) x[-k].

Fig. P2.12. DT output y[k] for Problem 2.12.

signals and systems: by Dr. Montadar Abas Taher 632017-2018