Transistor

1-Emitter-stabilized circuit
This circuit is also known as fixed bias circuit with an emitter resistance . Figure (1) shows the location of resistor, R_{E}. This circuit is more stable because I_{B} is not fixed as shown in previous example (fixed biased circuit). I_{B} will change if β change, which causes operating point to experience changes but not a much as fixed bias circuit.

Figure (1)
An emitter-stabilized bias circuit

The DC analysis to determine the operating point of a circuit shown in figure (1) is as follows:-
Using KVL for the input loop (figure (1))
$V_{c c}-I_{B} R_{B}-V_{B E}-I_{E} R_{E}=0$
Substitute $I_{E}=(\beta+1) I_{B}$ into above equation, it becomes
$V_{c c}-I_{B} R_{B}-V_{B E}-(\beta+1) I_{B} R_{E}=0$ and $I_{B}=\frac{V_{c c}-V_{B E}}{R_{B}+(\beta+1) R_{E}}$
Therefore $I_{C}=\beta I_{B}$ and $I_{E}=I_{C}+I_{B}=(\beta+1) I_{B}$
Equation for the output loop in figure (1):-
$V_{c c}-I_{c} R_{c}-V_{C E}-I_{E} R_{E}=0$
Therefore $V_{C E}=V_{c c}-I_{c} R_{c}-I_{E} R_{E}$
Or $V_{C E}=V_{c c}-I_{c}\left(R_{c}+R_{E}\right)$ if an assumption $I_{c} \approx I_{E}$ is made.
The DC load-line of this circuit is shown in figure (2). It is difference as compared to a fixed bias circuit load-line is the $I_{c(s a t)}$ value, where $I_{c(s a t)}=\frac{V_{c c}}{R_{c}+R_{E}}$. The same effect as revealed as shown in previous lectures will happen if R_{c} and $V_{c c}$ experience change.

Figure (2)
DC load-line for an emitter stabilized bias circuit

2- Voltage-divider Bias

Another bias circuit is voltage divider circuit (figure (3-a)). This circuit can be simplified further as shown in (figure (3-b)) using Thevenin's theorem for the DC analysis to determine the transistor operating point. For this, an equivalent of $R_{T H}$ or $R_{B B}$ and $V_{T H}$ or $V_{B B}$ that can be seen at the base terminal should be found.

-a-

Figure (3)
a- Voltage divider circuit b- simplified circuit

Figure (4) Voltage divider circuit
(a) Input loop (b) output loop

Using Thevenin's theorem, the following obtained:
$R_{t h}=R_{1}| | R_{2}$ and $V_{t h}=V_{c c} \frac{R_{2}}{R_{1}+R_{2}}$
Using KVL for the input loop (figure(4-a)):-
$V_{T H}-I_{B} R_{t h}-V_{B E}-I_{E} R_{E}=0$ but $I_{E}=(\beta+1) I_{B}$
Hence:-

$$
\begin{aligned}
& V_{T H}-I_{B} R_{t h}-V_{B E}-(\beta+1) I_{E} R_{E}=0 \\
& I_{B}=\frac{V_{T H}-V_{B E}}{R_{T H}+(\beta+1) R_{E}}
\end{aligned}
$$

So that
$I_{c}=\beta I_{B}$ and $I_{E}=I_{c}+I_{B}=(\beta+1) I_{B}$
Equation for the output loop figure (figure (4-b)):-
$V_{c c}-I_{c} R_{c}-V_{C E}-I_{E} R_{E}=0$
$V_{C E}=V_{c C}-I_{C} R_{C}-I_{E} R_{E}$
Or $V_{C E}=V_{c c}-I_{c}\left(R_{c}+R_{E}\right)$ with an assumption $I_{c} \approx I_{E}$.
The DC load line for this circuit is same as figure (2).

The voltage divider bias circuit is very stable circuit. It does not depend on the value β if circuit parameters, i.e., resistance values are chosen correctly. This is shown as follows:
For voltage divider circuit, it is known that: $I_{B}=\frac{V_{T H}-V_{B E}}{R_{T H}+(\beta+1) R_{E}}$
Normally $\beta \gg 1$, an assumption of $(\beta+1)=\beta$ can be made.
For a good amplifier, $(\beta+1) R_{E} \gg R_{t h}$, therefore $R_{t h}$ value can be ignored.
Then
$I_{B}=\frac{V_{T H}-V_{B E}}{R_{T H}+\beta R_{E}}=\frac{V_{T H}-V_{B E}}{\beta R_{E}}$
$I_{C}=\beta I_{B}=\beta\left(\frac{V_{T H}-V_{B E}}{\beta R_{E}}\right) \rightarrow I_{C}=\frac{V_{T H}-V_{B E}}{R_{E}}$
The equation of I_{c} clearly shows that it does not depend on β. But condition $(\beta+1) R_{E} \gg R_{t h}$ must be complied. Since I_{c} does not depend on β value, therefore $V_{C E}$ is also not depended on β.
3- DC Bias with Voltage feedback
This circuit is also known as collector feedback bias circuit. A bias circuit is shown in figure (5).

