Republic of Iraq
Ministry of Higher Education & Scientific
Research Supervision and Scientific Evaluation
Directorate Quality Assurance and Academic
Accreditation International Accreditation Dept.

Academic Program Specification Form for The Academic

University: Diyala

College: Engineering

Number Of Departments in The College: 02

Date Of Form Completion: 17/9/2023

Prof. Dr. Anees A. Khadom

The Dean

Date :17/9/2023 Signature Assist. prof. Dr. Jabbar Q. Jabbar

Dean's Assistant for Scientific Affairs Date:17/9/2023 Signature Assist. prof. Dr. Salah N Farhan
The College Quality Assurance
and University Performance
Manager

Date:17/9/2023 Signature

Quality Assurance And University Performance

Manager Date: / /

Signature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Program Specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

1. Teaching Institution	University of Diyala
2. University Department/Centre	College of Engineering
3. Program Title	Electronic Engineering
4. Title of Final Award	BSc in Electronic Engineering
5. Modes of Attendance offered	Courses
6. Accreditation	N/A
7. Other external influences	None
8. Date of production/revision of this specification	17/09/2023

9. Aims of the Program

- Preparing the student scientifically to work in the field of Electronic engineering
- Build and prepare the student psychologically to play his role as a reliable engineer in this field.
- Building students capable of competing with other engineers for job opportunities and obtaining the required seats to complete postgraduate studies.
- Ability to submit to external tests by local, regional or international bodies for the purpose of completing studies or appointment.
- Urging the student to be creative and think about specialization projects and keep pace with developments in this field.
- Providing students with scientific, practical and personal skills that enable them to solve practical problems and deal with them using scientific concepts.

10. Learning Outcomes, Teaching, Learning and Assessment Methods

- A. Cognitive goals A1- Teaching the student the principles of how Electronic circuits and how to deal with computer algorithms.
- A2- Enabling students to obtain knowledge and understanding in working on and designing electronic computers.
- A3- Teaching the student the methods of forming computer parts and their interconnection.
- A4- Enabling students to obtain knowledge and understanding of designing everything related to computer microprocessors.
- A5- Enabling students to obtain knowledge and understanding of diagnosing faults and maintaining various computer devices.
- A6- Teaching the student the foundations of solving programming problems, computer networks, and communications.
- B. The skills goals special to the program.
 - B1 Explanation of computer principles topics by specialists in the subject, with an emphasis on the use of mathematics as a basis for understanding and learning.
 - B2 Providing them with skills to solve practical problems related to various computer systems and computer programs for addressing and solving technical problems in various fields of computerized work.

Teaching and Learning Methods

- Providing students with the basics and additional topics related to previous educational outcomes and skills to solve practical problems.
- Solving a group of practical examples by the academic staff.
- Students participate during the lecture in solving some practical problems.
- The department's scientific laboratories are monitored by the academic staff.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Monthly exams for the curriculum in addition to the final exam.
- C. Affective and value goals
- C1- Enabling students to think and analyze topics related to the engineering framework, such as various logical circuits.
- C2- Enabling students to think and analyze topics related to computer systems related to the engineering framework.
- C3- Enabling students to think and analyze topics related to solving practical problems.

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.
- Giving students homework and periodic reports.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.

- D. General and Transferable Skills (other skills relevant to employability and personal development)
 - D1- Enabling students to write reports and notes on various branches of computer engineering.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.
 - D4- Developing students' skills in how to deal with computer hardware and software problems and how to deal with them.

Teaching and Learning Methods

- Through the Daily lectures by seminar and discussions
- discussion circles during lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics

Assessment Methods

• Evaluating the seminar and reports that submitted by students and providing them with the necessary feedback to improve their skills and self confidence

11. Program	Structure			
Level/Year	Course or Module Code	Course or Module Title	Credit rating	12. Awards and Credits
1 st Year-1 st Semester	E 101	Mathematics 1	6	Bachelor Degree
1 st Year-1 st Semester	EE 101	Electrical Engineering Fundamentals 1	8	Requires (155) credits
1 st Year-1 st Semester	EE 107	Electronic Physics	6	
1 st Year-1 st Semester	EE 106	Engineering Drawing	4	
1 st Year-1 st Semester	U 103	Computer Skills	4	
1 st Year-1 st Semester	U 104	English Language	2	

