Signal Processing Lec.9

Filters

9.1 Introduction

Filters are networks that process signals in a frequency-dependent manner. The basic
concept of a filter can be explained by examining the frequency dependent nature of the
Impedance of capacitors and inductors.

Filters have many practical applications:
1. A simple, single-pole, low-pass filter (the integrator) is oft %@ stabilize
amplifiers by rolling off the gain at higher frequencies where % phase shift
may cause oscillations.

2. A simple, single-pole, high-pass filter can be used to%dc ffset in high gain

amplifiers or single supply circuits.

3. Filters can be used to separate signals, passing t
unwanted frequencies. An example of this is a radi
wish to process is passed through, typically wij in,

signals.

4. In data conversion, filters are also used “to ate the effects of aliases in A/D
systems. They are used in reconstruction, of signal at the output of a D/A as well,
eliminating the higher frequenay c s, such as the sampling frequency and its
harmonics, thus smoothing t

st, and attenuating the
ecéiver, where the signal you
ile attenuating the rest of the

f

An ideal filter will have an amplitude ¥esponse that is unity (or at a fixed gain) for the
frequencies of interest (call%@ss band) and zero everywhere else (called the stop

band). The frequency he response changes from passband to stopband is
referred to as the %u cy.

9.2 Types Of Eilters

®
9.21Th types of electronic filters and many ways that they can be classified. A
filters fr cysselectivity is probably the most common method of classification. A filter
can lQw pass, high pass, band pass, or band stop response, where each name indicates

how a f frequencies is affected as explained below:
1. Lew pass filter: In this filter, the low frequencies are in the pass band and the higher

frequencies are in the stop band. An idealized low pass filter is shown in Figure 9.1(a).

Asst. Lec. Haraa Raheem Page 1




Signal Processing Lec.9

2. High pass filter: in this filter, the low frequencies are in the stop-band, and the high
frequencies are in the pass band. An idealized high pass filter is shown in Figure
9.1(b).

3. Band Pass Filter: If a high-pass filter and a low-pass filter are cascaded, a
filter is created. this filter passes a band of frequencies between a
frequency, f I, and an upper cutoff frequency, f h. Frequencies below
are in the stop band. An idealized band pass filter is shown in Figure )

4. Band-Reject, Or Notch Filter (Band Stop): Here, the p de frequencies
below f | and above f h. The band from f | to f h is in nd. Figure 9.1(D)

shows a notch response. @

h F 3

N _

fe FREQUENCY fe FREQUENCY-—
(A) Lowpass (B) Highpass

.

MAGNITUDE
MAGNITUDE

MAGNITUDE
MAGNITUDE

N

» >
fy f FREQUENCY L fh FREQUENCY

(C) Bandpass (D) Notch (Bandreject)
%“ W

The idealized filters defined above, unfortunately, cannot be easily built. The transition from
pass band to stop band will not be instantaneous, but instead there will be a transition region.
Stop band attenuation will not be infinite. Figure (9.2) shows the practical(realistic) filters.

Figure 9.1: Idealized Filter Responses
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Figure 9.2: realistic FilteWé

9.2.2 Analog and Digital filter
Another means of classifying filters % ementation method used. Some filters
will be built to filter analog signals Wi ual components mounted on circuit boards,

while other filters might simply be partif a targer digital system which has other functions as
well.
1. Digital filters are implementeg using a digital computer or special purpose digital

hardware.
2. Analog filtefs, ma classified as either passive or active and are usually
implemented R, and C components and operational amplifiers.

9.3 Specific &ﬂlters
There gre primary sets of specifications necessary to completely define a filter's

res e, of these can be provided in different ways.
o uency specifications used to describe the passband(s) and stopband(s) could
provided in hertz (Hz) or in radians/second (rad/sec).

e The other major filter specifications are the gain characteristics of the passband(s) and
stopband(s) of the filter response. A filter's gain is simply the ratio of the output signal
level to the input signal level. If the filter's gain is greater than 1, then the output signal
Is larger than the input signal, while if the gain is less than 1, the output is smaller than
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the input. In most filter applications, the gain response in the stopband is very small.
For this reason, the gain is typically converted to decibels (dB) as indicated in (9.1).
For example, a filter's passband gain response could be specified as 0.707 or as
—3.0103 dB, while the stopband gain might be specified as 0.0001 or —80.0 dB.

