Sequences and Series

Sequences of Numbers

A sequence of numbers is a function whose domain is the set of positive integers.

Example

0, 1, 2, . . . n-1, . . . for a sequence whose defining rule is $a_n = n-1$

1,
$$\frac{1}{2}$$
, $\frac{1}{3}$, ... $\frac{1}{n}$, ... for a sequence whose defining rule is $a_n = \frac{1}{n}$

The index n is the **domain** of the sequence. While the numbers in the **range** of the sequence are called the **terms** of the sequence, and the number a_n being called the n^{th} -term, or the term with index n.

<u>Example</u> $a_n = \frac{n+1}{n}$ then the terms are

$$1^{st}$$
 term 2^{nd} term 3^{rd} term n^{th} term $a_1 = 2, \quad a_2 = \frac{3}{2}, \quad a_3 = \frac{4}{3}, \quad \dots \quad a_n = \frac{n+1}{n}, \quad \dots$

and we use the notation $\{a_n\}$ as the sequence a_n .

Example

Find the first five terms of the following:

(a)
$$\left\{ \frac{2n-1}{3n+2} \right\}$$
, (b) $\left\{ \frac{1-(-1)^n}{n^3} \right\}$, (c) $\left\{ (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} \right\}$

Solution

(a)
$$\frac{1}{5}$$
, $\frac{3}{8}$, $\frac{5}{11}$, $\frac{7}{14}$, $\frac{9}{17}$ (b) 2, 0, $\frac{2}{27}$, 0, $\frac{2}{125}$

1

(c)
$$x$$
, $\frac{-x^3}{3!}$, $\frac{x^5}{5!}$, $\frac{-x^7}{7!}$, $\frac{x^9}{9!}$

Example

Find the nth-term of the following:

(a) 0,
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, (b) 0, $\frac{\ln 2}{2}$, $\frac{\ln 3}{3}$, $\frac{\ln 4}{4}$, (c) 0, $\frac{1}{4}$, $\frac{2}{9}$, $\frac{3}{16}$,

(d) 2, 1,
$$\frac{2^3}{3^2}$$
, $\frac{2^4}{4^2}$, $\frac{2^5}{5^2}$

Solution

(a)
$$a_n = \frac{n-1}{n}$$
, (b) $a_n = \frac{\ln n}{n}$, (c) $a_n = \frac{n-1}{n^2}$, (d) $a_n = \frac{2^n}{n^2}$

Convergence of Sequences

The fact that $\{a_n\}$ converges to L is written as

$$\lim_{n\to\infty} a_n = L \qquad \text{or} \qquad a_n \to L \quad \text{as} \quad n \to \infty$$

and we call the limit of the sequence $\{a_n\}$. If no such limit exists, we say that $\{a_n\}$ diverges.

From that we can say that

1)
$$\lim_{n \to \infty} a_n = L$$
 (Conv.)

2)
$$\lim_{n\to\infty} a_n = \infty$$
 (Div.)

3)
$$\lim_{n\to\infty} a_n = \begin{cases} L_1 \\ L_2 \end{cases}$$
 (Div.)

Also, if $A = \lim_{n \to \infty} a_n$ and $B = \lim_{n \to \infty} b_n$ both exist and are finite, then

i)
$$\lim_{n \to \infty} \{a_n + b_n\} = A + B$$

ii)
$$\lim_{n\to\infty} \{ka_n\} = kA$$

iii)
$$\lim_{n\to\infty} \{a_n \cdot b_n\} = A \cdot B$$

iv)
$$\lim_{n\to\infty} \left\{ \frac{a_n}{b_n} \right\} = \frac{A}{B}$$
, provided $B \neq 0$ and b_n is never 0

Example

Test the convergence of the following:

(a)
$$\left\{\frac{1}{n}\right\}$$
,

(b)
$$\{1+(-1)^n\}$$
,

(c)
$$\{n^2\}$$

(b)
$$\{1+(-1)^n\}$$
, (c) $\{n^2\}$, (d) $\{\sqrt{n+1}-\sqrt{n}\}$

(e)
$$\left\{ \frac{3n^2 - 5n}{5n^2 + 2n + 6} \right\}$$
, (f) $\left\{ \frac{3n^2 - 4n}{2n - 1} \right\}$, (g) $\left\{ \left(\frac{2n - 3}{3n - 7} \right)^4 \right\}$, (h) $\left\{ \frac{2n^5 - 4n^2}{3n^7 + n^2 - 10} \right\}$,

