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CHAPTER 6

Laplace Transforms

The Laplace transform method is a powerful method for solving linear ODEs and
corresponding initial value problems, as well as systems of ODEs arising in engineering.
The process of solution consists of three steps (see Fig. 112).

Step 1. The given ODE is transformed into an algebraic equation (“subsidiary
equation”).
Step 2. The subsidiary equation is solved by purely algebraic manipulations.

Step 3. The solution in Step 2 is transformed back, resulting in the solution of the given
problem.

Initial Value Algebraic of the

Problem | (1) | Problem | (2) ' byAlgebra | (3) VP |
Fig. 112. Solving an IVP by Laplace transforms

IVP AP Solving Solution I
AP >

Thus solving an ODE is reduced to an algebraic problem (plus those transformations).
This switching from calculus to algebra is called operational calculus. The Laplace
transform method is the most important operational method to the engineer. This method
has two main advantages over the usual methods of Chaps. 1-4:

A. Problems are solved more directly, initial value problems without first determining
a general solution. and nonhomogeneous ODEs without first solving the corresponding
homogeneous ODE.

B. More importantly, the use of the unit step function (Heaviside function in
Sec. 6.3) and Dirac’s delta (in Sec. 6.4) make the method particularly powerful for
problems with inputs (driving forces) that have discontinuities or represent short impulses
or complicated periodic functions.

In this chapter we consider the Laplace transform and its application to engineering
problems involving ODEs. PDEs will be solved by the Laplace transform in Sec. 12.11.

General formulas are listed in Sec. 6.8, transforms and inverses in Sec. 6.9. The
usual CASs can handle most Laplace transforms.

Prerequisite: Chap. 2
Sections that may be omitted in a shorter course: 6.5, 6.7
References and Answers to Problems: App. 1 Part A, App. 2.
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6.1 Laplace Transform. Inverse Transform.
Linearity. s-Shifting

EXAMPLE 1

If f(r) is a function defined for all ¢ = 0, its Laplace transform! is the integral of f(z)
times e~** from t = 0 to x. It is a function of s, say, F(s), and is denoted by L(f); thus

ke o3

o Fs) = 9(f) = fo e~ (1) d.

Here we must assume that f(¢) is such that the integral exists (that is, has some finite
value). This assumption is usually satisfied in applications—we shall discuss this near the
end of the section.

Not only is the result F{(s) called the Laplace transform, but the operation just described,
which yields F(s) from a given f(¢), is also called the Laplace transform. It is an “integral
transform”

F(s) =f0 k(s, n)f(r) dr

with “kernel” k(s, 1) = ¢~
Furthermore, the given function f(#) in (1) is called the inverse transform of F(s) and
is denoted by £~1(F); that is, we shall write

(1*) foy = £7YF).
Note that (1) and (1¥) together imply £~Y(&(f)) = f and L(EL~Y(F)) = F.

Notation

Original functions depend on ¢ and their transforms on s—keep this in mind! Original
functions are denoted by lowercase letters and their transforms by the same letters in
capital, so that F(s) denotes the transform of f(z), and Y(s) denotes the transform of v(z),
and so on.

Laplace Transform

Let f(r) = 1 when ¢ 2 0. Find F(s).
Solution. From (1) we obtain by integration

o ES)

—st ! —st !
2 =LA) = [ dt=—?e =7 (s > 0).
(1] ]

IpP[ERRE SIMON MARQUIS DE LAPLACE (1749-1827), great French mathematician, was a professor in
Paris. He developed the foundation of potential theory and made important contributions to celestial mechanics,
astronomy in general, special functions, and probability theory. Napoléon Bonaparte was his student for a year.
For Laplace’s interesting political involvements. see Ref. [GR2], listed in App. 1.

The powerful practical Laplace transform techniques were developed over a century later by the English
electrical engineer OLIVER HEAVISIDE (1850-1925) and were often called “Heaviside calculus.”