Figure (5)
Bias circuit with a voltage feedback

At node X, using KCL : $I_{c}^{\prime}=I_{B}+I_{C}$,
$I_{E}=I_{B}+I_{C}$
Then current that flows through R_{c} is emitter current, I_{E}, so $I_{c}^{\prime}=I_{E}$ Using Loop I:
$V_{c c}-I_{c}^{\prime} R_{C}-I_{B} R_{B}-V_{B E} I_{E} R_{E}=0$
Known that $I_{E}=(\beta+1) I_{B}$
Then, $V_{c c}-(\beta+1) I_{B} R_{C}-I_{B} R_{B}-V_{B E}-(\beta+1) I_{B} R_{E}=0$
$I_{B}=\frac{V_{c c}-V_{B E}}{R_{B}+(\beta+1)\left(R_{E}+R_{c}\right)}$

Hence, $I_{C}=\beta I_{B}$ and $I_{E}=I_{C}+I_{B}=(\beta+1) I_{B}$
Equation for loop II:
$V_{c c}-I_{E} R_{c}-V_{C E}-I_{E} R_{E}=0$
$V_{C E}=V_{c c}-I_{E}\left(R_{E}+R_{c}\right)$
Or $V_{C E}=V_{c c}-I_{C}\left(R_{E}+R_{c}\right)$
With as assumption $I_{c} \approx I_{E}$

Q1- For a given BJT: $I_{B}=50 \mu A$ and $I_{c}=3.65 \mathrm{~mA}$. Find the dc current gain $\beta_{d c}, I_{E}, \alpha_{d c}$?
Solution:-

$$
\begin{aligned}
& \beta_{d c}=\frac{I_{c}}{I_{B}}=\frac{3.65 \mathrm{~mA}}{50 \mu A}=\frac{3.65 \times 10^{-3}}{50 \times 10^{-6}}=73 \\
& I_{E}=I_{C}+I_{B}=50 \times 10^{-6}+3.65 \times 10^{-3}=3.7 \times 10^{-3} \mathrm{~mA} \\
& \alpha_{d c}=\frac{I_{c}}{I_{E}}=\frac{3.65 \mathrm{~mA}}{3.7 \mathrm{~mA}}=\frac{3.65 \times 10^{-3}}{3.7 \times 10^{-3}}=0.986
\end{aligned}
$$

Q2- For given NPN BJT circuit shown in figure(6) ,if $\beta_{d c}=150$. Find I_{B}, I_{c}, $I_{E}, V_{B E}, V_{C E}$, and $V_{C B}$?

Solution:-

$$
\begin{aligned}
& V_{B E} \cong 0.7 \mathrm{Volt} \\
& I_{B}=\frac{V_{c c}-V_{B E}}{R_{B}}=\frac{5 V-0.7 \mathrm{~V}}{10 \mathrm{~K} \Omega}=430 \mu \mathrm{~A} \\
& I_{c}=\beta_{d c} I_{B}=(150)(430 \mu \mathrm{~A})=64.5 \mathrm{~mA} \\
& I_{E}=I_{c}+I_{B}=64.5 \mathrm{~mA}+430 \mu \mathrm{~A}=64.9 \mathrm{~mA} \\
& V_{C E}=V_{C C}-I_{c} R_{c}=10 \mathrm{~V}-(64.5 \mathrm{~mA})(100 \Omega)=3.55 \mathrm{~V} \\
& V_{C B}=V_{C E}-V_{B E}=3.55 \mathrm{~V}-0.7 \mathrm{~V}=2.85 \mathrm{~V}
\end{aligned}
$$

Figure (6)

Q3- Using ideal BJT switch of $\beta_{d c}=200, V_{C C}=10 \mathrm{~V}$ and $I_{B}=20 \mu \mathrm{~A}$.

1) Find the value of base resistor R_{B} required to switch the load " ON " when the input terminal voltage exceeds 2.5 V and $V_{B E}=0.7 \mathrm{~V}$.
2) Calculate the R_{C} of point (1).
3) Find the minimum base current I_{B} required to turn the transistor " Fully -ON " (saturated) for a load that requires 200 mA when the input voltage increased to 5.0 V . Also calculate the new value of R_{B}.