(i)
$$\left\{\frac{2^n}{5n}\right\}$$
, (j) $\left\{\frac{\ln n}{e^n}\right\}$

(j)
$$\left\{\frac{\ln n}{e^n}\right\}$$

Solution

(a)
$$\lim_{n\to\infty} \left(\frac{1}{n}\right) = 0$$
 (Conv.)

(b)
$$\lim_{n \to \infty} (1 + (-1)^n) = 1 + \lim_{n \to \infty} (-1)^n = \begin{cases} 0 & n \text{ odd} \\ 2 & n \text{ even} \end{cases}$$

(c)
$$\lim_{n\to\infty} (n^2) = \infty$$
 (Div.)

(d)
$$\lim_{n \to \infty} \left(\sqrt{n+1} - \sqrt{n} \right) = \lim_{n \to \infty} \left(\left(\sqrt{n+1} - \sqrt{n} \right) \times \frac{\sqrt{n+1} + \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} \right) = \lim_{n \to \infty} \left(\frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} \right)$$
$$= \lim_{n \to \infty} \left(\frac{1}{\sqrt{n+1} + \sqrt{n}} \right) = \frac{1}{\infty + \infty} = 0$$
 (Conv.)

(e)
$$\lim_{n \to \infty} \left(\frac{3n^2 - 5n}{5n^2 + 2n + 6} \right) = \lim_{n \to \infty} \left(\frac{\frac{3n^2}{n^2} - \frac{5n}{n^2}}{\frac{5n^2}{n^2} + \frac{2n}{n^2} + \frac{6}{n^2}} \right) = \frac{3}{5}$$
 (Conv.)

(f)
$$\lim_{n \to \infty} \left(\frac{3n^2 - 4n}{2n - 1} \right) = \lim_{n \to \infty} \left(\frac{\frac{3n^2}{n^2} - \frac{4n}{n^2}}{\frac{2n}{n^2} - \frac{1}{n^2}} \right) = \frac{3}{0} = \infty$$
 (Div.)

(g)
$$\lim_{n\to\infty} \left(\frac{2n-3}{3n-7}\right)^4 = \left(\frac{2}{3}\right)^4 = \frac{16}{81}$$
 (Conv.)

(h)
$$\lim_{n \to \infty} \left(\frac{2n^5 - 4n^2}{3n^7 + n^2 - 10} \right) = \lim_{n \to \infty} \left(\frac{\frac{2}{n^2} - \frac{4}{n^5}}{3 + \frac{1}{n^5} - \frac{10}{n^7}} \right) = 0$$
 (Conv.)

(i)
$$\lim_{n \to \infty} \left(\frac{2^n}{5n} \right) = \lim_{n \to \infty} \left(\frac{2^n \cdot \ln 2}{5} \right) = \infty$$
 (Div.)

(j)
$$\lim_{n \to \infty} \left(\frac{\ln n}{e^n} \right) = \lim_{n \to \infty} \left(\frac{1/n}{e^n} \right) = \lim_{n \to \infty} \left(\frac{1}{n \cdot e^n} \right) = \frac{1}{\infty} = 0$$
 (Conv.)

Example

Prove the following limits

(a)
$$\lim_{n \to \infty} \left(\frac{\ln n}{n} \right) = 0$$
, (b) $\lim_{n \to \infty} \left(\sqrt[n]{n} \right) = 1$, (c) $\lim_{n \to \infty} \left(x^{1/n} \right) = 1$ $(x > 0)$,

Solution

(a)
$$\lim_{n\to\infty} \left(\frac{\ln n}{n}\right) = \lim_{n\to\infty} \left(\frac{1/n}{1}\right) = \frac{0}{1} = 0$$

(b) Let
$$a_n = n^{1/n}$$
, then $\ln a_n = \ln n^{1/n} = \frac{1}{n} \ln n \to 0$,