Gain(dB) = 20 log(gain) (9.1)

As we can see, the values in decibels are more manageable for very small . filter

designers prefer to use attenuation (or loss) values instead of gain v. %n ation is

simply the inverse of gain. For example, a filter with a gain of 1/2 at % r frequency

would have an attenuation of 2 at that frequency. If we expres ie@”in decibels we

will find that it is simply the negative of the gain in decibels as igdicated ™ (9.2). Gain values
Js

expressed in decibels will be the standard quantities use jlter gpecifications, although the
term attenuation (or loss) will be used occasionally when

Attn.(dB) = 20* log (1/gain ) = —20 *log(gain) = (9.2)

% in Figure 9.3, opposite.

quency at which the filter response leaves the error
rth response filter).

band (or the —3 dB point for.a Butter
2. The stop band frequenci @&e frequency at which the minimum attenuation in the

The five parameters of a practical filt

1. The cutoff frequency (Fc) is the

stopband is reached.
3. The pass band ripple ( is the variation (error band) in the pass band response.
4. The minimum pass attenuation (Amin) defines the minimum signal attenuation
within the Stop band.
5. The steefnes e filter is defined as the order (n) of the filter. N is also the number of
olesfin the transfer function. A pole is a root of the denominator of the transfer function.
3&@ a zero is a root of the numerator of the transfer function.
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e Note that not all filters will have'all thése features

9.4 FILTER TRANSFERIFUNGTIONS

An analog filter is 'nea%n that has an input and output signal. This system’s primary
purpose is to chanN ncy response characteristics of the input signal as it moves
through the filter. The chagdCteristics of this filter system could be studied in the time domain
or the frequen@y,domain. From a systems point of view, the impulse response h(t) could be

%/stem in the time domain. The impulse response of a system is the
output o that has had an impulse applied to the input. Of course, many systems
to sustain an infinite spike (the impulse) being applied to the input of the
re are ways to determine h(t) without actually applying the impulse. A filter
systemtcan also be described in the frequency domain by using the transfer function H(s).
The transfer function of the system can be determined by finding the Laplace transform of
h(t). Figure 9.4 indicates that the filter system can be considered either in the time domain or
in the frequency domain. However, the transfer function description is the predominant
method used in filter design, and we will perform most of our filter design using it.
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Input Cutput

Filter System | _
Vi(s), vi(t H(s) or h(y Vo(S), Volt)

Figure 9.4 The filter as a system

9.4.1 Transfer Function Characterization

The transfer function H(s) for a filter system can be characterized |n fways As
shown in (9.4), H(s) is typically represented as the ratio of two p s where in this
case the numerator polynomial is order m and the denominator ﬁ‘ IyRomial of order n. G

represents an overall gain constant that can take on any v%\

-[m—ﬂm-1-5m_1—ﬂm-z'3m -+ ay -5 +ag]

H{sjl:G

-2

[s" + b, s +b, 5 -s"

Transfer function can be represented as: \0

G-[(s+z¢)-(s+z1)(5+zp)-(5+ 2)]
[(-5"'}5':]]"':S—P1)"'(-5+P”_1}'(5+Pn_1]]

9.5 Analog Filter Dm
The design of a digitaN#her usually begins with the choice of a CT transfer function H (s)

: This approachiis an storlcal artifact, owing to the fact that CT .filter design is a mature
subject, thogough eloped during the first half of the 20th century. As we will see,
r%

T "+I?1-S+E].|}:|

H(s)=

converti T to DT is a simple matter, so it is not necessary to reinvent DT filter

ch. Most filter design is based on rational transfer functions. For analog
necessary because filters are built with electronic components: operational
s, resistors, and capacitors. The physics of such devices dictate that circuits are
governed by differential equations, which in turn lead to rational functions. For digital filters,
rational functions correspond to difference equations, which may be solved recursively. let us
review analog filter design using lowpass prototype transformation. This method converts the
analog lowpass filter with a cutoff frequency of 1 radian per second, called the lowpass

Asst. Lec. Haraa Raheem Page 6




Signal Processing Lec.9

prototype, into practical analog lowpass, highpass, bandpass, and bandstop filters with their
frequency specifications. Let us consider the following first-order lowpass prototype:

H;-'{.T} = i,,—|——1

|He (W) |Hep(jo)|

Q
&

Hip(s) = Hp(s)|s_ 5 &,

_ - :
Figure 9.5Analog lowpass prototype transformationto a lowpass filter

The lowpass prototype is a normalized lowpass filter Wiiha normalized cutoff frequency of
1. Applying the prototype transformation s/wc in 9.4, we get an analog lowpass filter
with a cutoff frequency of w as

| @, \
Hs) = slo.+1 s+o, %

We can obtain the analog frequency respgnse by substituting s=jw into above Equation, that