Figure (7)

Solution:-
1- $R_{B}=\frac{V_{\text {in }}-V_{B E}}{I_{B}}=\frac{2.5 \mathrm{~V}-0.7 \mathrm{~V}}{20 \times 10^{-6}}=90 \mathrm{~K} \Omega$.
2- For ideal BJT at saturation $V_{C E}=0$ Volt
$I_{c}=\beta_{d c} I_{B}=200 \times 20 \times 10^{-6}=4 \mathrm{~mA}$
$R_{c}=\frac{V_{c c}-V_{C E}}{I_{c}}=\frac{10-0}{4 \times 10^{-3}}=2.5 \mathrm{~K} \Omega$.
3- At ON state, the load current is equal to I_{c}
$I_{B}=\frac{I_{c}}{\beta_{d c}}=\frac{200 \mathrm{~mA}}{200}=1 \mathrm{~mA}$
$R_{B}=\frac{V_{i n}-V_{B E}}{I_{B}}=\frac{5 . V-0.7 V}{1 \times 10^{-3}}=4.3 \mathrm{~K} \boldsymbol{\Omega}$.

Q4- For fixed bias circuit shown in figure (8), if $R_{B}=240 \mathrm{~K} \Omega, R_{C}=2.2$ $K \boldsymbol{\Omega}, \beta_{d c}=50 . V_{c c}=12 \mathrm{~V}$. Determine
1- I_{B}, I_{C}
2- $V_{C E}$
3- V_{B}, V_{C}
4- $V_{B C}$

Figure (8)

Solution:-

$$
\begin{aligned}
& 1-I_{B}=\frac{V_{c c}-V_{B E}}{R_{B}}=\frac{12 \mathrm{~V}-0.7 \mathrm{~V}}{240 \mathrm{~K} \boldsymbol{R}}=47.08 \mu \mathrm{~A} \\
& I_{C}=\beta_{d c} I_{B}=50 \times 47.08 \times 10^{-6}=2.35 \mathrm{~mA} \\
& 2-V_{C E}=V_{C C}-I_{c} R_{C}=12 \mathrm{~V}-(2.35 \mathrm{~mA})(2.2 \mathrm{k} \boldsymbol{\Omega})=6.83 \mathrm{~V} \\
& 3-V_{B}=V_{B E}=0.7 \mathrm{~V} \\
& 4-V_{C}=V_{C E}=6.83 \mathrm{~V} \\
& 5-V_{B C}=V_{B}-V_{C}=0.7 \mathrm{~V}-6.83 \mathrm{~V}=-6.13 \mathrm{~V}
\end{aligned}
$$

Q5- For figure (10) Determine:-
1- $V_{C C}$
2- R_{C}
3- R_{B}

Figure (10)

Solution:-

$1-V_{C C}=20 \mathrm{~V}$
2- $I_{c}=8 \mathrm{~mA} \rightarrow R_{C}=\frac{V_{C C}}{I_{c}}=\frac{20 \mathrm{~V}}{8 \mathrm{~mA}}=2.5 \mathrm{~K} \Omega$
3- $R_{B}=\frac{V_{C C}-V_{B E}}{I_{B}}=\frac{20-0.7}{40 \times 10^{-6}}$
$=482.5 \mathrm{~K} \boldsymbol{\Omega}$

Q6- For emitter-bias circuit shown in figure (11). Determine:$I_{B}, I_{C}, V_{C E}, V_{C}, V_{E}, V_{B}$ and $V_{B C}$
Where:-
$V_{C C}=20 \mathrm{~V}, R_{B}=430 \mathrm{~K} \Omega, R_{E}=1 \mathrm{~K} \Omega, R_{c}=2 \mathrm{~K} \Omega, \beta_{d c}=50$

Figure (11)

Solution:-

$$
\begin{aligned}
& I_{B}=\frac{V_{c c}-V_{B E}}{R_{B}+(\beta+1) R_{E}}=\frac{20-0.7}{430 \mathrm{~K} \boldsymbol{\Omega}+(50+1)(1 \mathrm{~K} \boldsymbol{\Omega})}=40.1 \mu \mathrm{~A} \\
& I_{c}=\beta_{d c} I_{B}=50 \times 40.1 \times 10^{-6}=2.01 \mathrm{~mA} \\
& I_{E}=I_{C}+I_{B}=2.01 \mathrm{~mA}+40.1 \mu A=2.05 \mathrm{~mA} \\
& V_{C E}=V_{C C}^{-} I_{c} R_{C}-I_{E} R_{E}=20 \mathrm{~V}-(2.01 \mathrm{~mA})(2 . \mathrm{K} \boldsymbol{\Omega})-(2.05 \mathrm{~mA})(1 . \mathrm{K} \boldsymbol{\Omega}) \\
& =13.93 \mathrm{~V} \\
& V_{C}=V_{C E}+I_{E} R_{E}=13.93+(2.05 \mathrm{~mA})(1 . \mathrm{K} \boldsymbol{\Omega})=15.98 \mathrm{~V} \\
& V_{E}=I_{E} R_{E}=(2.05 \mathrm{~mA})(1 . \mathrm{K} \boldsymbol{\Omega})=2.05 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Or} V_{E}=V_{C}-V_{C E} \\
& V_{E}=15.98-13.93=2.05 \mathrm{~V} \\
& V_{B}=V_{E}+V_{B E} \\
& V_{B}=0.7+2.05=2.75 \mathrm{~V} \\
& V_{B C}=V_{B}-V_{C} \\
& V_{B C}=2.75-15.98=-13.89
\end{aligned}
$$