We shall drop variables when this simplifies formulas without causing confusion. For instance, in (1) we
wrote £(f) instead of L(f)(s) and in (1*) £~ Y(F) instead of L~ 1(F)().
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THEOREM 1

CHAP. 6 Laplace Transforms

Our notation is convenient, but we should say a word about it. The interval of integration in (1) is infinite.
Such an integral is called an improper integral and, by definition, is evaluated according to the rule

SC

T
f e *'f(1) dr = lim J- Sty dr.
o Toe Jg

Hence our convenient notation means

~ 1 T 1 1 1
f etar=1lim | —— ¢ =lim |—— T+ =0 | = — (s > 0).
o T—co s 0 T—oc s 5 kY
We shall use this notation throughout this chapter. |

Laplace Transform £(e™) of the Exponential Function e™
Let f(r) = ¢ when t = 0, where a is a constant. Find L)

Solution. Again by (1),

oc s

1
ff(eat) — f e_Steat dr = e—(s—a)t :
0 a—s 0

hence, when s — a > 0,
1
Fey = - - |
S —a
Must we go on in this fashion and obtain the transform of one function after another
directly from the definition? The answer is no. And the reason is that new transforms can
be found from known ones by the use of the many general properties of the Laplace
transform. Above all, the Laplace transform is a “linear operation,” just as differentiation
and integration. By this we mean the following.

Linearity of the Laplace Transform

The Laplace transform is a linear operation; that is, for any functions f(f) and g(t) whose
transforins exist and any constants a and b the transform of af(t) + bg(t) exists, and

Llaf(n) + bg)} = aZ{f(O} + bE{gD)}.

PROOF By the definition in (1),

Hlaf )+ bg} = [ e af@) + b
0

o

=aq f et dr + bf e ety dt = aL{f(} + bEL{gw)}. N
0

(4]

EXAMPLE 3 Application of Theorem 1: Hyperbolic Functions

Find the transforms of cosh at and sinh ar.

Solution. Since coshat = 3(e™ + ¢~*) and sinhar = 2(e™ — ¢~*), we obtain from Example 2 and

Theorem 1

1 1 1 1
SF(cosh ar) = E(,'if(eat) + F(e™ ) = 5 ( + ) =— s 5

1 1 1
FL(sinh ar) = E(.Sﬁ(eat) — S = E(.s - ) = a 5 - ]
s
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EXAMPLE 4 Cosine and Sine

Derive the formulas
w

<
Flcosw) = 55—, Jinw) = 50— .
2+ o? 2+ o

Solution by Calculus. We write L, = $£(cos wf) and Ly = ¥(sin w1). Integrating by parts and noting that the
integral-free parts give no contribution from the upper limit . we obtain

(e}

—st oc oo
st € 2] st . 1 o
L.= e~ cos ot dt = cos wf| — — e sinwtdt= — — —Lg,
o s o S Jy s S
o0 —st 20 o0
st . e . ® st w
L,= e sinwtdt = sinwt| + — e coswtdt = — L.
1] = ) s Jg 5

By substituting Lg into the formula for L, on the right and then by substituting L, into the formula for Lg on
the right. we obtain

L:l_ﬂ(—L) L(H‘”—Z):l fpp—

(4 B s P c 92 P c 52+m2’
w {1 w o? w

e e B e R T

Solution by Transforims Using Derivatives. See next section.

Solution by Complex Methods. In Example 2, if we set @ = i with i = V —1, we obtain

1 s+ Iw s+ iw Ky i w

i(eimt) —

— = - - = = +1 .
s — iw (s — iw)(s + iw) 2+ o? 2+ o 2+ o

Now by Theorem 1 and & = cos wt + i sin wt [see (11) in Sec. 2.2 with wt instead of f] we have

.Sf(ei“’t) = P(cos wt + isin wf) = Llcos wt) + iL(sin wi).

If we equate the real and imaginary parts of this and the previous equation, the result follows. (This formal
calculation can be justified in the theory of complex integration.)

Basic transforms are listed in Table 6.1. We shall see that from these almost all the others
can be obtained by the use of the general properties of the Laplace transform. Formulas
1-3 are special cases of formula 4, which is proved by induction. Indeed, it is true for
n = 0 because of Example 1 and 0! = 1. We make the induction hypothesis that it holds
for any integer n = 0 and then get it for n -+ 1 directly from (1). Indeed, integration by
parts first gives

w©

3([”+1) — f e—sttn+1 dr = — le—stthrl
0

S

Now the integral-free part is zero and the lasl part is (n + 1)/s times £(t™). From this
and the induction hypothesis,

n+1 n+1 nt (n+ 1!

n —1 .
™) = s g1 2

$(IH+1) —

This proves formula 4.
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CHAP. 6 Laplace Transforms