H(jo) = ———— %()

termined by

This first-order prototype function is used here for an illustrative purpose. We will
obtain general functions for Butterworth and Chebyshev lowpassprototypes in a later
section.
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The highpass, bandpass, and bandstop filters using the specified lowpass prototype
transformation can be easily verified. We review them in Figures 9.6, 9.7, and 9.8,
respectively.
e The transformation from the lowpass prototype to the highpass filter Hyp (S) with a
cutoff frequency wc radians/second is given in Figure 9.6, where s = wc /s in the

lowpass prototype transformation. ®
[He () |Hre %
\

0 1 ¥ 0 (B T

Hyp(s) = He(s)| 5

L, 'S
F IGURE 9.6 Analog lowpass prototype tran @to the highpass filter.

e The transformation of the Iowpass ction to a bandpass filter with a center
frequency wo, a lower cutoff f u n 1y and an upper cutoff frequency wn in the
passband is depicted in Figu s = (s% + w3)/sW s substituted into the lowpass

prototype. As shown in Figure®Q.7, WO is the geometric center frequency, which is
defined wy = ,/w;ay,.

®
while the passband ng Is given by W=whn-w

\

i)

F IGURE 9.7 Analog lowpass prototype transformation to the bandpass filter
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¢ the transformation from the lowpass prototype to a bandstop (band reject) filter is

illustrated in Figure 9.8, with

s = sW/(s? + w3) substituted into the lowpass

prototype. Finally, the lowpass prototype transformations are summarized in Table 9.1.

|He(jv)|

|H55[J"w:||

—
g = - @y
W= E{Jn -

Hgg(5) =

He(s) |E ﬁ

F IGURE 9.8 Analog lowpass prototype tr\%ﬂon to the bandpass filter.

TABLE 9.1  Analog lowpass prototype transformations.

Filter Type Prototype Transformation

Lowpass i is the cutoff frequency

Highpass 2w, 18 the cutoff frequency

Bandpass % wy = /wjwy, W=y - o

Bandstop 31 wy = oy, W=y - o
Example 1: Given a lowpass prototype Ho(s) = %
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Determine each of the following analog filters and plot their magnitude responses from 0 to
200 radians per second.

1. The highpass filter with a cutoff frequency of 40 radians per second.

2. The bandpass filter with a center frequency of 100 radians per second and bandwidth of 20
radians per second.

Solution:

1. Applying the lowpass prototype transformation by substituting s= %gﬂ\e lowpass
prototype, we have an analog highpass filter as %

1 s
Hip(s) = 55— =
i) = W

\

2. Similarly, substituting the lowpass-to-bandpass transformation
s = (s> + 100)/(20s) into the lowpass prototype leads to

Hon(s) | 205
gl = = p— .
P T W T T @ 4 205 + 100

e To transfer from a lowpass protot)e to a bandpass or bandstop filter, the resultant
order of the analog filteis twigg that of the lowpass prototype order.

T ___,_.—L - ~

= i i i
= 1 1 1 1 1
el 1 I 1 1 1
= 1 1 1 1 1
= i i i l :
_— _— = — — - — - - - - - — — - — — - — — —
o 1 1 1 1 1
=¥ 1 1 1 1 1
g : . .
= 1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
100 120 140 160 180 200
A Frequency (rad/sec)
1 T T T T T T T T
= N : : ! ! ! : :
[n] | 1 1 1 1 1 1 1
Eﬁ i 1 1 1 1 1 1 1 1
2 s [ | | | | | | | |
— —_—_——_— e - — — — = — — -F—_-—— - — - —- - — - - — - —— ——_— — —_ — - -
o B _|| 1 1 1 1 1 1 1 1
= 1 1 1 1 1 1 1 1 1
= | 1 | T 1 | | | 1 1
1 1 1 1 1 1 1
2 | | T A
1 1 1 1 1 1 1 1 [ —
0 1 1 1 1 1 1 1 1 1
0 20 A0 B0 a0 100 120 140 160 180 200
B Frequency (rad/sec)
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9.6 Analog Filter Approximation Functions

As indicated in the first section, an ideal filter is unattainable; the best we can do is to
approximate it. There are a number of approximations we can use based on how we want to
define “best.” In this section we discuss two methods of approximation, each using a slightly

different definition. two sections are devoted to the major approximation meth sed in
analog filter design: the Butterworth and Chebyshev In each of these section ine
the order of the filter required given the filter’s specifications and the requ ormalized

transfer function to satisfy the specifications.

