

Various Applications Using Arduino Microcontroller….

Third Year, 1st Semester

Lecture No.8

Ass. Lecturer: Yousif Allbadi

M.Sc. of Communications Engineering

yousifallbadi@uodiyala.edu.iq

University of Diyala
College of Engineering

Department of Communications Engineering
2020-2021

Microcontroller and DSP System

1
Department of Communication Engineering

Arduino – Functions

 Functions allow structuring the programs in segments of code to perform individual tasks. The

typical case for creating a function is when one needs to perform the same action multiple times

in a program.

 Standardizing code fragments into functions has several advantages:

➢ Functions help the programmer stay organized. Often this helps to conceptualize the

program.

➢ Functions codify one action in one place so that the function only has to be thought about

and debugged once.

➢ This also reduces chances for errors in modification, if the code needs to be changed.

➢ Functions make the whole sketch smaller and more compact because sections of code are

reused many times.

➢ They make it easier to reuse code in other programs by making it modular, and using

functions often makes the code more readable.

 There are two required functions in an Arduino sketch or a program i.e. setup () and loop ().

Other functions must be created outside the brackets of these two functions.

 The most common syntax to define a function is:

Arduino – Time

Arduino provides four different time manipulation functions. They are

➢ delay () function

➢ delayMicroseconds () function

➢ millis () function

➢ micros () function

delay () function
 The way the delay () function works is pretty simple. It accepts a single integer (or number)

argument. This number represents the time (measured in milliseconds). The program should

wait until moving on to the next line of code when it encounters this function. However, the

problem is, the delay () function is not a good way to make your program wait, because it is

known as a “blocking” function.

 delay (ms) ;

Microcontroller and DSP System

2
Department of Communication Engineering

delayMicroseconds () function
 The delayMicroseconds () function accepts a single integer (or number) argument. This

represents the time and is measured in microseconds. There are a thousand microseconds in a

millisecond, and a million microseconds in a second.

 Currently, the largest value that can produce an accurate delay is 16383. This may change in

future Arduino releases. For delays longer than a few thousand microseconds, you should use the

delay () function instead.

millis () function
 This function is used to return the number of milliseconds at the time, the Arduino board

begins running the current program. This number overflows i.e. goes back to zero after

approximately 50 days.

micros () function
 The micros () function returns the number of microseconds from the time, the Arduino board

begins running the current program. This number overflows i.e. goes back to zero after

approximately 70 minutes. On 16 MHz Arduino boards (e.g. Duemilanove and Nano), this

function has a resolution of four microseconds (i.e. the value returned is always a multiple of

four). On 8 MHz Arduino boards (e.g. the Lilypad), this function has a resolution of eight

microseconds.

Arduino – Function Libraries
1. Arduino – I/O Functions

 The pins on the Arduino board can be configured as either inputs or outputs. We will explain

the functioning of the pins in those modes. It is important to note that a majority of Arduino

analog pins, may be configured, and used, in exactly the same manner as digital pins.

Pins Configured as INPUT
 Arduino pins are by default configured as inputs, so they do not need to be explicitly declared

as inputs with pinMode () when you are using them as inputs. Pins configured way are said to be

 delayMicroseconds (us) ;

 millis () ;

 micros () ;

Microcontroller and DSP System

3
Department of Communication Engineering

in a high-impedance state. Input pins make extremely small demands on the circuit that they are

sampling, equivalent to a series resistor of 100 megaohm in front of the pin.

 This means that it takes very little current to switch the input pin from one state to another.

This makes the pins useful for such tasks as implementing a capacitive touch sensor or reading

an LED as a photodiode.

 Pins configured as pinMode (pin, INPUT) with nothing connected to them, or with wires

connected to them that are not connected to other circuits, report seemingly random changes in

pin state, picking up electrical noise from the environment, or capacitively coupling the state of

a nearby pin.

Pull-up Resistors
 Pull-up resistors are often useful to steer an input pin to a known state if no input is present.

This can be done by adding a pull-up resistor (to +5V), or a pull-down resistor (resistor to ground)

on the input. A 10K resistor is a good value for a pull-up or pull-down resistor.

Using Built-in Pull-up Resistor with Pins Configured as Input
 There are 20,000 pull-up resistors built into the Atmega chip that can be accessed from

software. These built-in pull-up resistors are accessed by setting the pinMode () as

INPUT_PULLUP. This effectively inverts the behavior of the INPUT mode, where HIGH means

the sensor is OFF and LOW means the sensor is ON. The value of this pull-up depends on the

microcontroller used. On most AVR-based boards, the value is guaranteed to be between 20kΩ

and 50kΩ. On the Arduino Due, it is between 50kΩ and 150kΩ. For the exact value, consult the

datasheet of the microcontroller on your board.

