
What is Power World?

Power World is a power system visualization, simulation, and analysis tool.

2. CREATING A NEW CASE

- Generator: Rated voltage 66 kV maximum active power generation: 350 MW, reactive power limits ±90 MVAr
- Transmission line: R = 0.01 p.u., X = 0.06 p.u, B = 0.10 p.u. Transformer: 66/11 kV, X = 0.05 p.u. Load:100 MW, 45 MVAr

ONE LINE DIAGRAM OF SAMPLE POWER SYSTEM

FROM THE FILE MENU SELECT NEW CASE

(a)Inserting a bus From the Insert menu select Bus or click on the button in the "Insert" toolbar.

BUS OPTION

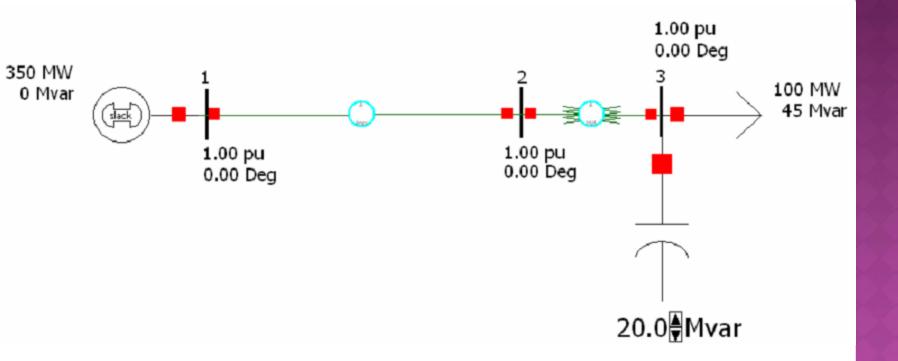
Bus O	pt	ion	15				×
Insert r	new b	us in d	ata mod	lel			
Bus Number	•	1		-		Find By Number	Find
Bus Name		1				Find By Name	
Nominal Volt	tage	138.0	0	k٧			
Labels							
		D	Jumber		Name		
Area	Char	nge 1	L	+	1		
Zone	Char	nge 1	L	\$	1		
Owner	Char	nge 1	L	\$	1		
Substation	Char	nge					
Bus Informa	ation	Displa	y Att	ached [Devices Me	mo	
Bus Voltage	е —			_			
Voltage (p.	u.)	1.0	00		System	Slack Bus	
Angle (deg	rees)	0.0	00				
~	ок			Sav	/e		🗙 Cancel

(B) INSERTING A GENERATOR

Gener	ator Op	tions			\mathbf{X}
Bus Number	1	-	Find By Number	Status Open	
Bus Name	1		Find By Name	Closed	
ID	1		Find		
Area Name	1	_	Fuel Type	Unknown	-
Labels			Unit Type	UN (Unknown)	-
	Same Owner	as Terminal Bus			
Display Inform	Power and	d Voltage Control	Costs Fault Param	neters Owner, Area	, Zone, Sub Memo
Power Contro					-
MW Out		Available fo		Factor 10.00	_
Min. MW Out	put 0.000	Enforce MW	/ Limits MW Ramp	p Limit 20.0	
Max, MW Out	put 1000.000				
Voltage Cont					_
Mvar Out			Regulated Bus I		_
Min Mv		Available fo			_
Max Mv	ars 9900.000	Use Capabi	lity Curve Remote	Reg % 100.0	
MW					
Min Mvar					
Max Mvar					
<					>
🗸 ок	Save		X Cancel	? Help	