1 st Year-2 nd Semester	E 102	Mathematics 2	6
1 st Year-2 nd	EE 102	Electrical Engineering	8
Semester		Fundamentals 2	_
1 st Year-2 nd	EE 103	Digital techniques	7
Semester			
1 st Year-2 nd	EE 105	C++ Programming	4
Semester	77.404	*** 1 1 1 111	
1 st Year-2 nd	EE 104	Workshops skills	3
Semester	TT 101	TT D' L. I	2
1 st Year-2 nd	U 101	Human Rights and	2
Semester		Democracy	
2 nd Year-1 st	E201	Advance Mathematics –I	3
Semester	E201	Advance mathematics –I	
2 nd Year-1 st	EE 201	Electronics I	2
Semester	EE 201	Electronics 1	
2 nd Year-1 st	EE 203	Electric Circuits Analysis I	2
Semester	EE 203	Electric Circuits Analysis i	
2 nd Year-1 st	EE 205	Advanced Programming	1
Semester	EL 203	Advanced Frogramming	
2 nd Year-1 st	EE 208	Electro-Magnetics I	2
Semester	EE 200	Electro-Magnetics 1	
2 nd Year-1 st	EE 210	Digital Electronic I	2
Semester	EE 210	Digital Electronic 1	
2 nd Year-1 st	EE 206	Machines (DC)	2
Semester	EE 200	EE 200 Machines (DC)	
2 nd Year-2 nd	E202 Advance Mathematics- I		3
Semester		125 and Maniematics II	_
2 nd Year-2 nd	EE 202	Electronics II	3
Semester	22 202		_
2 nd Year-2 nd	EE 204	Electric Circuits Analysis	2
Semester		II	2
2 nd Year-2 nd	EE 212	Measurement	2
Semester		&Instruments	2
2 nd Year-2 nd	EE 209	Electro-Magnetics II	2
Semester		<i>y</i>	2
2 nd Year-2 nd	EE 211	Digital Electronic II	3
Semester			4
2 nd Year-2 nd	EE 207 Power and AC Machines		4
Semester			
2 nd Year-2 nd	EE 213 University Culture		-
Semester		Activity	

3 rd Year-1 st Semester	EE 301	Digital Signal Processing I	2
3 rd Year-1 st Semester	EE 309	Advanced Electronics I	3
3 rd Year-1 st Semester	EE 303	Communication Systems I	3
3 rd Year-1 st Semester	EE 305	Microprocessor and Microcontroller: Hardware	3
3 rd Year-1 st Semester	EE 307	Engineering Analysis I	2
3 rd Year-1 st Semester	EE 311	Antenna	3
3 rd Year-2 nd Semester	EE 312	Engineering Administration	2
3 rd Year-2 nd Semester	EE 302	Digital Signal Processing II	3
3 rd Year-2 nd Semester	EE 310	Advanced Electronics II	3
3 rd Year-2 nd Semester	EE 304	Communication Systems II	3
3 rd Year-2 nd Semester	EE 306	Microprocessor-Based System: Programming	2
3 rd Year-2 nd Semester	EE 308	Engineering Analysis II	2
3 rd Year-2 nd Semester	EE 313	Optoelectronics	2
Fourth Year- 1st Semester	EE 401	Microelectronic I	2
Fourth Year- 1 st Semester	EE 403	Power Electronics I	3
Fourth Year- 1st Semester	EE405	Control System I	3
Fourth Year- 1st Semester	EE407	Digital System Design	3
Fourth Year- 1st Semester	EE 409	Information Theory	3
Fourth Year- 1st Semester	EE411	Hardware Description Language (HDL) Programming	3
Fourth Year- 2 nd Semester	EE 413	Introduction to AI	2
Fourth Year- 2 nd Semester	E402	Eng. Graduation Project I	2

Fourth Year- 2 nd Semester	EE402	Microelectronic II	2
Fourth Year- 2 nd Semester	EE404	Power Electronics II	3
Fourth Year- 2 nd Semester	EE406	Control System II	3
Fourth Year- 2 nd Semester	EE408	Advanced Digital System Design	3
Fourth Year- 2 nd Semester	EE410	Microwave	2
Fourth Year- 2 nd Semester	E401	Engineering Profession Ethics	2
Fourth Year- 2 nd Semester	EE412	Digital Image Processing	2
Fourth Year- 2 nd Semester	E403	Eng. Graduation Project II	2

13. Personal Development Planning

It is planned to develop the students' personalities by holding discussion circles with them and asking them for periodic reports and seminars throughout the four stages and on various topics to develop their personal development.

14. Admission criteria.

According to the rules and regulations of Ministry of Higher Education and Scientific Research.

15. Key sources of information about the program

- College website.
- The department's website and contact the department by email.

Curriculum Skills Map please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed **Programme Learning Outcomes** General and Transferable Subject-specific skills Knowledge and Skills (or) Other skills relevant to employability and personal development Core (C) Course Course understanding Thinking Skills Year / Title or Code Title Option (O) Level **A2 A3 A4 B1 B2 B3 B4 C**1 **C2 C3 C4 D**1 **D2 D3 D4 A1** 2nd Year-Measurement C $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ $\sqrt{}$ EE 212 nd &Instruments Semester

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

University of Diyala
College of Engineering
EE 212 / Measurement &Instruments
Class Lectures
2 nd Semester – 2 nd Year
30 hours
17/09/2023

8. Aims of the Course

The subject of control aims to teach the student the mathematical representation of the control system, analysis of linear control circuits, and teach the student how to build an electrical and mechanical model for the derived equations, transfer functions, and analysis of the frequency field of the control system, in addition to teaching the student about the stability of systems. The goal we seek in teaching this subject is to consolidate the principles and foundations. The theory that is used to create and understand absolutely any electronic electrical circuit.