So,
$$\lim_{n \to \infty} n^{1/n} = e^{\ln a_n} \to e^0 = 1$$

(c) Let
$$a_n = x^{1/n}$$
, then $\ln a_n = \ln x^{1/n} = \frac{1}{n} \ln x \to 0$,

So,
$$\lim_{n \to \infty} x^{1/n} = e^{\ln a_n} \to e^0 = 1$$

Exercises on Sequences

Find the values of a_1 , a_2 , a_3 and a_4 for the following sequences

$$1) \quad a_n = \frac{1-n}{n^2}$$

2)
$$a_n = \frac{1}{n!}$$

1)
$$a_n = \frac{1-n}{n^2}$$
 2) $a_n = \frac{1}{n!}$ 3) $a_n = \frac{(-1)^{n+1}}{2n-1}$

4)
$$a_n = 2 + (-1)^n$$

$$a_n = \frac{2^n}{2^{n+1}}$$

4)
$$a_n = 2 + (-1)^n$$
 5) $a_n = \frac{2^n}{2^{n+1}}$ 6) $a_n = \frac{2^n - 1}{2^n}$

Find a formula for the nth term of the following sequences

4)
$$1, -\frac{1}{4}, \frac{1}{9}, -\frac{1}{16}, \frac{1}{25}, \dots$$
 5) $0,3,8,15,24,\dots$ 6) $-3,-2,-1,0,1,\dots$

Which of the following sequences converge and which diverge?

1)
$$a_n = 2 + (0.1)^n$$

$$2) a_n = \frac{1 - 2n}{1 + 2n}$$

3)
$$a_n = \frac{1 - 5n^4}{n^4 + 8n^3}$$

4)
$$a_n = \frac{n^2 - 2n + 1}{n - 1}$$

5)
$$a_n = 1 + (-1)^n$$

Infinite Series

Infinite series are sequences of a special kind: those in which the n^{th} -term is sum of the first n terms of a related sequence.

Example

Suppose that we start with the sequence

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \frac{1}{64}, \dots$$

If we denote the above sequence as a_n , and the resultant sequence of the series as then

$$s_1 = a_1 = 1$$
,
 $s_2 = a_1 + a_2 = 1 + \frac{1}{2} = \frac{3}{2}$,
 $s_3 = a_1 + a_2 + a_3 = 1 + \frac{1}{2} + \frac{1}{4} = \frac{7}{4}$,

as the first three terms of the sequence $\{s_n\}$.

When the sequence $\{s_n\}$ is formed in this way from a given sequence $\{a_n\}$ by rule

$$S_n = a_1 + a_2 + ... + a_n = \sum_{k=1}^n a_k$$

the result is called an Infinite Series.

- The number $s_n = \sum_{k=1}^n a_k$ is called the n^{th} partial sum of the series.
- Instead of $\{s_n\}$, we usually write $\sum_{n=1}^{\infty} a_n$ or simply $\sum a_n$.
- ***** The series $\sum a_n$ is said to *converge* to a number L if and only if

$$L = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \sum_{k=1}^n a_k$$

in which case we call L the sum of the series and write

$$\sum_{n=1}^{\infty} a_n = L \qquad \text{or} \qquad a_1 + a_2 + ... + a_n + ... = L$$

If no such limit exists, the series is said to diverge.

Geometric Series

A series of the form

$$a + ar + ar^{2} + ar^{3} + ... + ar^{n-1} + ...$$

is called a *Geometric Series*. The ratio of any term to the one before it is r. If the geometric series converges to a/(1-r). If $|r| \ge 1$, the series diverges unless a = 0, the series converges to a = 0.

Example

Geometric series with $a = \frac{1}{9}$ and $r = \frac{1}{3}$.

$$\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots = \frac{1}{9} \left(1 + \frac{1}{3} + \frac{1}{3^2} + \dots \right) = \frac{1/9}{1 - (1/3)} = \frac{1}{6}$$

Geometric series with a = 4 and $r = -\frac{1}{2}$.

$$4-2+1-\frac{1}{2}+\frac{1}{4}-...=4\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-...\right)$$
$$=\frac{4}{1+(1/2)}=\frac{8}{3}$$

<u>Example</u>

Determine whether each series converges or diverges. If it converges, find its sum.