9.6.1 BUTTERWORTH NORMALIZED APPROXIMATI F %\IS

The Butterworth approximation function is often called the“ma flat response
because no other approximation has a smoother transition the passband to the
stopband. The phase response also is very smooth, w IS | tant when considering
distortion. The lowpass Butterworth polynomial has an ansfer function with no

finite zeros present. It is the approximation method ofschoice®when low phase distortion and
moderate selectivity are required. A typical frequency, onse for a Butterworth low-pass
filter of order n is shown in Fig. 9.9. %

A(

1} |11, (jS0I2

)
c‘): Fig.9.9 Butterworth LPF c/cs
Equatign (9. 1) gives the Butterworth approximation’s magnitude response

1
1+(Q/ Q. V!

| (/)| = 9.1)
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The Butterworth approximation has a number of interesting properties

* |HGO? =1 for all n

|HH(jQ)| ’ 0-0 =—;for all finite n

| H,(jO)| qq =0707 (-30103 dB)

&

1 b
HGOY =1 [HGU[ =51 HG=) =0

~10log|H(j1)[ = ~1010g0.5 = 3.01 = 3.04B
|H,,(j©)|? is monotonically decréasing function of €, it is also called maximally flat at
the origin since all der@s exist and are zero. As n — oo, we get ideal response.

The normalized LP Butterworth is obtained when:
QC: 1 rad / sec.

Substituting S = QN , and rearrange to get the LP Butterworth poles, then:
S = (n +1) /an]

NS

ornodd. S, =1 &k =/n _k=01 2. 2 —1
Formeven. S, =12 (kFx/ mn)+(ax/2n) .kE=0.1.2.._. 2 —1

For stable and causal filter:

1 1
ITT (5 —5,) B, (S)

ILHF poles

H, (S) =

B, (5): Butterworth polyvniomial of order i (see Table (1) ).

Asst. Lec. Haraa Raheem Page 12




Signal Processing Lec.9

9.6.1.2 Analog- to analog transformation
To obtain Butterworth filters with cutoff frequencies other than 1 rad /sec. It is convenient to
use 1 rad /sec. Butterworth filters as prototypes and apply analog-to-analog transformation

(see Table (2)). The transformational method is not limited in its application to Butterworth
filters.

Table 2: analog to analog transformation

7
RS

20 log |G (811 4 20 log 111 (j2)] Forward: (1, = 11,
0f ! . P Backward: 1, = Q./Q,
Y K, \
| 5 |
Kl _____ o;.-l — AZ PR R a
i 2, v Q, Q2
Low-pass G () S8/, Low-passl(S)
> A 3 ey P o )
20 log |G (jS2)| 20 log 11 (iSV)| Forward: (1) = /11,
o= ot Backward: , = 0,/0
§i [ h
|
S i 0 | —q
I K, 2, 82,
Low-pass G(S) 8 —S2,/5 High-pass /(S)
i 3 aEle = - 032
log 1G(jSA)| 20 log lH(jS2)! Forward: 2,, = ({1, "
o] e x4 Q, = (2, + 0,0 - 2,0,
s . ! Q, = (2, + 0,0,)'72 + 0,0,
Kyf-m-t- Ky bofre==t N o |
I 0 9,9 Backward: 2, = min{|A|, |B}
Low-pass G(S) g 5 * % Bandpass H(S) A = (-0 + 0,0)/10,¢, — Q)]
5082, - ) B = (+01 - 0)/10,Q, — Q)]
; ' 3 3 =, - Q)/2
20 log |G (j52)! 20 log |H(jS)) ] Forward: {1,, = ({1, ’
] e A - Q, = [(Q/D) + QRN = /9,
1 Q, = [(Q./9)" + Q)72 + 0,/9,
Kif—==4- . /
2 ra e T T D 2, Backward: {}, = mm{]AI.ZIBI}
Low-pass G(S; S(82, = S) Bandstop H(S) ‘e das A= 0,1}, - ﬂ,)/[;(l; + Q,,)
S Stram, © & Gl B = 0@, - Q/(50; + Q)
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9.6.1.3 Butterworth Filter Specifications
A Butterworth LPF Filter of order n is given by the following equation:
-01k 1N / r10n—0.1k, _
log,, { (10 —1) /(107" —1)]

n = J 9.2)
2log,, (1/Q )

where %%
k, is the pass-band gain %
Qu is the relative frequency of k, %
K, stop-band attenuation %
Q. is the relative frequency of k,  As shown ir‘%%
\

« M

To satisfy our requirement at €2, exactly, then:

0.1k

Q. =Q, /0 " —p "

To satisfy our requirement at Q' exactly, then:

— 0.1k,

Q. =Q' /(10 —1) e

Q. 1s the cutoff frequency at — 3dB

ho
1)@esign an analog Butterworth LPF that has a — 2 dB butter cutoff frequency of
20 ra .and at least 10 dB of attenuation at 30 rad/sec.

