Republic of Iraq
Ministry of Higher Education & Scientific
Research Supervision and Scientific Evaluation
Directorate Quality Assurance and Academic
Accreditation International Accreditation Dept.

Academic Program Specification Form for The Academic

University: Diyala

College: Engineering

Number Of Departments in The College: 02

Date Of Form Completion: 17/9/2023

Prof. Dr. Anees A. Khadom

The Dean

Date:17/9/2023 Signature Assist. prof. Dr. Jabbar Q. Jabbar

Dean's Assistant for Scientific Affairs Date:17/9/2023 Signature Assist. prof. Dr. Salah N Farhan
The College Quality Assurance
and University Performance
Manager

Date:17/9/2023 Signature

Quality Assurance And University Performance

Manager Date: /

Signature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Program Specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

1. Teaching Institution	University of Diyala
2. University Department/Centre	College of Engineering
3. Program Title	Electronic Engineering
4. Title of Final Award	BSc in Electronic Engineering
5. Modes of Attendance offered	Courses
6. Accreditation	N/A
7. Other external influences	None
8. Date of production/revision of this specification	17/09/2023

9. Aims of the Program

- Preparing the student scientifically to work in the field of electronic engineering
- Build and prepare the student psychologically to play his role as a reliable engineer in this field.
- Building students capable of competing with other engineers for job opportunities and obtaining the required seats to complete postgraduate studies.
- Ability to submit to external tests by local, regional or international bodies for the purpose of completing studies or appointment.
- Urging the student to be creative and think about specialization projects and keep pace with developments in this field.
- Providing students with scientific, practical and personal skills that enable them to solve practical problems and deal with them using scientific concepts.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

A. Cognitive goals

- A1- Teaching the student the principles of various electrical and electronic networks.
- A2- Enabling students to obtain knowledge and understanding in working and designing of electrical networks.
- A3- Teaching the student the methods of analysis of electrical networks and its applications.
- A4- Enabling students to obtain knowledge and understanding of designing everything related to electrical networks and circuits.
- A5- Enabling students to obtain knowledge of electrical networks principles and theories.
- A6- Teaching the student the foundations of solving programming problems, computer networks, and communications.
- B. The skills goals special to the program.
 - B1 Explanation of computer principles topics by specialists in the subject, with an emphasis on the use of mathematics as a basis for understanding and learning.
 - B2 Providing them with skills to solve practical problems related to various computer systems and computer programs for addressing and solving technical problems in various fields of computerized work.

Teaching and Learning Methods

- Providing students with the basics and additional topics related to previous educational outcomes and skills to solve practical problems.
- Solving a group of practical examples by the academic staff.
- Students participate during the lecture in solving some practical problems.
- The department's scientific laboratories are monitored by the academic staff.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Monthly exams for the curriculum in addition to the final exam.

C. Affective and value goals

- C1- Enabling students to think and analyze topics related to the engineering framework.
- C2- Enabling students to think and analyze topics related to electrical systems related to the engineering framework.
- C3- Enabling students to think and analyze topics related to solving practical problems.

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.
- Giving students homework and periodic reports.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.

- D. General and Transferable Skills (other skills relevant to employability and personal development)
 - D1- Enabling students to write reports and notes on various branches of electronic engineering.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.
 - D4- Developing students' skills in how to deal with computer hardware and software problems and how to deal with them.

Teaching and Learning Methods

- Through the Daily lectures by seminar and discussions
- discussion circles during lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics

Assessment Methods

• Evaluating the seminar and reports that submitted by students and providing them with the necessary feedback to improve their skills and self confidence

11. Program				
Level/Year	Course or Module Code	Course or Module Title	Credit rating	
2 nd Year-1 st Semester	EE203	Electric Circuits Analysis I	3	

13. Personal Development Planning

It is planned to develop the students' personalities by holding discussion circles with them and asking them for periodic reports and seminars throughout the four stages and on various topics to develop their personal development.

14. Admission criteria.

According to the rules and regulations of Ministry of Higher Education and Scientific Research.

15. Key sources of information about the program

- College website.
- The department's website and contact the department by email.

Curriculum Skills Map

please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed

								Programme Learning Outcomes											
Year / Level	Course Code	Course Title	Core (C) Title or Option (O)	Knowledge and understanding				Thinking Skills			S	General and Transferable Skills (or) Other skills relevant to employability and personal development							
				A1	A2	A3	A4	B1	B2	В3	B4	C1	C2	С3	C4	D1	D2	D3	D4
2 nd Year-1 st Semester	EE203	Electric Circuits Analysis I	С	√		$\sqrt{}$		V		V		√		V	√				

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	University of Diyala				
2. University Department/Centre	College of Engineering				
3. Course title/code	EE203/Electric Circuits Analysis I				
4. Modes of Attendance offered	Class Lectures				
5. Semester/Year	1 st Semester – 2 nd Year				
6. Number of hours tuition (total)	30 hours				
7. Date of production/revision of this specification	17/09/2023				
8. Aims of the Course					
The electric circuits curriculum aims to introduce the student to the skills of electrical networks analysis and their types.					