(a)
$$\sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n$$
, (b) $\sum_{n=1}^{\infty} \left(\frac{3}{2}\right)^n$, (c) $\sum_{n=1}^{\infty} 2\left(\cos\frac{\pi}{3}\right)^n$, (d) $\sum_{n=0}^{\infty} \left(\tan\frac{\pi}{4}\right)^n$, (e) $\sum_{n=1}^{\infty} \frac{5(-1)^n}{4^n}$

Solution

- (a) Since the series is a geometric series with $r = \frac{2}{3} < 1$, so the series is convergent with a sum of $\frac{1}{1 (2/3)} = 3$
- **(b)** Since the series is a geometric series with $r = \frac{3}{2} > 1$, so the series is divergent.
- (c) $\cos \pi/3 = 1/2$. This is a geometric series with first term $a_1 = 1$ and the ratio r = 1/2; so the series converges and its sum is $1/(1 \frac{1}{2}) = 2$.
- (d) $\tan \pi/4 = 1$. This is a geometric series with r = 1, so the series diverges.
- (e) This is a geometric series with first term $a_1 = -5/4$ and ratio r = -1/4. So the series converges and its sum is $\frac{-5/4}{1+(1/4)} = -1$.

Test Convergence of Series with Non-negative Terms

- 1) The nth- Term Test
 - If $\lim_{n\to\infty} a_n \neq 0$, or if $\lim_{n\to\infty} a_n$ fails to exist, then $\sum_{n=1}^{\infty} a_n$ diverges.
 - If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.
 - If $\lim_{n\to\infty} a_n = 0$, then the test fails.

From the above, it can not be concluded that if $a_n \to 0$ then $\sum_{n=1}^{\infty} a_n$ converges. The series $\sum_{n=1}^{\infty} a_n$ may diverge even though $a_n \to 0$. Thus $\lim_{n \to \infty} a_n = 0$ is a necessary but not a sufficient condition for the series $\sum_{n=1}^{\infty} a_n$ to converge.

Examples

$$\sum_{n=1}^{\infty} n^2 \qquad \text{diverges because } n^2 \to \infty,$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} \qquad \text{diverges because } \frac{n+1}{n} \to 1 \neq 0,$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} \qquad \text{diverges because } \lim_{n \to \infty} (-1)^{n+1} \text{ does not exist,}$$

$$\sum_{n=1}^{\infty} \frac{n}{2n+5} \qquad \text{diverges because } \lim_{n \to \infty} \frac{n}{2n+5} = \frac{1}{2} \neq 0,$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \qquad \text{can not be tested by the } n^{\text{th}}\text{-term test for divergence because } \frac{1}{n} \to 0.$$

2) The Ratio Test

Let $\sum a_n$ be a series with positive terms, and suppose that

$$\lim_{n\to\infty}\frac{a_{n+1}}{a_n}=\rho$$

Then

- The series converges if $\rho < 1$,
- The series diverges if $\rho > 1$,
- The series may converge or it may diverge if $\rho = 1$. (Test fails)

The Ratio Test is often effective when the terms of the series contain factorials of expressions involving n or expressions raised to a power involving n.

Example

Test the following series for convergence or divergence, using the Ratio Test.

(a)
$$\sum_{n=1}^{\infty} \frac{n! \, n!}{(2n)!}$$
, (b) $\sum_{n=1}^{\infty} \frac{4^n \, n! \, n!}{(2n)!}$, (c) $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$, (d) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$

Solution

(a) If
$$a_n = \frac{n!n!}{(2n)!}$$
, then $a_{n+1} = \frac{(n+1)!(n+1)!}{(2n+2)!}$ and
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!(n+1)!(2n)!}{n!n!(2n+2)(2n+1)(2n)!} = \frac{(n+1)(n+1)}{(2n+2)(2n+1)}$$
$$= \frac{n+1}{4n+2} \to \frac{1}{4} < 1 \qquad (Conv.)$$