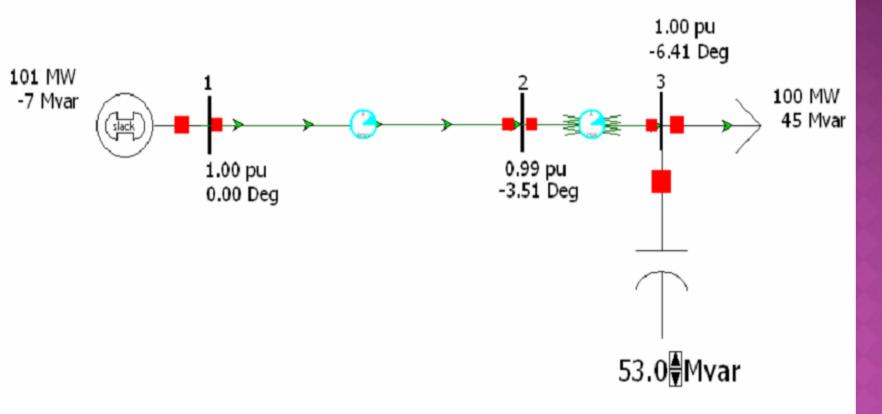
INSERTING A TRANSMISSION I Transmission Line/Transformer Options To Bus From Bus Circuit Find By Numbers . 1 1 Number Find By Names 1 2 Name Find 1(1)1(1)Area Name From End Metered 66.0 Nominal kV 66.0 Default Owner (Same as From Bus) Labels Fault Info Owner, Area, Zone, Sub Memo Parameters Display Transformer Control Series Capacitor Status Per Unit Impedance Parameters MVA Limits Ópen. 0.00000 Series Resistance (R) Limit A 0.000 Closed Limit B 0.000 Series Reactance (X) Limit ⊂ Length 0.000 0.00 0.0000 Shunt Charging (B) (mi) Limit D 0.000 0.0000 Shunt Conductance (G) Limit E 0.000 Calculate Has Line Shunts Line Shunts Limit F 0.000 Impedances > Limit G 0.000 Limit H 0.000 Convert Line to Transformer 🖌 OK Save 🗶 Cancel Help

) INSERTING A TRANSFORMER Transmission Line/Transformer Options From Bus To Bus Circuit Find By Numbers 2 з 1 Number Find By Names 3 Name Find 1(1)1(1)Area Name From End Metered 11.0 Nominal kV 66.0 Default Owner (Same as From Bus) Labels Fault Info Owner, Area, Zone, Sub Memo Display Parameters Transformer Control Series Capacitor Per Unit Impedance Parameters Status MVA Limits Open 0.00000 Series Resistance (R) Limit A 0.000 Closed Limit B 0.000 Series Reactance (X) Length Limit \subset 0.000 0.00 0.0000 Shunt Charging (B) (mi) Limit D 0.000 0.0000 Shunt Conductance (G) Limit E 0.000 Calculate 0.000000 Magnetizing Conductance Limit F 0.000 Impedances > 0.000000 Magnetizing Susceptance Limit G 0.000 Has Line Shunts Line Shunts Limit H 0.000 Convert Transformer to Line 🗸 ОК 🗶 Cancel Save Help


(E) INSERTING A LOAD

Load Options
Bus Number 3 Find By Number Status Bus Name 3 Find By Name C Open
ID 1 Find
Labels
Area Change 1 Name
Zone Change 1 1
Substation
Owner Change 1 1
Same Owner as Terminal Bus
Load Information OPF Load Dispatch Memo
Constant Power Constant Current Constant Impedance MW Value 0.000 0.000
Mvar Value 0.000 0.000 0.000
Display Information Orientation
Display Size 10.00 C Right C Left
Scale Width with Size C Up C Down
Display Width 3.75 🖨 🔽 Anchored
Pixel Thickness 1 🛨 Link To New Load
VOK Save X Cancel ? Help

