Republic of Iraq
Ministry of Higher Education & Scientific
Research Supervision and Scientific Evaluation
Directorate Quality Assurance and Academic
Accreditation International Accreditation Dept.

Academic Program Specification Form for The Academic

University: Diyala

College: Engineering

Number Of Departments in The College: 02

Date Of Form Completion: 17/9/2023

Prof. Dr. Anees A. Khadom

The Dean

Date :17/9/2023 Signature Assist. prof. Dr. Jabbar Q. Jabbar

Dean's Assistant for Scientific Affairs Date:17/9/2023 Signature Assist. prof. Dr. Salah N Farhan
The College Quality Assurance
and University Performance
Manager

Date:17/9/2023 Signature

Quality Assurance And University Performance

Manager Date: / /

Signature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Program Specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

1. Teaching Institution	University of Diyala
2. University Department/Centre	College of Engineering
3. Program Title	Electronic Engineering
4. Title of Final Award	BSc in Electronic Engineering
5. Modes of Attendance offered	Courses
6. Accreditation	N/A
7. Other external influences	None
8. Date of production/revision of this specification	17/09/2023

9. Aims of the Program

- Preparing the student scientifically to work in the field of electronics engineering
- Build and prepare the student psychologically to play his role as a reliable engineer in this field.
- Building students capable of competing with other engineers for job opportunities and obtaining the required seats to complete postgraduate studies.
- Ability to submit to external tests by local, regional or international bodies for the purpose of completing studies or appointment.
- Urging the student to be creative and think about specialization projects and keep pace with developments in this field.
- Providing students with scientific, practical and personal skills that enable them to solve practical problems and deal with them using scientific concepts.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A. Cognitive goals

- A1- Understand and teach the student the foundations of electrical and mathematical engineering related to the science of electrical engineering and teach him electrical circuits and everything related to them.
- A2- Enabling students to obtain knowledge and understanding in working on modern electronic systems and in analyzing programs related to those systems.
- A3- The student will understand the methods of generating the electromagnetic signal, the methods of its propagation in various media, the possibility of transferring it from one place to another, and its impact on the performance of electronic devices.
- A4- Enabling students to obtain knowledge and understanding of designing and implementing various electronic systems.
- A5- Enabling students to obtain knowledge and understanding of diagnosing faults and maintaining various electronic devices.
- A6- The student will understand the foundations of creating and programming electronic circuits in different hardware languages.
- A7- Enabling the student to visualize project management and solve the problems he encounters in the factory.
- A8- Enabling the student to use the calculator and build computer programs for the purpose of simulating electronic systems.
- A9- Enabling the student to analyze and design control systems.
- B. The skills goals special to the program.
 - B1 An explanation of the topics of the foundations of electrical engineering and electronic physics by specialists in the subject, with an emphasis on the use of mathematics as a basis for understanding and learning.
 - B2 Provides them with skills to solve practical problems related to various electronic systems and computer programs for electronic systems.
 - B3 Topics of wave propagation are presented along with topics of electromagnetic energy transfer, and emphasis is placed on mathematical topics, electrical circuits, and antenna topics together to convey paragraph 1 to the student.
 - B4 The focus is on the topics of design and analysis of electronic systems and their development with intelligent industrial minds.
 - B5- Providing them with skills in choosing the factory location, planning it, and classifying the administrative levels according to the size of the factory.

Teaching and Learning Methods

- Providing students with the basics and additional topics related to previous educational outcomes and skills to solve practical problems.
- Solving a group of practical examples by the academic staff.
- Students participate during the lecture in solving some practical problems.
- The department's scientific laboratories are monitored by the academic staff.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Monthly exams for the curriculum in addition to the final exam.

C. Affective and value goals

- C1- Enabling students to think and analyze topics related to the engineering framework, such as various logical circuits.
- C2- Enabling students to think and analyze topics related to digital systems related to the engineering framework.
- C3- Enabling students to think and analyze topics related to solving practical problems.

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.
- Giving students homework and periodic reports.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.

Teaching and Learning Methods

- Through the Daily lectures by seminar and discussions
- discussion circles during lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics

Assessment Methods

• Evaluating the seminar and reports that submitted by students and providing them with the necessary feedback to improve their skills and self confidence

11. Program	Structure			
Level/Year	Course or Module Code	Course or Module Title	Credit rating	12. Awards and Credits
1 st Year-1 st Semester	E 101	Mathematics 1	6	D. 1.1. D
1 st Year-1 st Semester	EE 101	Electrical Engineering Fundamentals 1	8	Bachelor Degree Requires (155) credits
1 st Year-1 st Semester	EE 107	Electronic Physics	6	
1 st Year-1 st Semester	EE 106	Engineering Drawing	4	
1 st Year-1 st Semester	U 103	Computer Skills	4	
1 st Year-1 st Semester	U 104	English Language	2	
1 st Year-2 nd Semester	E 102	Mathematics 2	6	
1 st Year-2 nd Semester	EE 102	Electrical Engineering Fundamentals 2	8	
1 st Year-2 nd Semester	EE 103	Digital techniques	7	
1 st Year-2 nd Semester	EE 105	C++ Programming	4	
1 st Year-2 nd Semester	EE 104	Workshops skills	3	
1 st Year-2 nd Semester	U 101	Human Rights and Democracy	2	