(b) If
$$a_n = \frac{4^n n! n!}{(2n)!}$$
, then $a_{n+1} = \frac{4^{n+1} (n+1)! (n+1)!}{(2n+2)!}$ and
$$\frac{a_{n+1}}{a_n} = \frac{4^{n+1} (n+1)! (n+1)!}{(2n+2)(2n+1)(2n)!} \times \frac{(2n)!}{4^n n! n!} = \frac{4(n+1)(n+1)}{(2n+2)(2n+1)}$$

$$= \frac{2(n+1)}{2n+1} \to 1$$
 (Test fails)

(c) If
$$a_n = \frac{2^n + 5}{3^n}$$
, then $a_{n+1} = \frac{2^{n+1} + 5}{3^{n+1}}$ and
$$\frac{a_{n+1}}{a} = \frac{(2^{n+1} + 5)/3^{n+1}}{(2^n + 5)/3^n} = \frac{1}{3} \times \frac{2^{n+1} + 5}{2^n + 5}$$

$$a_{n} = \frac{1}{3} \times \left(\frac{2+5 \times 2^{-n}}{1+5 \times 2^{-n}}\right) \to \frac{1}{3} \times \frac{2}{1} = \frac{2}{3} < 1$$
 (Conv.)

(Div.)

(d) If
$$a_n = \frac{n!}{3^n}$$
, then $a_{n+1} = \frac{(n+1)!}{3^{n+1}}$ and
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{3^{n+1}} \times \frac{3^n}{n!} = \frac{n+1}{3} \to \infty > 1$$

3) The nth Root Test

Let $\sum a_n$ be a series with $a_n \ge 0$ for $n > n_0$ and suppose that

$$\sqrt[n]{a_n} \to \rho$$

Then

- The series converges if $\rho < 1$.
- The series diverges if $\rho > 1$.
- The test is not conclusive if $\rho = 1$.

Example

Test the convergence of the following series using the nth Root Test.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$
, (b) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$, (c) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$, (d) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$, (e) $\sum_{n=1}^{\infty} \left(\frac{2n}{n+1}\right)^n$

Solution

(a)
$$\sqrt[n]{\frac{1}{n^n}} = \frac{1}{n} \to 0 < 1$$
 (Conv.)

(b)
$$\sqrt[n]{\frac{2^n}{n^2}} = \frac{2}{\sqrt[n]{n^2}} = \frac{2}{\left(\sqrt[n]{n}\right)^2} \to \frac{2}{1^2} = 2 > 1$$
 (Div.)

(c)
$$\sqrt[n]{\left(1-\frac{1}{n}\right)^n} = \left(1-\frac{1}{n}\right) \to 1$$
 (Test fails)

(d)
$$\sqrt[n]{\left(\frac{n}{n+1}\right)^{n^2}} = \left(\frac{n}{n+1}\right)^{\frac{n^2}{n}} = \left(\frac{n}{n+1}\right)^n = \left(\frac{1}{1+1/n}\right)^n \to \frac{1}{e} = \frac{1}{2.7} < 1$$
 (Conv.)

(e)
$$\sqrt[n]{\left(\frac{2n}{n+1}\right)^n} = \frac{2n}{n+1} \to 2 > 1$$
 (Div.)

Exercises on Series

Find the sum of the following series

1)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{4^n}$$

Ans.
$$\frac{4}{5}$$

$$2) \qquad \sum_{n=1}^{\infty} \frac{7}{4^n}$$

Ans.
$$\frac{7}{3}$$

3)
$$\sum_{n=0}^{\infty} \left(\frac{5}{2^n} + \frac{1}{3^n} \right)$$

Ans.
$$\frac{23}{2}$$

4)
$$\sum_{n=0}^{\infty} \left(\frac{1}{2^n} + \frac{(-1)^n}{5^n} \right)$$

Ans.
$$\frac{17}{6}$$

Which of the following series converges and which diverges?

$$\sum_{n=1}^{\infty} \frac{1}{10^n}$$

Ans. Converges (Geometric)

$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$

Ans. Diverges (nth-term test)

$$\sum_{n=1}^{\infty} \frac{n!}{(2n+1)!}$$

Ans. Converges (Ratio Test)