Alternating Series

A series in which the terms are alternately positive and negative.

Example

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \dots + \frac{(-1)^{n+1}}{n} + \dots$$

$$-2 + 1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots + \frac{(-1)^n 4}{2^n} + \dots$$

$$1 - 2 + 3 - 4 + 5 - 6 + \dots + (-1)^{n+1} n + \dots$$

The Convergence Test of Alternating Series

The series

$$\sum_{n=1}^{\infty} (-1)^{n+1} u_n = u_1 - u_2 + u_3 - u_4 + \dots$$

converges if all three of the following conditions are satisfied:

- 1) The u_n 's are all positive.
- 2) $u_n \ge u_{n+1}$ for all $n \ge N$, for some integer N.
- 3) $u_n \rightarrow 0$.

Example

The alternating harmonic series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

satisfies the three requirements of convergence; it therefore converges.

Absolute Convergence

A series $\sum a_n$ converges absolutely (is absolutely convergent) if the corresponding series of absolute values, $\sum |a_n|$, converges, i.e.,

If
$$\sum_{n=1}^{\infty} |a_n|$$
 converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Example

The geometric series $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots$ converges absolutely because the corresponding series of absolute values $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ converges.

Conditional Convergence

A series that converges but does not converge absolutely converges conditionally.

Example

The alternating harmonic series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$ does not converge absolutely. The corresponding series of absolute values $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is the divergent harmonic series.

Power Series

A power series about x = 0 is a series of the form

$$\sum_{n=0}^{\infty} c_n x^n = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n + \dots$$

• A power series about x = a is a series of the form

$$\sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + \dots + c_n (x-a)^n + \dots$$

in which the center a and the coefficients $c_0, c_1, c_2, ..., c_n, ...$ are constants.

Example

The series $\sum_{n=0}^{\infty} x^n$ is a geometric series with first term 1 and ratio x. It converges to

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + \dots$$
 for $|x| < 1$

Convergence of Power Series

If the power series $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + \dots$ converges for $x = c \neq 0$, then it converges absolutely for all x with |x| < |c|. If the series diverges for x = d, then it diverges for all x with |x| > |d|.

The test of power series is done using the Ratio Test.

$$\lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \rho \begin{cases} <1 & Conv. \\ >1 & Div. \\ =1 & Fails \end{cases}$$

Notes:

- ❖ Use the Ratio Test to find the interval where the series converges absolutely.
- ❖ If the interval of absolute convergence is finite, test the convergence or divergence at each endpoint. Use the integral test or the Alternating Series Test for endpoints.

• If the interval of absolute convergence is |x-a| < R, the series diverges for |x-a|>R (it does not even converge conditionally), because the nth-term does not approach zero for those values of x.

Example

For what values of x do the following power series converge?

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots,$$

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
, (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots$

(c)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots,$$

(d)
$$\sum_{n=0}^{\infty} n! x^n = 1 + x + 2! x^2 + 3! x^3 + \dots$$

Solution

(a)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{n+1} \times \frac{n}{x^n} \right| = \frac{n}{n+1} |x| \longrightarrow |x|$$
.

The series converges absolutely for |x| < 1. It diverges if |x| > 1 because the nth-term does not converge to zero. At x = 1, we get the alternating harmonic series 1-1/2+1/3-1/4+..., which converges. At x = -1, we get -1-1/2-1/3-1/4-..., the negative of the harmonic series; it diverges. So, the series converges for $-1 < x \le 1$ and diverges elsewhere.

(b)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{2n+1}}{2n+1} \times \frac{2n-1}{x^{2n-1}} \right| = \frac{2n-1}{2n+1} x^2 \to x^2.$$

The series converges absolutely for $x^2 < 1$. It diverges for $x^2 > 1$ because the nthterm does not converge to zero. At x = 1, the series becomes 1 - 1/3 + 1/5 - 1/7 + ..., which converges because it satisfies the three conditions of convergence of alternating series. It also converges at x = -1 because it is again an alternating series

that satisfies the conditions for convergence. The value at x = -1 is the negative of the value at x = 1. So, the series converges for $-1 \le x \le 1$ and diverges elsewhere.

(c)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \frac{|x|}{n+1} \to 0$$
 for every x .

The series converges absolutely for all x.

(d)
$$\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = (n+1)|x| \to \infty \text{ unless } x = 0.$$

The series diverges for all values of x except x = 0.

Exercises on Alternating & Power Series

Which of the following series converges and which diverges?

1)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n^2}$$

2)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \left(\frac{n}{10}\right)^n$$

Ans. Diverges,
$$a_n \to \infty$$

3)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{1}{\ln n}$$

4)
$$\sum_{n=2}^{\infty} (-1)^{n+1} \frac{\ln n}{\ln(n^2)}$$

Ans. Diverges,
$$a_n \to \frac{1}{2}$$

5)
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$$