Republic of Iraq Ministry of Higher Education & Scientific Research Supervision and Scientific Evaluation Directorate Quality Assurance and Academic Accreditation International Accreditation Dept.

Academic Program Specification Form for The Academic

University: Diyala College: Engineering Number Of Departments in The College: 02 Date Of Form Completion :17/9/2023

Prof. Dr. Anees A. Khadom **The Dean** Date :17/9/2023

Signature

Assist. prof. Dr. Jabbar Q. Jabbar

> Dean's Assistant for Scientific Affairs Date :17/9/2023 Signature

Assist. prof. Dr. Salah N Farhan The College Quality Assurance and University Performance Manager Date :17/9/2023 Signature

Quality Assurance And University Performance Manager Date : / / Signature

TEMPLATE FOR PROGRAMME SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

PROGRAMME SPECIFICATION

This Program Specification provides a concise summary of the main features of the program and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It is supported by a specification for each course that contributes to the program.

1. Teaching Institution	University of Diyala
2. University Department/Centre	College of Engineering
3. Program Title	Electronic Engineering
4. Title of Final Award	BSc in Electronic Engineering
5. Modes of Attendance offered	Courses
6. Accreditation	N/A
7. Other external influences	None
8. Date of production/revision of this specification	17/09/2023

9. Aims of the Program

- Preparing the student scientifically to work in the field of computer engineering
- Build and prepare the student psychologically to play his role as a reliable engineer in this field.
- Building students capable of competing with other engineers for job opportunities and obtaining the required seats to complete postgraduate studies.
- Ability to submit to external tests by local, regional or international bodies for the purpose of completing studies or appointment.
- Urging the student to be creative and think about specialization projects and keep pace with developments in this field.
- Providing students with scientific, practical and personal skills that enable them to solve practical problems and deal with them using scientific concepts.

10. Learning Ou	tcomes, Teaching, Learning and Assessment Methods
A. Cognitive	goals A1- Teaching the student the principles of how computers
-	d how to deal with computer algorithms.
A2- Enabling	g students to obtain knowledge and understanding in working on and
designir	ng electronic computers.
A3- Teaching	g the student the methods of forming computer parts and their
intercon	nection.
	g students to obtain knowledge and understanding of designing
•	ng related to computer microprocessors.
	g students to obtain knowledge and understanding of diagnosing
	nd maintaining various computer devices.
	g the student the foundations of solving programming problems,
-	er networks, and communications.
-	goals special to the program.
	tion of computer principles topics by specialists in the subject, with
-	asis on the use of mathematics as a basis for understanding and
learning	
	ng them with skills to solve practical problems related to various er systems and computer programs for addressing and solving
-	I problems in various fields of computerized work.
	nd Learning Methods
	ding students with the basics and additional topics related to previous
	tional outcomes and skills to solve practical problems.
	ng a group of practical examples by the academic staff.
	nts participate during the lecture in solving some practical problems.
	lepartment's scientific laboratories are monitored by the academic
staff. Assessmen	t methods
•	exams with practical and scientific questions.
-	pation marks for difficult competition questions among students.
-	ing grades to homework assignments and reports assigned to them.
	ly exams for the curriculum in addition to the final exam.
	e and value goals ng students to think and analyze topics related to the engineering
	vork, such as various logical circuits.
	ng students to think and analyze topics related to computer systems
	to the engineering framework.
	ng students to think and analyze topics related to solving practical
problem	
*	and Learning Methods
i cuching (

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.
- Giving students homework and periodic reports.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.

- D. General and Transferable Skills (other skills relevant to employability and personal development)
 - D1- Enabling students to write reports and notes on various branches of computer engineering.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.
 - D4- Developing students' skills in how to deal with computer hardware and software problems and how to deal with them.

Teaching and Learning Methods

- Through the Daily lectures by seminar and discussions
- discussion circles during lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics

Assessment Methods

• Evaluating the seminar and reports that submitted by students and providing them with the necessary feedback to improve their skills and self confidence