Table 6.1 Some Functions f(t) and Their Laplace Transforms £(f)
1@ &(f) @) 2(f)
1 1 1/ 7 >
s cos Wt S
@ 52 + o?
2 ' 1/s2 8 sin ot ——
2+ o?
3 2 21/s? 9 cosh ar o
2 _ g2
4 " n! 10 inh -
=01, pEs sinh at 72
T '@+ 1) at s—a
3 (a positive) sotl 1 € cos ot s —a?+ o
6 at l 17 at - f @
€ 2 3 —_—
s—a ¢ smo (s—a)2+w2
|

I'(a + 1) in formula 5 is the so-called gamma function [(15) in Sec. 5.5 or (24) in
App. A3.1]. We get formula 5 from (1), setting st = x:

Fa* = j:e"“t“ dr = fme'x (i)a o a1+1 foce_“‘xadx

0 N h) S 0

where s > 0. The last integral is precisely that defining I'(e + 1), so we have
F(a + 1)/s**1, as claimed. (CAUTION! I'(a + 1) has x© in the integral, not x®*1.)
Note the formula 4 also follows from 5 because I'(n + 1) = n! for integer n = 0.
Formulas 6-10 were proved in Examples 2-4. Formulas 11 and 12 will follow from 7
and 8 by “shifting,” to which we turn next.

s-Shifting: Replacing s by s — a in the Transform

The Laplace transform has the very useful property that if we know the transform of f(1),
we can immediately get that of e**f(f), as follows.

First Shifting Theorem, s-Shifting

If f(t) has the transform F(s) (where s > k for some k), then ¢**{(t) has the transform
F(s — a) (where s — a > k). In formulas,

Lle*f(D} = F(s — a)
or, if we take the inverse on both sides,

Sty = L7HF(G — a)).
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PROOF

EXAMPLE 5

We obtain I'(s — a) by replacing s with s — a in the integral in (1), so that

20

F(s —a) = f e STy dr = f e e f ()] dt = L{e™f(D)}.
0 0

If F(s) exists (i.e., is finite) for s greater than some k, then our first integral exists for
s — a > k. Now take the inverse on both sides of this formula to obtain the second formula
in the theorem. ( JAUTION! —a in F(s — a) but +a in €“f(r).) [ |
s-Shifting: Damped Vibrations. Completing the Square

From Example 4 and the first shifting theorem we immediately obtain formulas 11 and 12 in Table 6.1,

s —a w

Plecoswt) = —— Lle™ sin wi} = ———5— .
! (s a)2 + o ( ! (s — a)Z + o

For instance, use these formulas to find the inverse of the transform

3s — 137

) = 55— .
W s2 + 25 + 401

Solution. Applying the inverse transform, using its linearity (Prob. 28), and completing the square, we obtain

B 33-1{ s+ 1) — 140} B 333_1{ s+1 ] 73_1{ 20 ]
f= (s + 1% +400 | ~ (s + D% + 20% Tl 2+ 202 ]

We now see that the inverse of the right side is the damped vibration (Fig. 113)

(O = e 43 cos 201 — 7 sin 207). |

n
| 1 TN A WP o\

osl [1.0 \/15\/ 2,0 V25" 3o~ ¢t

(@]

-

-6

Fig. 3. Vibrations in Example 5

Existence and Uniqueness of Laplace Transforms

This is not a big practical problem because in most cases we can check the solution of
an ODE without too much trouble. Nevertheless we should be aware of some basic facts.

A function f(#) has a Laplace transform if it does not grow too fast, say, if for all
t = 0 and some constants M and k it satisfies the “growth restriction”

2 lf(o] = M.
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CHAP. 6 Laplace Transforms

(The growth restriction (2) is sometimes called “growth of exponential order,” which may
be misleading since it hides that the exponent must be kz, not kt* or similar.)

f(f) need not be continuous, but it should not be too bad. The technical term (generally
used in mathematics) is piecewise continuity. f(t) is piecewise continuous on a finite interval
a =t = b where f is defined, if this interval can be divided into finitely many subintervals
in each of which f is continuous and has finite limits as f approaches either endpoint of such
a subinterval from the interior. This then gives finite jumps as in Fig. 114 as the only possible
discontinuities, but this suffices in most applications, and so does the following theorem.

RN

| |
| a N b t
Fig. 114. Example of a piecewise continuous function f(t).
(The dots mark the function values at the jumps.)

| Existence Theorem for Laplace Transforms

If £(1) is defined and piecewise continuous on every finite interval on the semi-axis
t 2 0 and satisfies (2) for all t 2 0 and some constants M and k, then the Laplace
transform (f) exists for all s > k.