2 nd Year-1 st Semester	E201	Advance Mathematics –I	3
2 nd Year-1 st Semester	EE 201	Electronics I	2
2 nd Year-1 st Semester	EE 203	Electric Circuits Analysis I	2
2 nd Year-1 st	EE 205	Advanced Programming	1
Semester 2 nd Year-1 st	EE 208	Electro-Magnetics I	2
Semester 2 nd Year-1 st	EE 210	Digital Electronic I	2
Semester 2 nd Year-1 st		-	2
Semester 2 nd Year-2 nd	EE 206	Machines (DC)	3
Semester	E202	Advance Mathematics- II	
2 nd Year-2 nd Semester	EE 202	Electronics II	3
2 nd Year-2 nd Semester	EE 204	Electric Circuits Analysis II	2
2 nd Year-2 nd Semester	EE 212	Measurement &Instruments	2
2 nd Year-2 nd Semester	EE 209	Electro-Magnetics II	2
2 nd Year-2 nd Semester	EE 211	Digital Electronic II	3
2 nd Year-2 nd Semester	EE 207	Power and AC Machines	4
2 nd Year-2 nd Semester	EE 213	University Culture Activity	-
3 rd Year-1 st Semester	EE 301	Digital Signal Processing I	2
3 rd Year-1 st Semester	EE 309	Advanced Electronics I	3
3 rd Year-1 st Semester	EE 303	Communication Systems I	3
3 rd Year-1 st Semester	EE 305	Microprocessor and Microcontroller: Hardware	3
3 rd Year-1 st Semester	EE 307	Engineering Analysis I	2

3 rd Year-1 st Semester	EE 311	Antenna	3
3 rd Year-2 nd Semester	EE 312	Engineering Administration	2
3 rd Year-2 nd Semester	EE 302	Digital Signal Processing	3
3 rd Year-2 nd Semester	EE 310	Advanced Electronics II	3
3 rd Year-2 nd Semester	EE 304	Communication Systems	3
3 rd Year-2 nd Semester	EE 306	Microprocessor-Based System: Programming	2
3 rd Year-2 nd Semester	EE 308	Engineering Analysis II	2
3 rd Year-2 nd Semester	EE 313	Optoelectronics	2
Scinestei			
Fourth Year- 1st Semester	EE 401	Microelectronic I	2
Fourth Year- 1st Semester	EE 403	Power Electronics I	3
Fourth Year- 1st Semester	EE405	Control System I	3
Fourth Year- 1st Semester	EE407	Digital System Design	3
Fourth Year- 1st Semester	EE 409	Information Theory	3
Fourth Year- 1st Semester	EE411	Hardware Description Language (HDL) Programming	3
Fourth Year- 2 nd Semester	EE 413	Introduction to AI	2
Fourth Year- 2 nd Semester	E402	Eng. Graduation Project I	2
Fourth Year- 2 nd Semester	EE402	Microelectronic II	2
Fourth Year- 2 nd Semester	EE404	Power Electronics II	3
Fourth Year- 2 nd Semester	EE406	Control System II	3
Fourth Year- 2 nd Semester	EE408	Advanced Digital System Design	3
Fourth Year- 2 nd Semester	EE410	Microwave	2

Fourth Year- 2 nd Semester	E401	Engineering Profession Ethics	2
Fourth Year- 2 nd Semester	EE412	Digital Image Processing	2
Fourth Year- 2 nd Semester	E403	Eng. Graduation Project II	2

13. Personal Development Planning

It is planned to develop the students' personalities by holding discussion circles with them and asking them for periodic reports and seminars throughout the four stages and on various topics to develop their personal development.

14. Admission criteria.

According to the rules and regulations of Ministry of Higher Education and Scientific Research.

15. Key sources of information about the program

- College website.
- The department's website and contact the department by email.

Curriculum Skills Map please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed **Programme Learning Outcomes** General and Transferable Subject-specific skills Knowledge and Core Skills (or) Other skills Course Title Course understanding Thinking Skills Year / relevant to employability (C) Code Title or and personal development Level Op **C4 C2 A1 A2 A3 A4 B1 B2 B3 B4 C1 C3 D**1 **D2 D3 D4** tio n (O) **Digital systems** C 4th Year-1st $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ **EE407** $\sqrt{}$ Design(DSD) Semester

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

University of Diyala
College of Engineering
Digital System Design (DSD) – EE 407
Class Lectures
1 st Semester – 4 th Year
45 hours
17/09/2023

8. Aims of the Course

The Digital System Designs course aims to teach the student methods for designing synchronous and asynchronous digital systems and methods for implementing them using digital gates and programmed digital arrays. In addition to qualifying the student to be a designer of advanced digital systems by developing his engineering sense, starting with the process of building the idea, passing through learning the necessary steps for design, and ending with the final examination of the designed system.