Solution: k1= -2 dB, k2= -10 dB, Qu= 20 rad/sec., and Q',= 30 rad/sec
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" :[logw (a0 - /A0 _1)}1 ~[3.3709 = 4
2 log,, (20 /30)

To satisfy our requirement at 2~ exactly. then:

Q. =20/(10" 1) "% =21.3836 rad /sec

From Table (1) of normalized Butterworth LPF ( Q. =1rad/ sec ) withn=4

1
(S* +0.76536S +1) (S* +1.84776 S +1)

H4 (S) =

Using Table (2) and applying LP — LP transformation, S— S/ 21.3836. and rearranging:

0.20921x10°
(S? +16.36865 +457.394) (S* +39.5176 S +457.394)

H(S)=
Ex 2: Determine the order of a lowpass erworth filter that has a -3-dB bandwidth
of 500 Hz and an attenuation of 40

Solution: k =-3dB, k =-40 dB, Q.= 500 ®11 rad/sec., and Q.= 1000*2 1T rad/sec

o

2 — | logu (0" 1/ 10 1
2 lUgm (1/ Qr )
&-)J
n=6.64% 7

H.W : Find the order of an active low pass Butterworth filter whose specifications are given
as: Amax = 0.5dB at a pass band frequency (op) of 200 radian/sec (31.8Hz), and Amin =
20dB at a stop band frequency (ws) of 800 radian/sec.
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For DESIGNING Butterworth HPF:

1- Put 1/ Q,- — Q: Q, n equation (9. 2). and find its order n .(see Table(2))

2- Use Table (1) to find the normalized Butterworth LPF equation with order n.

3- Apply LP — HP transformation. S— €. / S. and rearrange the equation obtained in step

2.

Ex 3:Derive the transfer function of a Butterworth HPF with maw ency response
2

of -3 dB at frequency of 2kHz and at least -15Db at a freq..of J%
Sol: %
k,=-3dB, k =-15 dB, Qu=2 *21T rad/sec., and Q'r= %d/sec

log10{(10%3 — 1)/(10*° &1
210910 (3

) =247 =3

By using table 1 with n=3

&
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9.6.2 CHEBYSHEV NORMALIZED APPROXIMATION FUNCTIONS

Chebyshev filters are analog or digital filters having a steeper roll-off and
more passband ripple (type I) or stopband ripple (type Il) than Butterworth filters. Chebyshev
filters have the property that they minimize the error between the idealized and the actual
filter characteristic over the range of the filter but with ripples in the passband. This type of
filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived
from Chebyshev polynomials. Because of the passband ripple inherent in Chebyshev filters,
the ones that have a smoother response in the passband but a more irregular response in the

stopband are preferred for some applications.

There are two types of Chebyshev Filters: N
1- One containing a ripple in the pass-band (t%

2- One containing a ripple in the stop-ban p

9.6.2.1 Type | Chebyshev Filters

Type | Chebyshev Filters _are the most common types of Chebyshev Filters. The
magnitude squared of t @*y response characteristics of a type | Chebyshev

Filters is given as. x

) . 1
|H,(j Q)| = ]

1+ & T (Q)

T _(€2) is,the nth order Chebyshev polynomial
where T (x) =1, and T (x) = X as listed in Table (3).

€% is a parameter chosen to provide the proper pass-band ripple. Can be obtained
from tables and mathematically
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Fig. (9.10) shows normalized Chebyshev Filters of both types

L, ()2 AL, GisHP?

A Q
(n odd) (b\ - (n even)
a

he xshev filters of type 1 for (n odd), and (n even)

Fig.(9.10) Normalize

9.6.2.1.a Design Eo&t % yshev Filters:
...9.3

n_|7 log,, [2 + «.,..'g —1 ] —‘

log,, [Q2, +/€2,7 —1 ]
20log,,[1/ 47 1" = stopband attenuation (dB) ..9.4.a
g :[ (Az . 1 ) f.- 62 ] 1/ 94b
K K
H (S| = _
SO =G 50 7o
LPF
poles
K=V, (0)=5b 1 odd
i everr

K=V (0)/ 0+ &>
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Table (4) gives V (S) for n =1 to n =10 and & corresponding to 0.5, 1, 2, and 3 dB ripples.
Table (5) gives the zeros {poles of Hn(S) } for the same n and €.