11. Program	Structure			
Level/Year	Course or Module Code	Course or Module Title	Credit rating	12. Awards and Credits
1 st Year-1 st Semester	E 101	Mathematics 1	6	Bachelor Degree
1 st Year-1 st Semester	EE 101	Electrical Engineering Fundamentals 1	8	Requires (155) credits
1 st Year-1 st Semester	EE 107	Electronic Physics	6	
1 st Year-1 st Semester	EE 106	Engineering Drawing	4	
1 st Year-1 st Semester	U 103	Computer Skills	4	
1 st Year-1 st Semester	U 104	English Language	2	

tot ==d	T 400		
1 st Year-2 nd	E 102	Mathematics 2	6
Semester			
1 st Year-2 nd	EE 102	Electrical Engineering	8
Semester		Fundamentals 2	
1 st Year-2 nd	EE 103	Digital techniques	7
Semester		8	
1 st Year-2 nd	EE 105		4
	EE 103	C++ Programming	4
Semester			
1 st Year-2 nd	EE 104	Workshops skills	3
Semester			
1 st Year-2 nd	U 101	Human Rights and	2
Semester		Democracy	
Bennester			
2 nd Year-1 st			2
	E201	Advance Mathematics –I	3
Semester			
2 nd Year-1 st	EE 201	Electronics I	2
Semester	EE 201	Electronics I	
2 nd Year-1 st			2
Semester	EE 203	Electric Circuits Analysis I	
2^{nd} Year- 1^{st}			
	EE 205	Advanced Programming	1
Semester			
2 nd Year-1 st	EE 208	Electro-Magnetics I	2
Semester	EE 200	Lieeu o Magneties I	
2 nd Year-1 st	EE 210	Digital Electronia I	2
Semester	EE 210	Digital Electronic I	
2 nd Year-1 st			2
Semester	EE 206	Machines (DC)	
2 nd Year-2 nd			3
	E202	Advance Mathematics- II	5
Semester			
2 nd Year-2 nd	EE 202	Electronics II	3
Semester	LL 202	Electronics II	
2 nd Year-2 nd		Electric Circuits Analysis	2
Semester	EE 204	П	
2 nd Year-2 nd		Measurement	2
Semester	EE 212	&Instruments	-
			2
2 nd Year-2 nd	EE 209	Electro-Magnetics II	2
Semester		<i>2</i> · · · · ·	
2 nd Year-2 nd	EE 211	Digital Electronic II	3
Semester		Digital Electronic II	
2 nd Year-2 nd			4
Semester	EE 207	Power and AC Machines	
2^{nd} Year- 2^{nd}		University Culture	_
	EE 213	University Culture	<u>د</u>
Semester		Activity	

- الصفحة 6

3 rd Year-1 st		1	2
Semester	EE 301	Digital Signal Processing I	Z
3 rd Year-1 st Semester	EE 309	Advanced Electronics I	3
3 rd Year-1 st Semester	EE 303	Communication Systems I	3
3 rd Year-1 st Semester	EE 305	Microprocessor and Microcontroller: Hardware	3
3 rd Year-1 st Semester	EE 307	Engineering Analysis I	2
3 rd Year-1 st Semester	EE 311	Antenna	3
3 rd Year-2 nd Semester	EE 312	Engineering Administration	2
3 rd Year-2 nd Semester	EE 302	Digital Signal Processing II	3
3 rd Year-2 nd Semester	EE 310	Advanced Electronics II	3
3 rd Year-2 nd Semester	EE 304	Communication Systems II	3
3 rd Year-2 nd Semester	EE 306	Microprocessor-Based System: Programming	2
3 rd Year-2 nd Semester	EE 308	Engineering Analysis II	2
3 rd Year-2 nd Semester	EE 313	Optoelectronics	2
Fourth Year- 1 st Semester	EE 401	Microelectronic I	2
Fourth Year- 1 st Semester	EE 403	Power Electronics I	3
Fourth Year- 1 st Semester	EE405	Control System I	3
Fourth Year- 1 st Semester	EE407	Digital System Design	3
Fourth Year- 1 st Semester	EE 409	Information Theory	3
Fourth Year- 1 st Semester	EE411	Hardware Description Language (HDL) Programming	3
Fourth Year- 2 nd Semester	EE 413	Introduction to AI	2
Fourth Year- 2 nd Semester	E402	Eng. Graduation Project I	2

Fourth Year- 2 nd Semester	EE402	Microelectronic II	2	
Fourth Year- 2 nd Semester	EE404	Power Electronics II	3	
Fourth Year- 2 nd Semester	EE406	Control System II	3	
Fourth Year- 2 nd Semester	EE408	Advanced Digital System Design	3	
Fourth Year- 2 nd Semester	EE410	Microwave	2	
Fourth Year- 2 nd Semester	E401	Engineering Profession Ethics	2	
Fourth Year- 2 nd Semester	EE412	Digital Image Processing	2	
Fourth Year- 2 nd Semester	E403	Eng. Graduation Project II	2	

13. Personal Development Planning

It is planned to develop the students' personalities by holding discussion circles with them and asking them for periodic reports and seminars throughout the four stages and on various topics to develop their personal development.