Since f(t) is piecewise continuous, e *'f(f) is integrable over any finite interval on the
t-axis. From (2), assuming that s > k (to be needed for the existence of the last of the
following integrals), we obtain the proof of the existence of &£(f) from

2

f eSS (1) dt [ |
0

1L =

= f lfOle st dr = f Mte™st dt = )
(i} 0 s—k

Note that (2) can be readily checked. For instance, cosh t < €, t™ < n!e* (because t™/n!
is a single term of the Maclaurin series), and so on. A function that does not satisfy (2)
for any M and k is e (take logarithms to see it). We mention that the conditions in
Theorem 3 are sufficient rather than necessary (see Prob. 22).

Uniqueness. 1t the Laplace transform of a given function exists, it is uniquely
determined. Conversely, it can be shown that if two functions (both defined on the positive
real axis) have the same transform, these functions cannot differ over an interval of positive
length, although they may differ at isolated points (see Ref. [Al14] in App. 1). Hence we
may say that the inverse of a given transform is essentially unique. In particular, if two
continuous functions have the same transform, they are completely identical.

[1-20] LAPLACE TRANSFORMS 3. cos 2t 4, sin® 4r

Find the Laplace transforms of the following functions. 5. 2 cosh s 6. e ' sinh 5¢
Show the details of your work. (a, b, k, w, 6 are constants.) 7. cos (wtf + 6) 8. sin (31 — 1

1.2 — 2¢

2. (12 — 3)? 9, ¢da—2bt 10. —8sin 0.2¢
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11. sint cos ¢ 12, (¢ + 1)3
13. 14.
kf——m o e
l I i
b a b
15. | . 16.
| L
|
2 b
17. 18.
b~ ke
I |
I |
| 4
[ b
b
19. 20.
1— 1+
e N
| I
| I 1 2
-1+ PR

21. Using £L(f) in Prob. 13, find £(f,), where f(z) = 0 if
t=2and (0 =11ift > 2.

22. (Existence) Show that L(1/V1) = Vals. [Use
(30) @) = \V#in App. 3.1.] Conclude from this that
the conditions in Theorem 3 are sufficient but not
necessary for the existence of a Laplace transform.

23. (Change of scale) If £(f(f)) = F(s) and ¢ is any
positive constant, show that £(f(ct)) = F(s/c)/c. (Hint:
Use (1).) Use this to obtain £(cos w?) from £(cos 1).

24. (Nonexistence) Show that ¢ does not satisfy a
condition of the form (2).

25. (Nonexistence) Give simple examples of functions
(defined for all x = 0) that have no Laplace transform.

26. (Table 6.1) Derive formula 6 from formulas 9 and 10.

27. (Table 6.1) Convert Table 6.1 from a table for finding
transforms to a table for finding inverse transforms (with
obvious changes. e.g.. £71(1/s™) = 1" Y(n — ). etc.).

227

28. (Inverse transform) Prove that £ 1 is linear. Hint.
Use the fact that & is linear.

29-40{ INVERSE LAPLACE TRANSFORMS
Given F(s) = Z(f), find f(f). Show the details. (L, n, k, a,

b are constants.)

29 4s — 37 30 2s + 16
R T 2-16
31 s —3s2+ 12 2 10
) 52 T 25+ V2
3 narL 4 20
C 2%+ n?g T D+ D
8 Ek+ 1)
35, — 6. E—
s2 4 4 3 g T st K?
37 1 18s — 12
T s — V3 + V5) 95 — 1
1 1 1
39. — — , ———
s+ 5 s+ 5 (s +a)s + b
41-54| APPLICATIONS OF THE FIRST SHIFTING

THEOREM (s-SHIFTING)

In Probs. 41-46 find the transform. In Probs. 47-54 find
the inverse transform. Show the details.

41. 3.8re%%
43, 5¢7° sin wt

45. ¢ *(a cos t + b sin 1)

42, —31%e0-5¢
44. ¢ 3t cos =t

46. e Yag + at + - - - + a,t™
7 T
47. m 48. m
V38 s—6
49, ————— 50. ———5——
s + V2)3 (s—1)°+4
15 4s — 2
SL s+ 4s + 29 52. s2 — 65 + 18
T 2s — 56
B T 0m + 287 S P T

6.2 Transforms of Derivatives and Integrals.

ODEs

The Laplace transform is a method of solving ODEs and initial value problems. The crucial
idea is that operations of calculus on functions are replaced by operations of algebra
on transforms. Roughly, differentiation of f(f) will correspond to multiplication of $(f)
by s (see Theorems 1 and 2) and integration of f(t) to division of £(f) by s. To solve
ODEs, we must first consider the Laplace transform of derivatives
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THEOREM 1

PROOF

THEOREM 2

EXAMPLE 1

CHAP. 6 Laplace Transforms

Laplace Transform of Derivatives

The transforms of the first and second derivatives of f(t) satisfy

(1) LU = sEP — £0)
) LHF" = 2LGF) — sfO0) — £(0).