9.6.2.b Design steps of Chebeshev LPF, HPF, BPF, and BSF :
1- Use the backward design equations from Table (2) to obtain normalized LPF%MS
Q).

2-Calculate A using eq. (9.4a). 20Log— = K,= Stop band attequati n%

20Logﬁ = K= pass band ripple.

3-Calculate from eq. (9.4b), then apply eq.(9.3) to find the ofgde

4- Use Table (4) and Table (5) to find the Chebeshe%quaﬂon with order n.
5- Apply LP — LP or HP or BP or BS transforfnati able (2)) and rearrange the equation

VN

obtained in step 4.

Example (4): Design a Chebshev filter sﬁsfy the following specifications:

3- stop-band attenuation dB or more at 52 rad/sec.

1-Acceptable pass-band rip Ie@&
2-Cutoff frequency @
Solution: From Table (2)
‘ Q =Q /Q =52/40= 13 rad/sec

20log,, [1/4*]"* ==20

Type equation here.A = 10

—2 = 20Log m > c = Jlo{Pass—Band Ripple in dB}/10 1
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€ =0.76 or from Table (4) and Table (5), &=0.76478

e=[(4£ -1)/& 1"

g=13.01

12 [13 I _
o log10[13.01+\:(13.0}) I ] _[43] =5 .nodd
log,, [1.3+,/(1.3) " =1 ]

From Table (4) withn=35 and ¢ =2 dB = 0.76478

i« O

0.08172
S° +0.70646 S* +1.499S° +0.693452% +0.459349 5 + 0.08172

H,(S) =

Using poles from Table (3):

0.08172

H.(S)=
i (S +0.218303)(S? +0.134922 5 +0.95215)(S? + 0.35323 § +0.393115)

AN
Using Table (2) and applying LP — LP transformation, S— S/ 40, and rearranging the

above equation:
a5 N A J

8.366x 10°
Hpe(S) = - 1, < < 2
(S +8.73212) (S? +5.3969 5 +1523.44) (S? +14.1292 S + 628.984)

Notes:
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1. Butterworth or maximally flat amplitude; as the order (n) is increased the
response becomes flatter in the pass-band and the attenuation is greater in the
stop-band.

2. Chebshev Filter has a sharper cutoff; i.e.,, a narrower transition b ( best

amplitude response) than a Butterworth filter of the same order (n) &
3. Chebshev Filter provides poorest phase response (most nonlinear). % erworth

filter compromise between amplitude and phase ( this is one of%
widespread popularity).

ns for its

F o
Example(5):DeriveTransfer function of denormailized L.P.F. with magnitude/frequency

response to

: »
1- 0.5db pass-band ripple

2- stop-band attenuation of 20 dB or more at %%

3- Cutoff frequency equal to 2 khz

-~ A
Sol:

From table 4, when pass band ripple =0.5 db, £ =0.3493
Or from & = V10095 — 1 = 0.3493

From  20log, [1/47]"* =—20 A=10

g=[(4£ -1/ 1" g=28.48

o W,
Q 10
Q. =—"=—=
Q, 2
. [28.48+ /28.482—1]
— %9910 — ~ :
n= W =1.76 =~ 2,nis even
logy

From Table (4) with n =2 and 0.5 db ripple( €=0.3493)
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kn
H,(s) = S
F = b from table 4
or n even n = ey rom table
1.5162 o
n = (140.34932)1/2 = 1.4313
1.4313
Hy(s) = 1.42565+1.5162

Using Table (2) and applying LP — LP transformation, S— S/ 2*2x, and rearranging the
above equation:

9.6.2.2-Type Il Chebyshev filters
Also known as inverse Chebyshev filters, the Type Il Chebyshev filter type is less common

because it does not roll off as fast as Type I, and requires more components. It has no ripple
in the passband, but does have equiripple in the stopband
u A 4

- faC
10,

=10 -

a0k

Gann (dB)

=30 -

= Ll

V4

Passband Stophand

60 | a M | a M
1 | 1
ek iy

Fig.( 9.11) afifth-order type Il Chebyshev low-pass filter
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