 $9\cdot$ Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals.

- A1- Knowing the basic components of various digital systems, the mathematical model, and methods of analyzing them.
- A2- During the academic year, the student learns methods for designing synchronous and asynchronous digital systems.
- A3- Learn and understand the types of programmed digital arrays and ways to use them in implementing digital systems.
- A4- Learn to exploit the scientific resources acquired during the academic years and employ them in analyzing and designing digital systems

B. The skills goals special to the course.

- B1 Familiarity with the mathematical models required to design synchronous and asynchronous digital systems.
- B2- Familiarity with how to draw a flow chart for the digital system.
- B3- Familiarity with the design steps that must be followed for the purpose of converting the flow chart into a digital electronic system.
- B4- Familiarity with how to implement digital systems using different types of programmed digital arrays, as well as purifying the system from the problems of delay, racing, and hazard.

Teaching and Learning Methods

- The lecturer prepares lectures on the subject in paper and electronic form and presents them to the students.
- The lecturer delivers lectures in detail.
- The lecturer requests periodic reports and homework assignments on the basic topics of the subject.

Assessment methods

- Daily discussion to determine the extent of students' understanding of the material and to evaluate the daily contributions.
- Daily exams with various short scientific questions to understand the extent of their understanding of the material.
- Giving part of the semester's grade to homework assignments.
- Daily exams (Quiz) and monthly exams for the curriculum and the final exam

C. Affective and value goals

- C1- Urging the student to understand the purpose of studying the subject in general.
- C2- Urging the student to think about the importance of digital systems in facilitating contemporary life.
- C3- Urging the student to think about the importance of the impact of digital systems on the development of scientific research methods.
- C4- Urging the student to think and follow the rapid development of digital systems.
- C5- Urging the student to think about how to develop himself in the field of digital system design.

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.
- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)
- D1- Enabling students to write reports on topics related to digital systems design.
- D2- Enabling students to link theories with the practical reality of digital electronic systems.
- D3- Enabling students to pass professional tests organized by local or international bodies.
- D4- Enabling students to continue self-development after graduation.

10. Cour	10. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
Week 1	3	Review of sequential circuits and types	Flip-Flop review, Sequential circuit	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 2	3	Introduction to the models in DSD	State-Machine Design Introduction, Mealy & Moore Models.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 3	3	Design of synchronous digital systems Mealy & Model Flowcharts	Design of synchronous S.M Mealy & Moore State Diagrams.	Lectures Notes PDF power point Video	Daily exams + monthly exams

Week 4	3	The students learn the methods to reduce the number of internal states Steps for binary	Reduction of internal state.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 5	3	encoding and generating the F.F excitation table	State Assignments ,and F.F excitation table.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 6	3	Steps for Designing the synchronous digital systems supported by a	Design procedure aided by design example, and	Lectures Notes PDF	Daily exams + monthly
Week 7	3	detailed comprehensive example	circuit implementation	power point Video	exams
Week 8	3	Design of asynchronous digital systems	Design of an Asynchronous S.M	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 9	3	Analysis of the problems of delay, racing, and hazards	Race problem & Hazard.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 10	3	Construct the flow chart and create the state table	State Diagrams & primitive flow table.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 11	3	Reducing the number of internal states & merger process	Reduction of internal state & Merging.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 12	3	The process of binary assignments and creating the transition table	Race free State assignments, and transition table	Lectures Notes PDF power point Video	Daily exams + monthly exams

Week 13 & 14	3	Design steps for asynchronous digital systems supported by a detailed comprehensive example	Design procedure aided by design example, And circuit implementation.	Lectures Notes PDF power point Video	Daily exams + monthly exams
Week 15	3	Analyzing and purifying the system from a problem of Essential Hazard	Location & elimination of the Essential Hazard	Lectures Notes PDF power point Video	Daily exams + monthly exams

11. Infrastructure			
1. Books Required reading:	Digital Design by Mano, M. Morris.		
2. Main references (sources)	1-Charles H.Roth.Jr., "Fundamental of Logic Design". 2-Douglas Lewin, "Design of Logic System". 3-AE.A Al mani, "Electronics Logic Systems". 4-Clare,C.R., "Designing Logic System Using State Machines"		
A- Recommended books and references (scientific journals, reports).	All scientific books and journals related to the design of digital systems. • Lectures presented by the Lecturer • Books available in the college library		
B-Electronic references, Internet sites	Any other materials available on the web.		
12. The development of the curriculum plan: Proposing to change the curriculum from semester to Bologna course contributes to developing the curriculum			