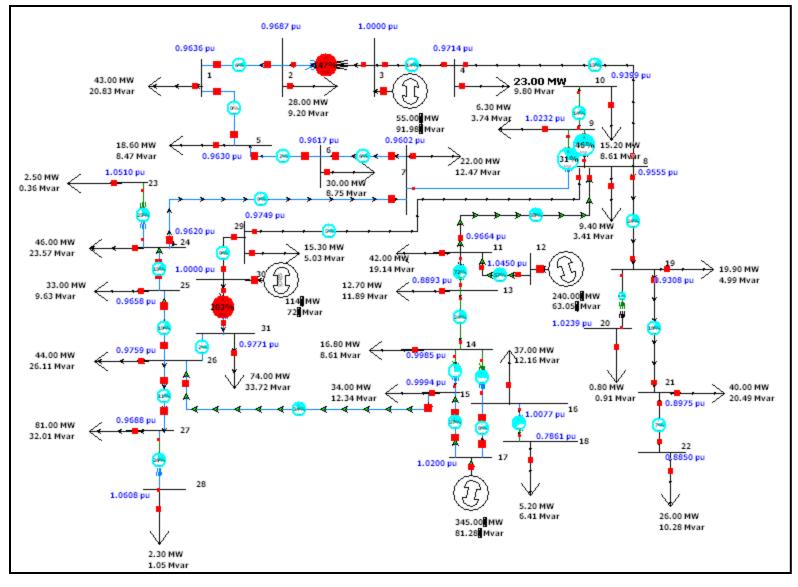
(F) INSERTING A SHUNT COMPONENT


Switched Sh	unt Optic	ons	
Bus Number 3		Find By Number	Status O Open
Bus Name 3		Find By Name	Closed
Shunt ID 1		Find	
Labels			
Area Change 1 Zone Change 1 Substation	Name 1 1 1		
Display Parameters Co	ntrol Parameters Fau	It Parameters Mem	0
Nominal Mvar			
Control Mode	Control Regulation Se	-	L
C Discrete	Voltage	High Value	0.99000
C Continuous Bus Shunt (Fixed)	C Generator Mvar Reg. Bus #	Low Value Target Value	1.00000
Switched Shunts Blocks			
Number of Steps			
Mvars per Step			>
V OK Sav	ve	🗙 Cancel	? Help

THE FINAL ONE LINE DIAGRAM SHOULD LOOK LIKE THE DIAGRAM BELOW:

3-RUNNING A CASE

In order to simulate the case that we have designed, we select the Run Mode from the toolbar below the menu. Select Simulation - Solve and Animate.


CALCULATED LINE PARAMETERS (PER UNIT SYSTEM)

NO	FROM	TO	KV Rating	Total MVA Rating	Tower Type	Length (km)	ZB (ohm)	B base	XL (pu)	Xc (pu)	R Line (pu)
1	13	14	69	120.707	69 Kv Single circuit	70	47.61	0.021004	0.60034	0.01332	0.103011
2	9	10	69	120.101	Steel Tower	80	47.61	0.021004	0.60134	0.01543	0.117727
3	3	4	115			35	132.25	0.007561	0.5555	0.036458	0.009271
4	4	8	115			25	132.25	0.007561	0.039457	0.026041	0.006622
5	11	12	115			65	132.25	0.007561	0.102589	0.067707	0.017218
6	19	21	115		.356 115 Kv Double circuit Steel Tower	50	132.25	0.007561	0.078915	0.052082	0.013244
7	21	22	115	402.356		55	132.25	0.007561	0.086806	0.057291	0.014569
8	8	11	115			60	132.25	0.007561	0.094698	0.062499	0.015893
9	8	19	115			30	132.25	0.007561	0.047349	0.031249	0.007947
10	8	29	115			55	132.25	0.007561	0.086806	0.057291	0.014569
11	29	30	115			65	132.25	0.007561	0.102589	0.067707	0.017218
12	1	2	230			50	529	0.00189	0.021977	0.18619	0.003311
13	1	5	230			20	529	0.00189	0.008791	0.074476	0.001324
14	5	6	230			45	529	0.00189	0.01978	0.167571	0.00298
15	6	7	230			40	529	0.00189	0.017582	0.148952	0.002649
16	7	24	230			35	529	0.00189	0.015384	0.130333	0.002318
17	24	25	230	804.71	230 Kv Double circuit	25	529	0.00189	0.010989	0.093095	0.001656
18	25	26	230	004.11	Steel Tower	60	529	0.00189	0.026373	0.223429	0.003973
19	26	27	230			40	529	0.00189	0.017582	0.148952	0.002649
20	26	15	230			65	529	0.00189	0.028571	0.242048	0.004304
21	15	17	230			45	529	0.00189	0.01978	0.167571	0.00298
22	17	16	230			70	529	0.00189	0.030768	0.260667	0.004635
23	26	31	230		<u></u>	55	529	0.00189	0.024175	0.20481	0.003642

TRANSFORMER SELECTION

FROM BUS	TO BUS	FROM (KV)	TO (KV)	MVA RATING	X (pu)	X (pu new)
2	3	230	115	50	0.17	0.34
8	9	115	69	50	0.115	0.23
7	9	230	69	50	0.1525	0.305
19	20	115	69	10	0.115	1.15
16	18	230	69	15	0.1525	1.016666667
11	13	115	69	50	0.115	0.23
27	28	230	69	10	0.1525	1.525
23	24	69	230	10	0.1525	1.525
30	31	115	230	50	0.17	0.34
14	15	69	230	50	0.1525	0.305
14	16	69	230	50	0.1525	0.305