Q7- For circuit shown in figure (12), $R_{1}=39 \mathrm{~K} \Omega, R_{2}=3.9 \mathrm{~K} \boldsymbol{\Omega}, R_{c}=10 \mathrm{~K} \boldsymbol{\Omega}$, $R_{E}=1.5 \mathrm{~K} \Omega, \beta_{d c}=100, V_{C C}=22 V_{C C}$ determine:- $V_{C E}, I_{C}$
Solution:-

$$
\begin{aligned}
& R_{t h}=R_{1}| | R_{2} \\
& R_{t h}=\frac{(39)(3.9)}{(39+3.9}=3.55 \mathrm{~K} \boldsymbol{\Omega} \\
& V_{t h}=\frac{V_{C C} R_{2}}{R_{1}+R_{2}}=\frac{(22)(3.9)}{(39+3.9)}=2 \mathrm{~V} \\
& I_{B}=\frac{V_{T H}-V_{B E}}{R_{T H}+(\beta+1) R_{E}}
\end{aligned}
$$

$I_{B}=\frac{2-0.7}{3.5 K+(101)(1.5 K)}=8.38 \mu \mathrm{~A}$
$I_{c}=\beta_{d c} I_{B}=100 \times 8.38 \times 10^{-6}=0.84 \mathrm{~mA}$
$V_{C E}=V_{C C} I_{c}\left(R_{c}+R_{E}\right)$
$V_{C E}=22-0.84 \mathrm{~mA}(10 \mathrm{~K} \boldsymbol{\Omega}+1.5 \mathrm{~K} \boldsymbol{\Omega})=12.34 \mathrm{~V}$

Figure (12)

Q7- For circuit shown in figure (13), $R_{c}=4.7 \mathrm{~K} \boldsymbol{\Omega}, R_{B}=250 \mathrm{~K} \boldsymbol{\Omega}, R_{E}=1.2 \mathrm{~K} \boldsymbol{\Omega}$, $\beta_{d c}=90, V_{C C}=10 \mathrm{~V}$. Find $I_{c}, V_{C E}$. Repeat previous example if $\beta_{d c}=150$ Solution:-
$I_{B}=\frac{V_{c c}-V_{B E}}{R_{B}+(\beta+1)\left(R_{E}+R_{C}\right)}$
$I_{B}=\frac{10-0.7}{250+(90+1)(1.2+4.7)}=11.91 \mu \mathrm{~A}$
$I_{C}=\beta_{d c} I_{B}=90 \times 11.91 \times 10^{-6}=1.07 \mathrm{~mA}$
$V_{C E}=V_{C C^{-}} I_{C}\left(R_{C}+R_{E}\right)$
$V_{C E}=10-1.07 \mathrm{~mA}(4.7 \mathrm{~K}+1.2 \mathrm{~K})=3.69 \mathrm{~V}$
If $\beta_{d c}=150$

$$
\begin{aligned}
& I_{B}=\frac{V_{C C}-V_{B E}}{R_{B}+(\beta+1)\left(R_{E}+R_{c}\right)} \\
& I_{B}=\frac{10-0.7}{250+(150+1)(1.2+4.7)}=8.89 \mu \mathrm{~A} \\
& I_{c}=\beta_{d c} I_{B}=150 \times 8.89 \times 10^{-6}=1.2 \mathrm{~mA} \\
& V_{C E}=V_{C C}-I_{c}\left(R_{C}+R_{E}\right) \\
& V_{C E}=10-1.2 \mathrm{~mA}(4.7 \mathrm{~K}+1.2 \mathrm{~K})=2.92 \mathrm{~V} \\
& \text { Level } \beta_{d c} \text { increase } 50 \% \\
& \text { Level of } I_{c} \text { increased by } 12 \% \\
& \text { Level of } V_{C E} \text { decreased by } 20.9 \%
\end{aligned}
$$

Figure (13)