14. Admission criteria .

According to the rules and regulations of Ministry of Higher Education and Scientific Research.

15. Key sources of information about the program

- College website.
- The department's website and contact the department by email.

		Curriculum Skills Map please tick in the relevant boxes where individual Programme Learning Outcomes are being assessed																	
									Р	rogra	mme	Learı	ning O	utcon	nes				
Year / Level	Course Code	Course Title	Core (C) Title or Option (O)			edge an standin		S	ubject sł	-specifi tills	ic]	Thinkin	g Skill	S	Ski relev	eral and ' ills (or) (vant to er personal	Other sk mployab	ills oility
				A1	A2	A3	A4	B1	B2	B3	B4	C1	C2	C3	C4	D1	D2	D3	D4
4 th Year-	EE 410	Microwave	С			\checkmark						\checkmark							\checkmark
2 nd Semester																			
2^{nd}	EE 410	Microwave	C	A1 √	A2 √	A3 √	A4 √	1	B2 √	B3 √	B4 √	C1 √	C2 √	C3 √	C4 √	D1 √	D2 √		D3 √

TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

University of Diyala
College of Engineering
EE 410/ Microwave
Class Lectures
2 nd Semester – 4 th Year
45 hours
17/09/2023

8. Aims of the Course

The course aims to study and clarify the broad concept of accurate and theoretical wave engineering by introducing the student to the equivalent of the mentor and concepts of reflection and refraction and then enhancing the understanding of these concepts through an expanded explanation of the transmission line and the directive of the waveides of all kinds and then touching on effective and ineffective elements Active & Passive Elements used in accurate wave frequency networks and finally get to know the most important science recently in the field of accurate waves.

9. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Cognitive goals.

A1-During the first semester of the academic year, the student learns the concept of microwave engineering and the frequencies that operate in this range. Then he learns the wave equation, its reflection and refraction, and how to analyze this wave. He also learns transmission lines, in addition to learning the solution using... Smith Chart.

During the second semester, the student learns the following:

A2- Understanding and studying the Scattering Matrix and finding its elements to benefit from in analyzing microwave networks, in addition to the concept of Impedance Matching.

A3- Understanding and studying Active Elements, including Waveguides.

A4- The student learns the topic of Microwave Cavity Resonators.

A5 - Understanding and studying passive elements, including Microwave Couplers and Circulators.

A6- The student learns everything related to microwave transistors and diodes, such as Gunn diode, Tunnel diode, and others.

A7- The student learns the concept of klystron and magnetron and the purpose of their use.

B. The skills goals special to the course.

- B1-Familiarity with mathematical derivations related to the subject of the plane wave equation, its reflection and refraction.
- B2- Familiarity with the laws and calculations of transmission lines and learning to extract them from the Smith diagram.
- B3- Familiarity with mathematical derivations and relationships related to the subject of load suitability and the S matrix.
- B4- Familiarity with the mathematical derivations related to the topic of (Waveguides) and understanding how the wave is transmitted through them.
- B5- Familiarity with derivations and mathematical relationships related to the topic (Cavity Resonators).
- B6- Familiarity with the mathematical laws related to the subject of inert elements, the most important of which are duals.
- B7- Familiarity with the method of using and the importance of diodes and microtransistors, in addition to their theoretical concept.

Teaching and Learning Methods

- The lecturer prepares lectures on the subject in paper and electronic form and presents them to the students.
- The lecturer delivers lectures in detail.
- The lecturer requests periodic reports and homework assignments on the basic topics of the subject.

Assessment methods

- Daily discussion to determine the extent of students' understanding of the material and to evaluate the daily contributions.
- Daily exams with various short scientific questions to understand the extent of their understanding of the material.
- Giving part of the semester's grade to homework assignments.
- Daily exams (Quiz) and monthly exams for the curriculum and the final exam

C. Affective and value goals

- C1-Urging the student to expand his understanding of cosmic phenomena and waves and linking them to the concept of the vector equation.
- C2- Urging the student to think about the most important applications of TL in the field of communications and microwave transmission.
- C3- Urging the student to think about the most important applications of Impedance Matching in the field of control, machinery and communications.
- C4- Urging the student to think about the most important uses of vectors and oscillators in the field of electronic engineering and micro and digital communications.

C5- Urging the student to think about the importance of studying microwave engineering devices and components such as diodes and transistors.