9. Learning Outcomes, Teaching ,Learning and Assessment Method

A- Cognitive goals.

- A1- During the school year, the student learns an idea about the types of systems, whether they are open or equipped with inverse return.
- A2- Learn and understand the phase diagram and its reduction.
- A3- Learn and understand the Laplace transform and its inverse review.
- A4- Learn and understand the foundations of the Roth-Hurwitz stability criterion.
- B. The skills goals special to the course.
 - B1 Familiarity with the mathematical relationships present within the subject.
 - B2- Familiarity with all types of systems.
 - B3- Familiarity with how to carry out practical experiments related to the subject.
 - B4- Familiarity with the basic concepts of stability methods, their types and practical applications.

Teaching and Learning Methods

- The lecturer delivers detailed theoretical lectures
- The lecturer requests periodic reports on the basic topics of the subject.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum, in addition to the mid-year exam and final exam.

C. Affective and value goals

- C1- Urging the student to think about finding models for systems, whether mechanical or electrical.
- C2- Urging the student to think about the importance of finding and analyzing the frequency field of the control system.
- C2- Urging the student to think about the factors affecting the stability of systems.
- C4- Urging the student to think about choosing the appropriate components and contributing to the process of designing transmitter and receiver circuits for electromagnetic waves.

Teaching and Learning Methods

- The lecturer delivers detailed theoretical lectures.
- The lecturer is familiar with the basic concepts of the components of practical control systems, which enhances the method of learning and teaching.
- The lecturer introduces students to the most important components in designing various communications systems, theoretically and practically.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum, in addition to the mid-year exam and final exam.
- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)
 - D1- Enabling students to write reports on topics related to the subject of control.
 - D2- Enabling students to link theories with the practical reality of electrical circuits.
 - D3- Enabling students to pass professional tests organized by local or international bodies.
 - D4- Enabling students to continue self-development after graduation.
 - D5- Establishing special seminars for students for the purpose of self-development of their personalities.

10. Cour	10. Course Structure				
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method
Week 1	2	An introduction to the subject of instruments and measuremen ts, with a historical overview of it	International system of units, Systems of Units and Standards of Measurement, Systems of units	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 2	2	Work in the field of time and frequency for electrical devices	electrical standard, time and frequency standards, IEEE standards Small Signal Diode Model Other Diode types:	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams

Week 3 to Week 4	4	An explanation of the general characteristi cs of measuring devices	Definitions, accuracy, precision, resolution, composition of measuring system selection factors and trends	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 5	2	Errors associated with the measureme nt process	Measurement and Error	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 6	2	Types of errors associated with the measureme nt process, their causes, and methods of dealing with them	types of error: gross, systematic, random, and limiting errors	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 7 to Week 8	4	Statistical analysis of data extracted from electrical measuring devices	Statistical Analysis of Data, Instruments for Measuring Basic Electrical Parameters	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 9	2	Electric bridge and methods of using it in measureme nts	Bridges and their Applications	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams

Week 10	2	Osloscope device, its origin and method of use	Oscilloscopes	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 11	2	An explanation of the types of sensors for location, pressure, speed, acceleration , etc	Transducers: Position, pressure, velocity, acceleration, force, torque, temperature, Photosensitive transducers	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 12	2	Data recording devices	Data Recording Instruments	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 14	2	Noise and ways to treat and reduce it	Noise: Limits to sensitivity, accuracy & speed in both analog and digital systems.	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 14	2	Noise and ways to treat and reduce it	S/N enhancement techniques	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams + practical experiments + monthly exams
Week 15	2	Computer- based instrumentat ion and measureme	Computer-based Instrumentation and Measurement	Presented in power point format	Daily exams + practical experiments + monthly exams Daily exams +

	nts		practical
			experiments +
			monthly exams

11. Infrastructure				
1. Books Required reading:	1. Alan S Morris,2001, Measurement and Instrumentation Principles third Edition 2-Dominique Placko, 2007, Fundamentals of Instrumentation and Measurement, ISTE Ltd			
2. Main references (sources)	 College library to obtain additional sources for the curriculum. Check scientific websites to see recent developments in the subject. 			
A- Recommended books and references (scientific journals, reports).	All solid scientific journals that are related to the broad concept of the subject of control.			
B-Electronic references, Internet sites	Prithwiraj Purkait, 2013, Budhaditya Biswas, Santanu Das, Electrical and Electronics Measurements and Instrumentation, McGraw Hill Education			
12. The development of the curriculum plan				
Updating publications curricula in high-ranking universities and increasing their requirements.				