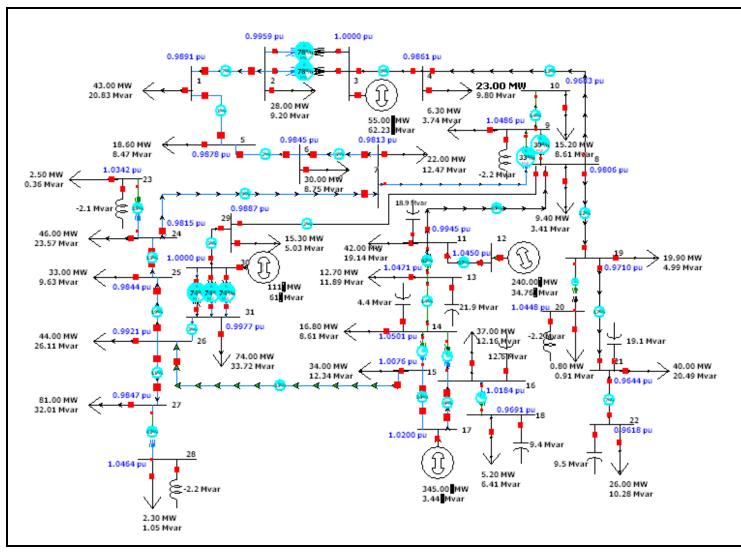
POWER FLOW SIMULATION

HIGH/LOW BUS VOLTAGES

Number	Name	Area Name	Nom kV	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar
1	1	1	230	0.96364	221.637	-110.7	43	20.83
2	2	1	230	0.96869	222.798	-110.14	28	9.2
3	3	1	115	1	115	-94.45		
4	4	1	115	0.97138	111.709	-93.6	23	9.8
5	5	1	230	0.96302	221.495	-110.69	18.6	8.47
6	6	1	230	0.96166	221.182	-110.46	30	8.75
7	7	1	230	0.96025	220.857	-109.91	22	12.47
8	8	1	115	0.95553	109.886	-92.44	9.4	3.41
9	9	1	69	1.02322	70.602	-109.73	6.3	3.74
10	10	1	69	0.93992	64.854	-115.51	15.2	8.61
11	11	1	115	0.96639	111.135	-83.43	42	19.14
12	12	1	115	1.045	120.175	-69.99		
13	13	1	69	0.88925	61.358	-89.52	12.7	11.89
14	14	1	69	0.99845	68.893	-99.92	16.8	8.61
15	15	1	230	0.99936	229.853	-101.64	34	12.34
16	16	1	230	1.00767	231.764	-99.14	37	12.16
17	17	1	230	1.02	234.6	-98.43		
18	18	1	69	0.78615	54.244	-105.46	5.2	6.41
19	19	1	115	0.93078	107.039	-94.95	19.9	4.99
20	20	1	69	1.02394	70.652	-95.45	0.8	0.91
21	21	1	115	0.8975	103.212	-98.3	40	20.49
22	22	1	115	0.88501	101.776	-99.85	26	10.28
23	23	1	69	1.05098	72.517	-111.63	2.5	0.36
24	24	1	230	0.96201	221.262	-109.25	46	23.57
25	25	1	230	0.96581	222.136	-108.47	33	9.63
26	26	1	230	0.97593	224.464	-106.07	44	26.11
27	27	1	230	0.96879	222.822	-106.92	81	32.01
28	28	1	69	1.06083	73.198	-108.68	2.3	1.05
29	29	1	115	0.97493	112.117	-91.93	15.3	5.03
30	30	1	115	1	115	-90.42		
31	31	1	230	0.97708	224.729	-105.91	74	33.72

