Republic of Iraq
Ministry of Higher Education & Scientific
Research Supervision and Scientific Evaluation
Directorate Quality Assurance and Academic
Accreditation International Accreditation Dept.

Academic Program Specification Form for The Academic

University: Diyala

College: Engineering

Number Of Departments in The College: 02

Date Of Form Completion: 17/9/2023

Prof. Dr. Anees A. Khadom

The Dean

Date:17/9/2023 Signature Assist. prof. Dr. Jabbar Q. Jabbar

Dean's Assistant for Scientific Affairs Date:17/9/2023 Signature Assist. prof. Dr. Salah N Farhan
The College Quality Assurance
and University Performance
Manager

Date:17/9/2023 Signature

Quality Assurance And University Performance

Manager Date : /

Signature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Program Specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

1. Teaching Institution	University of Diyala
2. University Department/Centre	College of Engineering
3. Program Title	Electronic Engineering
4. Title of Final Award	BSc in Electronic Engineering
5. Modes of Attendance offered	Courses
6. Accreditation	N/A
7. Other external influences	None
8. Date of production/revision of this specification	17/09/2023

9. Aims of the Program

- Preparing the student scientifically to work in the field of Electronic engineering
- Build and prepare the student psychologically to play his role as a reliable engineer in this field.
- Building students capable of competing with other engineers for job opportunities and obtaining the required seats to complete postgraduate studies.
- Ability to submit to external tests by local, regional or international bodies for the purpose of completing studies or appointment.
- Urging the student to be creative and think about specialization projects and keep pace with developments in this field.
- Providing students with scientific, practical and personal skills that enable them to solve practical problems and deal with them using scientific concepts.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

- A. Cognitive goals A1- Teaching the student the principles of how Electronic circuit and how to deal with computer algorithms.
- A2- Enabling students to obtain knowledge and understanding in working on and designing electronic computers.
- A3- Teaching the student the methods of forming computer parts and their interconnection.
- A4- Enabling students to obtain knowledge and understanding of designing everything related to computer microprocessors.
- A5- Enabling students to obtain knowledge and understanding of diagnosing faults and maintaining various computer devices.
- A6- Teaching the student the foundations of solving programming problems, computer networks, and communications.
- B. The skills goals special to the program.
 - B1 Explanation of computer principles topics by specialists in the subject, with an emphasis on the use of mathematics as a basis for understanding and learning.
 - B2 Providing them with skills to solve practical problems related to various computer systems and computer programs for addressing and solving technical problems in various fields of computerized work.

Teaching and Learning Methods

- Providing students with the basics and additional topics related to previous educational outcomes and skills to solve practical problems.
- Solving a group of practical examples by the academic staff.
- Students participate during the lecture in solving some practical problems.
- The department's scientific laboratories are monitored by the academic staff.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Monthly exams for the curriculum in addition to the final exam.
- C. Affective and value goals
- C1- Enabling students to think and analyze topics related to the engineering framework, such as various logical circuits.
- C2- Enabling students to think and analyze topics related to computer systems related to the engineering framework.
- C3- Enabling students to think and analyze topics related to solving practical problems.

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.
- Giving students homework and periodic reports.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.

- D. General and Transferable Skills (other skills relevant to employability and personal development)
 - D1- Enabling students to write reports and notes on various branches of computer engineering.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.
 - D4- Developing students' skills in how to deal with computer hardware and software problems and how to deal with them.

Teaching and Learning Methods

- Through the Daily lectures by seminar and discussions
- discussion circles during lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics

Assessment Methods

• Evaluating the seminar and reports that submitted by students and providing them with the necessary feedback to improve their skills and self confidence

11. Program	Structure			
Level/Year	Course or Module Code	Course or Module Title	Credit rating	12. Awards and Credits
1 st Year-1 st Semester	E 101	Mathematics 1	6	Bachelor Degree
1 st Year-1 st Semester	EE 101	Electrical Engineering Fundamentals 1	8	Requires (155) credits
1 st Year-1 st Semester	EE 107	Electronic Physics	6	
1 st Year-1 st Semester	EE 106	Engineering Drawing	4	
1 st Year-1 st Semester	U 103	Computer Skills	4	
1 st Year-1 st Semester	U 104	English Language	2	
1 st Year-2 nd Semester	E 102	Mathematics 2	6	