Formula (1) holds if f(f) is continuous for all t = 0 and satisfies the growth restriction
(2) in Sec. 6.1 and f'(t) is piecewise continuous on every finite interval on the semi-
axis t Z 0. Similarly, (2) holds if f and {' are continuous for all t Z 0 and satisfy
the growth restriction and f" is piecewise continuous on every finite interval on the
semi-axis t = 0.

We prove (1) first under the additional assumption that f' is continuous. Then by the
definition and integration by parts,

oC (oo}

+s f ¢St (1) dir.
0

oC

L) = f St (1) di = [ D)

0

Since f satisfies (2) in Sec. 6.1, the integrated part on the right is zero at the upper limit
when s > k, and at the lower limit it contributes — £(0). The last integral is &(f). It exists
for s > k because of Theorem 3 in Sec. 6.1. Hence L(f’) exists when s > k and (1) holds.
If f' is merely piecewise continuous, the proof is similar. In this case the interval of
integration of f" must be broken up into parts such that f' is continuous in each such part.
The proof of (2) now follows by applying (1) to f” and then substituting (1), that is

L") = sLU") — FO) = slsL(f) — fO)] = s*L(f) — sf(©0) — £'(0). -

Continuing by substitution as in the proof of (2) and using induction, we obtain the
following extension of Theorem 1.

Laplace Transform of the Derivative f ) of Any Order

Let f, f', - - -, £V be continuous for all t = O and satisfy the growth restriction
(2) in Sec. 6.1. Furthermore, let f™ be piecewise continuous on every finite interval
on the semi-axis t Z 0. Then the transform of f™ satisfies

3 PE™) = s"LE) — s"THO0) = sVTEHO) — - - — FTRO).

Transform of a Resonance Term (Sec. 2.8)

Let f(r) = ¢ sin wt. Then £(0) = 0, f'(1) = sin wf + wtcos wt, f(0) = 0, f’ = 2w cos wt — w’t sin wt. Hence

by (2),

2ws

(sz + w2)2 '

(" = Zwﬁ — ELf) = 2L, thus L) = Lt sin wi) = [ |
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EXAMPLE 2

THEOREM 3

PROOF

EXAMPLE 3

Formulas 7 and 8 in Table 6.1, Sec. 6.1
This is a third derivation of £(cos wf) and ¥(sin wr); cf. Example 4 in Sec. 6.1. Let f(f) = cos wt. Then
0 =1, f(0) = 0, () = —&® cos wt. From this and (2) we obtain
Y
LU = 2L — s = —LL(F). By algebra, P(cos wt) = S
s w

Similarly, let g = sin wt. Then g(0) = 0, g' = w cos wt. From this and (1) we obtain

I
Lg) = sL(g) = wP(cos wf).  Hence  L(sin wi) = %:E(cos wh) = R
y R} w

Laplace Transform of the Integral of a Function

Differentiation and integration are inverse operations, and so are multiplication and division.
Since differentiation of a function f(rf) (roughly) corresponds to multiplication of its
transform £L(f) by s, we expect integration of f(z) to correspond to division of &£(f) by s:

Laplace Transform of Integral

Let F(s) denote the transform of a function f(f) which is piecewise continuous for
t 2 0 and satisfies a growth restriction (2), Sec. 6.1. Then, for s > 0, s > k, and
t>0,

! 1 t 1
@) 1% f f(H)drt = —F(s),  thus f f() dr = Y —F(s)! .
0 A ) Ky

Denote the integral in (4) by g(#). Since f(¢) is piecewise continuous, g(r) is continuous,
and (2), Sec. 6.1, gives

t t M M
_ kr g — 70kt Mokt
lg®| = = fo|f(’r)| dr=M foe dr = . (e )= X e (k > 0).

f:f("r) dr

This shows that g() also satisfies a growth restriction. Also, g’(r) = f(t), except at points
at which f(z) is discontinuous. Hence g'(r) is piecewise continuous on each finite interval
and, by Theorem 1, since g(0) = O (the integral from O to O is zero)

LU} = L{g' D} = sLig)} — g(0) = s£{g(n)}.