 $9\cdot$ Learning Outcomes, Teaching , Learning and Assessment Method

- A- Cognitive goals.
 - A1- During the school year, the student learns the basics of electrical networks.
 - A2- Understanding the basics of electrical networks.
 - A3- Learn how to think about how a diode works and its applications.
 - A4- The student learns other types of diodes and applications of electrical networks.
- B. The skills goals special to the course.
 - B1 Learn how to deal with electrical networks analysis.
 - B2- Learn about various types of electrical networks.

Teaching and Learning Methods

- The lecturer prepares lectures on the subject in paper and electronic form and presents them to the students.
- The lecturer delivers lectures in detail.
- The lecturer requests periodic reports and homework assignments on the basic topics of the subject.

Assessment methods

- Daily discussion to determine the extent of students' understanding of the material and to evaluate the daily contributions.
- Daily exams with various short scientific questions to understand the extent of their understanding of the material.
- Giving part of the semester's grade to homework assignments.
- Daily exams (Quiz) and monthly exams for the curriculum and the final exam

C. Affective and value goals

- C1- Urging the student to understand the purpose of studying the subject in general.
- C2- Urging the student to understand the operation of each function or code within the language.
- C2- Urging the student to think about how to develop himself in the field of computers.
- C4- Making the student able to deal with the calculator and how to use the programs.

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.
- D. General and rehabilitative transferred skills (other skills relevant to employability and personal development)
 - D1- Enabling students to write reports on topics related to physics.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.
 - D4- Developing students' skills in how to deal with computer hardware and software problems and how to deal with them.

10. Course Structure							
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method		
1	3	Understanding poly phase systems and its sequences	Three – Phase Networks, phase sequences	pdf and power point lectures	Daily, monthly exams, homework, and seminars		
2	3	Analysis various three phase networks	analysis of YY, YD, DY, DD connected circuits for balanced and unbalanced systems	pdf and power point lectures	Daily, monthly exams, homework, and seminars		
3	3	Studying power measurements method and power calculations	power calculations and measurements in three phase circuit	pdf and power point lectures	Daily, monthly exams, homework, and seminars		
4	3	Understanding two-port networks	Two – Port Networks, (Definitions and terminologies)	pdf and power point lectures	Daily, monthly exams, homework, and seminars		
5	3	Studying networks types and analysis methods	analysis of two port parameters sets (z, y, h, g, ABCD, and abcd)	pdf and power point lectures	Daily, monthly exams, homework, and seminars		
6	3	Studying networks types	analysis of two port parameters sets (z, y,	pdf and power	Daily, monthly exams,		

h, g, ABCD, and

abcd)

point lectures

homework, and

seminars

and analysis

methods

7	3	Studying relationship between various networks	relationships between parameters,	pdf and power point lectures	Daily, monthly exams, homework, and seminars
8	3	Analysis of interconnection between networks	interconnection of networks	pdf and power point lectures	Daily, monthly exams, homework, and seminars
9	3	Understanding Magnetically coupled circuits	Magnetically Coupled Circuits	pdf and power point lectures	Daily, monthly exams, homework, and seminars
10	3	Understanding analysis method of magnetically coupled circuits	analysis of magnetically coupled circuits	pdf and power point lectures	Daily, monthly exams, homework, and seminars
11	3	Studying calculations of magnetically coupled circuits	energy in magnetically coupled circuits	pdf and power point lectures	Daily, monthly exams, homework, and seminars
12	3	Understanding various types of transformers	linear transformers, ideal transformer, ideal auto- transformer,	pdf and power point lectures	Daily, monthly exams, homework, and seminars
13	3	Studying equivalent circuits	conductively coupled equivalent circuits	pdf and power point lectures	Daily, monthly exams, homework, and seminars
14	3	Studying frequency response of various electrical networks	Frequency Response	pdf and power point lectures	Daily, monthly exams, homework, and seminars
15	3	Understanding and finding the transfer function of networks	Transfer function	pdf and power point lectures	Daily, monthly exams, homework, and seminars

11. Infrastructure	
1. Books Required reading:	1- "Fundamentals of Electric Circuits", Charles K. Alexander, Matthew N. O. Sadiku, 5th ed. 2- "ENGINEERING CIRCUIT ANALYSIS", William H. Hayt, Jack E. Kemmerly, Steven M. Durbin- 8th edition, 2012
/ Main ratarancae (collreae)	Lectures presented by the LecturerBooks available in the college library

A- Recommended books and references (scientific journals, reports).					
B-Electronic references, Internet sites	Any other materials available on the web.				
12. The development of the curriculum plan					
The Development of the curriculum consists of various practical examples of electrical networks in daily used devices and gadgets					