C6- Urging the student to expand his thinking about the importance of using the Klystron and the Magnetron

Teaching and Learning Methods

- Providing students with the basics, additional topics, and field experiences related to the outcomes of thinking and analysis.
- Forming discussion circles during or outside lectures to discuss scientific engineering topics that require thinking and analysis.
- Asking students, a set of thinking questions during lectures, such as (what, how, when, why) for specific topics.

Assessment methods

- Daily exams with practical and scientific questions.
- Participation marks for difficult competition questions among students.
- Assigning grades to homework assignments and reports assigned to them.
- Semester exams for the curriculum in addition to the final exam.
- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)
 - D1- Enabling students to write reports on topics related to physics.
 - D2- Enabling students to know how to use the Internet to obtain important information.
 - D3- Raising the student's self-confidence by linking theoretical material to practical reality.
 - D4- Developing students' skills in how to deal with computer hardware and software problems and how to deal with them.

10. Cou	10. Course Structure								
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method				
Week 1	3	The teacher reviews everything related to electromagneti c theory	Electromagnetic Theory	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 2	3	The teacher explains an introduction to microwave engineering	Microwave Engineering	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 3	3	An introduction to transmission lines	Transmission Line Theory	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 4	3	A detailed explanation of how to find transmission line constants and loads and solve problems	Transmission Line Theory	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 5	3	An expanded explanation of the Scattering Matrixand uses of its elements	S-Parameters	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 6	3	Understand and study the method of router transmission across routers with examples	Waveguides	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 7	3	Explain the different types of vectors, which are rectangular, circular, and semicircular, with examples	Waveguides	Lectures Notes PDF power point Video	Daily exams + monthly exams				
Week 8	3	Understanding and studying the method of wave	Cavity Resonators	Lectures Notes PDF power point	Daily exams + monthly exams				

		tronomiosion		Vidae	
		transmission through		Video	
		oscillators and			
		explaining their			
		types Understanding			
	3	and studying			
	5	how duals work		Lectures Notes	Daily exams
Week 9		and their	Microwave Directional	PDF	+ monthly
W COR 5		importance in	Couplers	power point	exams
		transmitting	· · · I · · ·	Video	
		microwaves			
		Understanding			
	3	and studying the			
		way insulators	Design & Analysis of	Lectures Notes	Doily oxome
Week 10		work and their	Ferromagnetic	PDF	Daily exams + monthly
WCCK 10		importance in the	-	power point	exams
		flow and	Microwave	Video	exums
		transmission of			
		microwaves			
	3	The lecturer			
	3	presents the	Microwave Diodes &	Lectures Notes	
		types of diodes and micro	Transistors	PDF	Daily exams
Week 11		transistors, their	114115151015	power point	+ monthly
		theoretical		Video	exams
		concept and		v laco	
		applications			
		Understand how			
	3	microwave tubes		Lectures Notes	
		and filters work	Microwave Tubes &	PDF	Daily exams
Week 12		and how to use	Filters	power point	+ monthly
		them within the	1 11015	Video	exams
		microwave		v laco	
		network			
		Understanding			
	3	and studying the		Lectures Notes	Daily avance
Week 13	3	mechanism of operation of	Microwave Amplifiers &	PDF	Daily exams + monthly
WEEK 13		amplifiers and	Oscillators	power point	exams
		microwave		Video	CAdillis
		oscillators			
	3	Understanding			
		and studying the			
		mechanism of		Lectures Notes	Dellerer
Week 14		operation of the	Microwave Amplifiers &	PDF	Daily exams
Week 14		Klystron and	Oscillators	power point	+ monthly exams
		Magnetron and		Video	Crains
		the method of			
	-	amplifying			
Week 15	3	Showcasing the	Applications of	Lectures Notes	Daily exams

latest scientific Microwave Engineering PDF + mon findings in microwave power point exam microwave Video video video applications, applications, video video	microwave engineering
--	--------------------------

11. Infrastructure					
1. Books Required reading:	 Samuel Liao "Microwave Devices and Circuits". David M. Pozar. "Microwave Engineering" Fourth Edition. 				
2. Main references (sources)	Lectures presented by the LecturerBooks available in the college library				
A- Recommended books and references (scientific journals, reports).	All solid scientific journals related to the broad and advanced concept of microwave engineering.				
B-Electronic references, Internet sites	All websites and electronics that have the course vocabulary				
12. The development of the curriculum plan					
t was suggested that there be a laboratory for the substance to conduct experiments on					

It was suggested that there be a laboratory for the substance to conduct experiments on the substance