1 st Year-2 nd Semester	EE 102	Electrical Engineering Fundamentals 2	8
1 st Year-2 nd	EE 103	Digital techniques	7
Semester 1 st Year-2 nd	EE 105	C++ Programming	4
Semester			
1 st Year-2 nd Semester	EE 104	Workshops skills	3
1 st Year-2 nd	U 101	Human Rights and	2
Semester		Democracy	
2 nd Year-1 st	E201	Advance Mathematics –I	3
Semester 2 nd Year-1 st			2
Semester	EE 201	Electronics I	2
2 nd Year-1 st Semester	EE 203	Electric Circuits Analysis I	2
2 nd Year-1 st Semester	EE 205	Advanced Programming	1
2 nd Year-1 st	EE 208	Electro-Magnetics I	2
Semester 2 nd Year-1 st		-	2
Semester	EE 210	Digital Electronic I	
2 nd Year-1 st Semester	EE 206	Machines (DC)	2
2 nd Year-2 nd Semester	E202	Advance Mathematics- II	3
2 nd Year-2 nd	EE 202	Electronics II	3
Semester 2 nd Year-2 nd		Electric Circuits Analysis	2
Semester	EE 204	II	2
2 nd Year-2 nd	EE 212	Measurement	2
Semester	DD 212	&Instruments	
2 nd Year-2 nd Semester	EE 209	Electro-Magnetics II	2
2 nd Year-2 nd	EE 211	Digital Electronic II	3
Semester 2 nd Year-2 nd			4
Semester	EE 207	Power and AC Machines	
2 nd Year-2 nd Semester	EE 213	University Culture Activity	-
		-	
3 rd Year-1 st	EE 301	Digital Signal Processing I	2
Semester	EE 301	Digital Signal Processing I	
3 rd Year-1 st Semester	EE 309	Advanced Electronics I	3
	1		

3 rd Year-1 st Semester	EE 303	Communication Systems I	3
3 rd Year-1 st Semester	EE 305	Microprocessor and Microcontroller: Hardware	3
3 rd Year-1 st Semester	EE 307	Engineering Analysis I	2
3 rd Year-1 st Semester	EE 311	Antenna	3
3 rd Year-2 nd Semester	EE 312	Engineering Administration	2
3 rd Year-2 nd Semester	EE 302	Digital Signal Processing II	3
3 rd Year-2 nd Semester	EE 310	Advanced Electronics II	3
3 rd Year-2 nd Semester	EE 304	Communication Systems II	3
3 rd Year-2 nd Semester	EE 306	Microprocessor-Based System: Programming	2
3 rd Year-2 nd Semester	EE 308	Engineering Analysis II	2
3 rd Year-2 nd Semester	EE 313	Optoelectronics	2
Fourth Year- 1st Semester	EE 401	Microelectronic I	2
Fourth Year- 1st Semester	EE 403	Power Electronics I	3
Fourth Year- 1st Semester	EE405	Control System I	3
Fourth Year- 1st Semester	EE407	Digital System Design	3
Fourth Year- 1st Semester	EE 409	Information Theory	3
Fourth Year- 1st Semester	EE411	Hardware Description Language (HDL) Programming	3
Fourth Year- 2 nd Semester	EE 413	Introduction to AI	2
Fourth Year- 2 nd Semester	E402	Eng. Graduation Project I	2
Fourth Year- 2 nd Semester	EE402	Microelectronic II	2
Fourth Year- 2 nd Semester	EE404	Power Electronics II	3
Fourth Year- 2 nd Semester	EE406	Control System II	3
		1	

Fourth Year- 2 nd Semester	EE408	Advanced Digital System Design	3
Fourth Year- 2 nd Semester	EE410	Microwave	2
Fourth Year- 2 nd Semester	E401	Engineering Profession Ethics	2
Fourth Year- 2 nd Semester	EE412	Digital Image Processing	2
Fourth Year- 2 nd Semester	E403	Eng. Graduation Project II	2

13. Personal Development Planning

It is planned to develop the students' personalities by holding discussion circles with them and asking them for periodic reports and seminars throughout the four stages and on various topics to develop their personal development.

14. Admission criteria.

According to the rules and regulations of Ministry of Higher Education and Scientific Research.

15. Key sources of information about the program

- College website.
- The department's website and contact the department by email.

Curriculum Skills Map please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed **Programme Learning Outcomes** General and Transferable Subject-specific skills Knowledge and Core (C) Skills (or) Other skills Course Course understanding Thinking Skills Year / relevant to employability Title or Option Code Title and personal development (O) Level **A4 A2 A3 B1 B2 B3 B4 C1 C2 C3 C4 D**1 **D2 D3 D4 A1** 2st Year-1st DC C $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ EE 206 Machines Semester

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	University of Diyala
2. University Department/Centre	College of Engineering
3. Course title/code	Machines (DC) - EE 206
4. Modes of Attendance offered	Class Lectures
5. Semester/Year	1 st Semester – 2 st Year
6. Number of hours tuition (total)	30 hours
7. Date of production/revision of this specification	16/06/2023
8. Aims of the Course	

The energy and direct current machines curriculum aims to introduce the student to the skills of direct current machines, the basics of direct current machines, the operation of direct current machines, their types, the equivalent circuit, and connecting generators individually and in parallel.