 When connecting a sensor to a pin configured with INPUT_PULLUP, the other end should be

connected to the ground. In case of a simple switch, this causes the pin to read HIGH when the

switch is open and LOW when the switch is pressed. The pull-up resistors provide enough current

to light an LED dimly connected to a pin configured as an input. If LEDs in a project seem to be

working, but very dimly, this is likely what is going on.

 Same registers (internal chip memory locations) that control whether a pin is HIGH or LOW

control the pull-up resistors. Consequently, a pin that is configured to have pull-up resistors turned

on when the pin is in INPUTmode, will have the pin configured as HIGH if the pin is then

switched to an OUTPUT mode with pinMode (). This works in the other direction as well, and

an output pin that is left in a HIGH state will have the pull-up resistor set if switched to an input

with pinMode ().

Microcontroller and DSP System

4
Department of Communication Engineering

Example

Pins Configured as OUTPUT
 Pins configured as OUTPUT with pinMode () are said to be in a low-impedance state. This

means that they can provide a substantial amount of current to other circuits. Atmega pins can

source (provide positive current) or sink (provide negative current) up to 40 mA (milliamps) of

current to other devices/circuits. This is enough current to brightly light up an LED (do not forget

the series resistor), or run many sensors but not enough current to run relays, solenoids, or motors.

 Attempting to run high current devices from the output pins, can damage or destroy the output

transistors in the pin, or damage the entire Atmega chip. Often, this results in a "dead" pin in the

microcontroller but the remaining chips still function adequately. For this reason, it is a good idea

to connect the OUTPUT pins to other devices through 470Ω or 1k resistors, unless maximum

current drawn from the pins is required for a particular application.

pinMode () Function
 The pinMode () function is used to configure a specific pin to behave either as an input or an

output. It is possible to enable the internal pull-up resistors with the mode INPUT_PULLUP.

Additionally, the INPUT mode explicitly disables the internal pull-ups.

pinMode (pin , mode);

➢ pin: the number of the pin whose mode you wish to set

➢ mode: INPUT, OUTPUT, or INPUT_PULLUP.

digitalWrite () Function
 The digitalWrite () function is used to write a HIGH or a LOW value to a digital pin. If the

pin has been configured as an OUTPUT with pinMode (), its voltage will be set to the

corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW. If the pin

is configured as an INPUT, digitalWrite () will enable (HIGH) or disable (LOW) the internal

pullup on the input pin. It is recommended to set the pinMode () to INPUT_PULLUP to enable

the internal pull-up resistor.

 If you do not set the pinMode () to OUTPUT, and connect an LED to a pin, when calling

digitalWrite (HIGH), the LED may appear dim. Without explicitly setting pinMode(),

digitalWrite() will have enabled the internal pull-up resistor, which acts like a large current

limiting resistor.

 pinMode(3,INPUT) ; // set pin to input without using built in pull up resistor

pinMode(5,INPUT_PULLUP) ; // set pin to input using built in pull up resistor

Microcontroller and DSP System

5
Department of Communication Engineering

digitalWrite (pin, value);

➢ pin: the number of the pin whose mode you wish to set

➢ value: HIGH, or LOW.

analogRead () function
 Arduino is able to detect whether there is a voltage applied to one of its pins and report it through

the digitalRead () function. There is a difference between an on/off sensor (which detects the

presence of an object) and an analog sensor, whose value continuously changes. In order to read

this type of sensor, we need a different type of pin.

 In the lower-right part of the Arduino board, you will see six pins marked “Analog In”. These

special pins not only tell whether there is a voltage applied to them, but also its value. By using

the analogRead () function, we can read the voltage applied to one of the pins.

 This function returns a number between 0 and 1023, which represents voltages between 0 and

5 volts. For example, if there is a voltage of 2.5 V applied to pin number 0, analogRead (0) returns

512.

analogRead(pin);

pin: the number of the analog input pin to read from (0 to 5 on most boards, 0 to 7 on the Mini

and Nano, 0 to 15 on the Mega)

Some advanced Input and Output Functions.

analogReference () Function
 Configures the reference voltage used for analog input (i.e. the value used as the top of the

input range). The options are:

❖ DEFAULT: The default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts

(on 3.3V Arduino boards)

❖ INTERNAL: A built-in reference, equal to 1.1 volts on the ATmega168 or ATmega328

and 2.56 volts on the ATmega8 (not available on the Arduino Mega)

❖ INTERNAL1V1: A built-in 1.1V reference (Arduino Mega only)

❖ INTERNAL2V56: A built-in 2.56V reference (Arduino Mega only)

❖ EXTERNAL: The voltage applied to the AREF pin (0 to 5V only) is used as the reference

Microcontroller and DSP System

6
Department of Communication Engineering

analogReference () Function Syntax
 analogReference (type);

 type: can use any type of the follow (DEFAULT, INTERNAL, INTERNAL1V1,

INTERNAL2V56, EXTERNAL)

 Do not use anything less than 0V or more than 5V for external reference voltage on the AREF

pin. If you are using an external reference on the AREF pin, you must set the analog reference to

EXTERNAL before calling the analogRead () function. Otherwise, you will short the active

reference voltage (internally generated) and the AREF pin, possibly damaging the

microcontroller on your Arduino board.