HIGH TRANSFORMER RATING

From						% of MVA		
Number	To Number	MW From	Mvar From	MVA From	Lim MVA	Limit (Max)	MW Loss	Mvar Loss
1	2	-43.6	-24	49.8	805	6.2	0.08	-16.87
1	5	0.6	3.2	3.2	805	1.3	0	-6.91
2	3	-71.7	-16.3	73.5	50	163.2	0	22.63
3	4	-16.7	53	55.6	402	14.3	0.3	-1.73
4	8	-40	44.9	60.2	402	15.2	0.26	-0.86
5	6	-18	1.6	18.1	805	3.1	0.01	-15.43
6	7	-48	8.3	48.7	805	6.5	0.07	-13.27
7	9	-1.1	15.3	15.3	50	30.7	0	0.63
7	24	-69	-6.2	69.3	805	8.6	0.12	-11.24
9	8	-23	1.4	23	50	47.3	0	7.04
11	8	152.2	-5.4	152.3	402	37.9	3.94	17.73
8	19	88.5	35.5	95.3	402	23.7	0.8	1.98
29	8	12.9	16.9	21.3	402	6.3	0.08	-4.83
10	9	-15.2	-8.6	17.5	121	15.1	0.39	0.87
11	12	-230.2	-11.6	230.5	402	61.7	9.79	51.44
11	13	36	-2.2	36.1	50	73	0	3.87
13	14	23.3	-17.9	29.4	121	26.6	1.1	5.36
14	15	9.6	-7.9	12.4	50	25.5	0	0.5
14	16	-4.2	-24	24.4	50	52.8	0	2.1
15	17	-295.8	-60	301.8	805	37.8	2.69	0.79
26	15	-268.1	-41	271.2	805	34.1	3.28	-1.78
16	17	-46.4	-46.3	65.6	805	8.1	0.15	-25.81
16	18	5.2	8.1	9.6	15	64.1	0	1.68
19	20	0.8	0.9	1.2	10	12.2	0	0.02
19	21	67	27.6	72.4	402	18	0.82	0.54
21	22	26.1	6.5	26.9	402	7	0.14	-3.73
23	24	-2.5	-0.4	2.5	10	25.4	0	0.11
24	25	-117.6	-19	119.1	805	14.8	0.25	-6.98
25	26	-150.9	-21.6	152.4	805	18.9	0.97	-14.58
26	27	83.5	20.5	86	805	11.1	0.22	-12.65
31	26	11.3	- <mark>6.</mark> 8	13.2	805	2.1	0.01	-19.5
27	28	2.3	1.1	2.6	10	25.7	0	0.09
29	30	-28.2	-22	35.7	402	8.9	0.21	-5.37
30	31	85.3	55.4	101.7	50	203.4	0	28.49


CORRECTION TO POWER FLOW

- Installation of shunt capacitor to increase the bus voltage
- Installation of shunt reactor to decrease the bus voltage
- Addition of transformer to increase the total MVA rating

CORRECTION DETAILS

Compensa	ation Made		
Bus	Nominal Voltage (kV)	Compensation Type	Value (MVAr)
9	69	Reactor	2.20
11	115	Capbank	18.90
13	69	Capbank	21.90
14	69	Capbank	4.40
16	230	Capbank	12.60
18	69	Capbank	9.40
20	69	Reactor	2.20
21	115	Capbank	19.10
22	115	Capbank	9.50
23	69	Reactor	2.10
26	230	Reactor	2.20
Bus	Nominal Voltage (kV)	Existing (MVA)	Correction (MVA)
2 - 3	115/230	1 x 50	2 x 50
30-31	115/230	1 x 50	3 x 50

POWER FLOW CORRECTION

BUS VOLTAGE AFTER CORRECTION

Number	Name	Area Name	Nom kV	PU Volt	Volt (kV)	Angle (Deg)	Load MW	Load Mvar
1	1	1	230	0.98914	227.502	-101.25	43	20.83
2	2	1	230	0.99589	229.056	-100.7	28	9.2
3	3	1	115	1	115	-93.01		
4	4	1	115	0.98606	113.397	-92.23	23	9.8
5	5	1	230	0.98775	227.183	-101.26	18.6	8.47
6	6	1	230	0.98452	226.44	-101.05	30	8.75
7	7	1	230	0.98133	225.706	-100.54	22	12.47
8	8	1	115	0.98058	112.766	-91.14	9.4	3.41
9	9	1	69	1.04859	72.353	-101.62	6.3	3.74
10	10	1	69	0.96829	66.812	-107.1	15.2	8.61
11	11	1	115	0.99449	114.367	-82.23	42	19.14
12	12	1	115	1.045	120.175	-68.9		
13	13	1	69	1.04709	72.249	-85.84	12.7	11.89
14	14	1	69	1.05008	72.455	-91.23	16.8	8.61
15	15	1	230	1.00764	231.756	-92.34	34	12.34
16	16	1	230	1.01837	234.225	-89.97	37	12.16
17	17	1	230	1.02	234.6	-89.12		
18	18	1	69	0.96908	66.867	-95.04	5.2	6.41
19	19	1	115	0.97099	111.664	-93.62	19.9	4.99
20	20	1	69	1.0448	72.091	-94.09	0.8	0.91
21	21	1	115	0.96437	110.903	-96.85	40	20.49
22	22	1	115	0.96184	110.612	-98.26	26	10.28
23	23	1	69	1.03417	71.358	-102.21	2.5	0.36
24	24	1	230	0.98153	225.752	-99.85	46	23.57
25	25	1	230	0.98438	226.407	-99.05	33	9.63
26	26	1	230	0.99211	228.186	-96.64	44	26.11
27	27	1	230	0.98472	226.486	-97.45	81	32.01
28	28	1	69	1.0464	72.202	-99.21	2.3	1.05
29	29	1	115	0.98872	113.703	-91.23	15.3	5.03
30	30	1	115	1	115	-90.42		
31	31	1	230	0.99772	229.474	-96.37	74	33.72
								•