9. Learning Outcomes, Teaching ,Learning and Assessment Methode

- A- Cognitive goals.
 - A1- Understand and teach the student the foundations of electrical and mathematical engineering related to the science of electrical engineering and teach him electrical circuits and everything related to them.
 - A2- Enabling students to obtain knowledge and understanding in working on modern electronic systems and in analyzing programs related to those systems.
 - A3- The student will understand the methods of generating the electromagnetic signal, the methods of its propagation in various media, the possibility of transferring it from one place to another, and its impact on the performance of electronic devices.
 - A4- Enabling students to obtain knowledge and understanding of designing and implementing various electronic systems.
 - A5- Enabling students to obtain knowledge and understanding of diagnosing faults and maintaining various electronic devices.
 - A6- The student will understand the foundations of creating and programming electronic circuits in different hardware languages.
 - A7- Enabling the student to visualize project management and solve the problems he encounters in the factory.
 - A8- Enabling the student to use the calculator and build computer programs for the purpose of simulating electronic systems.
 - A9- Enabling the student to analyze and design control systems.
- B. The skills goals special to the course.
 - B1 An explanation of the topics of the foundations of electrical engineering and electronic physics by specialists in the subject, with an emphasis on the use of mathematics as a basis for understanding and learning.
 - B2 Provides them with skills to solve practical problems related to various electronic systems and computer programs for electronic systems.
 - B3 Topics of wave propagation are presented along with topics of electromagnetic energy transfer, and emphasis is placed on mathematical topics, electrical circuits, and antenna topics together to convey paragraph 1 to the student.
 - B4 The focus is on the topics of design and analysis of electronic systems and their development with intelligent industrial minds.
 - B5- Providing them with skills in choosing a factory location, planning it, and classifying administrative levels according to the size of the factory.

Teaching and Learning Methods

- The lecturer prepares lectures on the subject in paper and electronic form and presents them to the students.
- The lecturer delivers lectures in detail.
- The lecturer requests periodic reports and homework assignments on the basic topics of the subject.

Assessment methods

- Daily discussion to determine the extent of students' understanding of the material and to evaluate the daily contributions.
- Daily exams with various short scientific questions to understand the extent of their understanding of the material.
- Giving part of the semester's grade to homework assignments.
- Daily exams (Quiz) and monthly exams for the curriculum and the final exam

C. Affective and value goals

- C1- Urging the student to understand the purpose of studying the subject in general.
- C2- Urging the student to think about how to develop himself in the field of DC Machines.

Teaching and Learning Methods

- The teacher delivers detailed theoretical lectures
- The teacher requests periodic reports on the basic topics of the subject

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.
- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)
 - D1- Enabling students to write reports on topics related to DC Machine.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.

10. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
Week 1	3	Basic concepts about electrical machines	Basic Concepts	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 2	3	Learn about the installation of AC	Construction of DC Machine and Windings	Lectures Notes power point	Daily exams + practical experiments

		machines and their version			+ monthly exams
Week 3	3	features AC generators: their installation and principle for you to choose	Direct Current Generator: Principle of Operation, Construction	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 4	3	Types of electric generators	Types of Dc Generators	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 5	3	Identify multiple equations in generators	Emf Equation	Lectures Notes power point	
Week 6		The least efficient in electrical machines	Total Loss and Efficiency	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 7	3	Armiger reaction in an electrical object	Armature Reaction	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 8	3	Study the characteristics of electric generators	Characteristics	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 9	3	Operating generators on a balancing device	Parallel Operation	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 10	3	Working principle of AC motors		Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 11		Engine installation and types	DC Motors, Principle of Operation	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 12	3	Types of torques in electric motors and their	Construction, Types	Lectures Notes power point	Daily exams + practical experiments

		equations			+ monthly exams
Week 13		Study of engine characteristics	Torque Equation	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 14	3	Diversify the design	Characteristics	Lectures Notes power point	Daily exams + practical experiments + monthly exams
Week 15		Drive motors and control their speed	Losses and Efficiency,	Lectures Notes power point	Daily exams + practical experiments + monthly exams

11. Infrastructure				
1. Books Required reading:	 Electrical Technology by B.L Theraja. Principles of Electric Machines by V. K. Mehta and Rohit Mehta 			
2. Main references (sources)	 College library to obtain additional sources for the curriculum. Check scientific websites to see recent developments in the subject. 			
A- Recommended books and references (scientific journals, reports).	All solid scientific journals that are related to the broad concept of electronic physics.			
B-Electronic references, Internet sites	Any other materials available on the web.			
12 The development of the curriculum plan				

12. The development of the curriculum plan

The Development of the curriculum consists of various forms for the use of DC Machines in industrial, domestic and commercial appliances.