 Alternatively, you can connect the external reference voltage to the AREF pin through a 5K

resistor, allowing you to switch between external and internal reference voltages.

 Note that the resistor will alter the voltage that is used as the reference because there is an

internal 32K resistor on the AREF pin. The two acts as a voltage divider. For example, 2.5V

applied through the resistor will yield 2.5 * 32 / (32 + 5) = ~2.2V at the AREF pin.

Microcontroller and DSP System

7
Department of Communication Engineering

Example

Arduino – Pulse Width Modulation
 Pulse Width Modulation or PWM is a common technique used to vary the width of the pulses

in a pulse-train. PWM has many applications such as controlling servos and speed controllers,

limiting the effective power of motors and LEDs.

Basic Principle of PWM
 Pulse width modulation is basically, a square wave with a varying high and low time. A basic

PWM signal is shown in the following figure.

 int analogPin = 3;// potentiometer wiper (middle terminal) connected to analog

pin 3

int val = 0; // variable to store the read value

void setup()

{

Serial.begin(9600); // setup serial

analogReference(EXTERNAL); // the voltage applied to the AREF pin (0 to 5V

only)

is used as the reference.

}

void loop()

{

val = analogRead(analogPin); // read the input pin

Serial.println(val); // debug value

}

Microcontroller and DSP System

8
Department of Communication Engineering

 There are various terms associated with PWM:

❖ On-Time: Duration of time signal is high.

❖ Off-Time: Duration of time signal is low.

❖ Period: It is represented as the sum of on-time and off-time of PWM signal.

❖ Duty Cycle: It is represented as the percentage of time signal that remains on during the

period of the PWM signal.

Period
 As shown in the figure, Ton denotes the on-time and Toff denotes the off-time of signal. Period

is the sum of both on and off times and is calculated as shown in the following equation:

Ttotal=Ton+Toff

Duty Cycle
 Duty cycle is calculated as the on-time of the period of time. Using the period calculated

above, duty cycle is calculated as

 𝑫 =
𝑻𝒐𝒏

𝑻𝒐𝒏+𝑻𝒐𝒇𝒇
=

𝑻𝒐𝒏

𝑻𝒕𝒑𝒕𝒂𝒍

analogWrite () Function
 The analogWrite () function writes an analog value (PWM wave) to a pin. It can be used to

light a LED at varying brightness or drive a motor at various speeds. After a call of the

analogWrite () function, the pin will generate a steady square wave of the specified duty cycle

until the next call to analogWrite () or a call to digitalRead () or digitalWrite () on the same pin).

The frequency of the PWM signal on most pins is approximately 490 Hz. On the Uno and similar

boards, pins 5 and 6 have a frequency of approximately 980 Hz.

 Pins 3 and 11 on the Leonardo also run at 980 Hz. On most Arduino boards (those with the

ATmega168 or ATmega328), this function works on pins 3, 5, 6, 9, 10, and 11. On the Arduino

Mega, it works on pins 2 - 13 and 44 - 46. Older Arduino boards with an ATmega8 only support

analogWrite () on pins 9, 10, and 11.

Microcontroller and DSP System

9
Department of Communication Engineering

 The Arduino Due supports analogWrite () on pins 2 through 13, and pins DAC0 and DAC1.

Unlike the PWM pins, DAC0 and DAC1 are Digital to Analog converters, and act as true analog

outputs.

 You do not need to call pinMode () to set the pin as an output before calling analogWrite ().

value: the duty cycle: between 0 (always off) and 255 (always on).

Example

 analogWrite (pin , value);

 int ledPin = 9; // LED connected to digital pin 9

int analogPin = 3; // potentiometer connected to analog pin 3

int val = 0; // variable to store the read value

void setup()

{

pinMode(ledPin, OUTPUT); // sets the pin as output

}

void loop()

{

val = analogRead(analogPin); // read the input pin

analogWrite(ledPin, (val / 4)); // analogRead values go from 0 to 1023,

analogWrite values from 0 to 255

}