LINE & TRANSFORMER RATING

From Number	To Number	Circuit	MW From	Mvar From	MVA From	Lim MVA	% of MVA	MW Loss	Mvar Loss
1	2	2	-46.6	-32.3	56.6	805	7	0.09	-17.73
1	5	2	3.6	11.4	12	805	2.4	0	-7.25
2	3	1	-37.3	-11.9	39.2	50	82.6	0	5.8
2	3	2	-37.3	-11.9	39.2	50	82.6	0	5.8
3	4	2	-19.7	26.9	33.3	402	8.9	0.11	-2.93
4	8	2	-42.8	20	47.2	402	12	0.16	-1.59
5	6	2	-15	10.2	18.2	805	3.8	0.02	-16.18
6	7	2	-45.1	17.7	48.4	805	6.8	0.07	-13.91
7	9	1	7.1	15	16.6	50	33.2	0	0.71
7	24	2	-74.2	4.1	74.3	805	9.4	0.14	-11.66
9	8	1	-14.8	-0.9	14.8	50	30.5	0	2.78
11	8	2	159.5	-2.8	159.5	402	39.7	4.09	18.27
8	19	2	88.1	5.4	88.2	402	22	0.65	0.87
29	8	2	-0.2	6.5	6.5	402	3	0.01	-5.48
10	9	1	-15.2	-8.6	17.5	121	15	0.37	0.65
11	12	2	-230.7	13.7	231.1	402	60.3	9.32	48.46
11	13	1	29.2	-11.1	31.2	50	64.1	0	2.15
13	14	1	16.5	-3.2	16.8	121	13.9	0.26	0.1
14	15	1	6.6	5.7	8.7	50	17.4	0	0.22
14	16	1	-7.2	-13.2	15	50	31.4	0	0.72
15	17	2	-293	-19.1	293.6	805	36.8	2.52	-0.46
26	15	2	-262.6	-16.5	263.1	805	33	3.01	-4.16
16	17	2	-49.4	-11.1	50.6	805	6.4	0.11	-26.35
16	18	1	5.2	-2.4	5.7	15	40	0	0.58
19	20	1	0.8	3.2	3.3	10	33	0	0.11
19	21	2	66.7	-3.6	66.8	402	16.6	0.63	-1.15
21	22	2	26.1	-3.9	26.4	402	6.6	0.11	-4.68
23	24	1	-2.5	-2.5	3.5	10	36.9	0	0.22
24	25	2	-122.8	-10.5	123.3	805	15.3	0.26	-7.27
25	26	2	-156.1	-12.9	156.6	805	19.5	1	-15.18
26	27	2	83.5	22.3	86.4	805	11.2	0.21	-13.15
31	26	2	22.1	9.6	24.1	805	4.6	0.03	-20.06
27	28	1	2.3	3.5	4.2	10	41.5	0	0.22
29	30	2	-15.1	-11.5	19	402	4.7	0.05	-6.38
30	31	1	32	18.7	37.1	50	74.1	0	4.22
30	31	2	32	18.7	37.1	50	74.1	0	4.22
30	31	3	32	18.7	37.1	50	74.1	0	4.22

CONCLUSION

- Power world software is able to simulate the unstable condition of the power flow for designed networks.
- The approach by adding shunt capacitor and shunt reactor, the low/high bus voltage can be maintained to nominal bus voltage hence the designed networks is stable.
- The fundamental concept of power system analysis and design give the better understanding of the concept by modeling the actual system.