

Various Applications Using Arduino Microcontroller….

Third Year, 1st Semester

Lecture No.2

Ass. Lecturer: Yousif Allbadi

M.Sc. of Communications Engineering
Yousif_allbadi_eng@uodiyala.edu.iq

yousifallbadi@uodiyala.edu.iq

University of Diyala
College of Engineering

Department of Communications Engineering
2020-2021

Microcontroller and DSP System

1
Department of Communication Engineering

Embedded Systems

 An embedded computer is frequently a computer that is implemented for a particular purpose.

In contrast, an average PC computer usually serves a number of purposes: checking email, surfing

the internet, listening to music, word processing, etc... However, embedded systems usually only

have a single task, or a very small number of related tasks that they are programmed to perform.

 Every home has several examples of embedded computers. Any appliance that has a digital

clock, for instance, has a small embedded microcontroller that performs no other task than to

display the clock. Modern cars have embedded computers onboard that control such things as

ignition timing and anti-lock brakes using input from a number of different sensors.

In general, an Embedded System:

❖ Is a system built to perform its duty, completely or partially independent of human

intervention?

❖ Is specially designed to perform a few tasks in the most efficient way.

❖ Interacts with physical elements in our environment, viz. controlling and driving a motor,

sensing temperature, etc.

 An embedded system can be defined as a control system or computer system designed to

perform a specific task. Examples:

 Pen drives (for controlling the communication between P.C. and Flash Chip and also the

small LED!).

 Hard disks (again for the same purpose).

 Mouse (Reads and Interprets the Sensors and send final result to P.C.), Keyboards.

 Printers: Ever opened a printer for installing ink cartridge? Then you must have seen the

printed head. There are motors to control the print head and the paper movement. Your

P.C. is not directly connected to them but there is built in MCU of printer to control all

Microcontroller and DSP System

2
Department of Communication Engineering

these. Your P.C. just sends the data (pixels) through the communication line (USB or

parallel). But the MCU used here is fairly fast and has lots of RAM.

 Automobiles.

 Calculators, Electronic vending machines, Electronic weighing scales, Phones (digital with

LCD and phonebook).

 Cell phones.

Embedded Programming

 Key Points in Embedded Programming

• Code Speed - Timing constraints, limited proc. power

• Code Size - Limited memory, power, physical space

 Programming Methods

• Machine Code

• Low level language - Assembly

• High level language - C, C++, Java

• Application level language - Visual Basic, scripts, Access

 Why use C in embedded programming?

• Fairly efficient

• Provides an additional level above assembly programming

• Supports access to I/O

• Ease of management of large embedded projects

 Why use assembly?

• High speed, low code size

• However, difficult to do a large project in assembly

Microcontroller and DSP System

3
Department of Communication Engineering

Software Development

 You are probably already familiar with software development in general, either due to

software engineering courses or because you have done some private /commercial projects. You

therefore know about the different phases of software development, from the requirements

analysis down to testing and maintenance. You may have used some tools to support these phases,

and you have most likely used some nice integrated development environment (IDE) paired with

elaborate debugging support to do your programming and debugging. Software development for

embedded systems is in large parts comparable to development for a workstation. There are,

however, some crucial differences which make development for embedded systems more

difficult.

 The development of low-level embedded software seems to have its own rules. Ultimately, one

would assume that the specification of the underlying hardware constitutes a programming

interface just like the application programming interface of an operating system. It could be

argued that if your development process is sound, and if you follow the rules given in the

datasheet just like you adhere to the API specification of your operating system, you should be

fine. That would make anyone who is good at writing, say, database applications a good

embedded software developer as well. Unfortunately, despite the fact that there are no conceptual

differences to the development process, due to the pitfalls and peculiarities of direct hardware

access, embedded software developers actually face quite different challenges than those working

in higher level environments.

 In fact, one of the most dangerous pitfalls of embedded software development seems to be the

perceived similarity to high-level application programming. Not too long ago, embedded systems

were almost exclusively programmed in Assembler, which made for an apparent difference, as

Assembler was widely perceived as a rather obscure and demanding programming language.

Nowadays, however, the language of choice is C, sometimes even higher-level languages like

C++ oder Ada. And since most people seem to think that a C source code is a C source code, it is

Microcontroller and DSP System

4
Department of Communication Engineering

sometimes expected that anyone who is sufficiently prolific in C should do just fine in embedded

systems development.

 The key problem seems to be that embedded software development is more than just software

development. Embedded developers do not work merely at the border between software and

hardware, handing over bits and bytes for them to be miraculously transformed into light, sound,

or motion. Instead, they routinely have to cross over to the hardware side to fully understand the

interaction between their program and the associated hardware.

 Finally, an embedded system has tight resource constraints, which may affect the way you

program. Whereas in workstation development, memory usage is generally of no importance, and

even speed may be of low importance, these factors become pivotal in embedded systems.

Another issue is power consumption, which is of no concern in workstations but is of extreme

importance in battery-powered embedded systems. These constraints may affect your choice of

algorithm and your implementation style.

Programming

❖ We will study a programing of microcontroller (Arduino) in details later