Division by s and interchange of the left and right sides gives the first formula in (4),
from which the second follows by taking the inverse transform on both sides. |

Application of Theorem 3: Formulas 19 and 20 in the Table of Sec. 6.9
1

and
s(sZ + wz) s2(s2 + w2)

Using Theorem 3. find the inverse of

Solution. From Table 6.1 in Sec. 6.1 and the integration in (4) (second formula with the sides interchanged)
we obtain

t
1 sin wt 1 sin w7 [
U =—, 58‘1—=f* L
{sz + o } ) G2+ D) , dr= —5(1 — cos ).
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This is formula 19 in Sec. 6.9. Integraring this result again and using (4) as before, we obtain formula 20 in
Sec. 6.9:

3
33—1{ 1 } 1 f" p T osineor || 1 siner
5 5 1= 3 |l -csondr=|—5-—5| =—5 —
$2s2 + D) o? 0 o’ o o o o

It is typical that results such as these can be found in several ways. In this example, try partial fraction
reduction.

Differential Equations, Initial Value Problems

We shall now discuss how the Laplace transform method solves ODEs and initial value
problems. We consider an initial value problem

5 v+ ay + by =r@), ¥(0) = K, y'(©0) = K,

where a and b are constant. Here r(f) is the given input (driving force) applied to the
mechanical or electrical system and y(r) is the output (response to the inpuf) to be obtained.
In Laplace’s method we do three steps:

Step 1. Setting up the subsidiary equation. This is an algebraic equation for the transform
Y = $(y) obtained by wransforming (5) by means of (1) and (2), namely,

[52Y — sv(0) — y'(O)] + alsY — y(0)] + bY = R(s)
where R(s) = &(r). Collecting the Y-terms, we have the subsidiary equation

(s + as + b)Y = (s + a)y(0) + ¥'(0) + R(s).

Step 2. Solution of the subsidiary equation by algebra. We divide by s + as + b and
use the so-called transfer function

|
s>+as+b (s + 2a)® + b — 3d*

(6) Q(s) =

(Q is often denoted by H, but we need H much more frequently for other purposes.) This
gives the solution

N Y(s) = [(s + a)y(0) + ¥ (0O]O(s) + R(s)Q(s)-

If y(0) = ¥'(0) = 0, this is simply ¥ = RQ; hence

Y  S(output)

Q= R Z(input)

and this explains the name of Q. Note that Q depends neither on r(t) nor on the initial
conditions (but only on a and b).

Step 3. Inversion of Y to obtain y = £~(Y). We reduce (7) (usually by partial fractions
as in calculus) to a sum of terms whose inverses can be found from the tables (e.g., in
Sec. 6.1 or Sec. 6.9) or by a CAS, so that we obtain the solution y(r) = £ YY) of (5).
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EXAMPLE 4

EXAMPLE 5

Initial Value Problem: The Basic Laplace Steps

Solve
y'—y=1 w0) = 1, Yy =1.

Solution. Step 1. From (2) and Table 6.1 we get the subsidiary equation [with ¥ = £(y)]

s2Y — sv(0) — y'(0) — ¥ = U/s%, thus

Step 2. The transfer function is Q = l/(s2 — 1), and (7) becomes

s+ 1 1

2 -1 sz(s2 -1

1
Y=(6+1D)0+ 5 0=
S

Simplification and partial fraction expansion gives

1 n | 1
Y_S—] 2 -1 s2)°

Step 3. From this expression for Y and Table 6.1 we obtain the solution

1 1 1
-1 -1 —1 -1 ty
= =% + & — ¥ —} = 4+ -t
W = £7) {s—l} s {32—1} ¥ {Sz} e + sinht — &

The diagram in Fig. 115 summarizes our approach.

t-space s-space

(2—1)Y=s+1+ s

Subsidiary equation
(s2-1)Y=s+1+1/s?

Given problem
Y -y=t |
(0) =1
y(0) =1

|

Solution of given problem Solution of subsidiary equation

y{E) = ¢t +sinhi—1¢ e 1 1 1

y--1 -1
s—1 s2-1 2

Fig. 115. Laplace transform method

Comparison with the Usual Method
Solve the initial value problem
y +y +9 =0, y(0) = 0.16, y'(0) = 0.
Solution. From (1) and (2) we see that the subsidiary equation is
s2Y — 0.16s + s¥ — 0.16 + 9Y = 0, thus

The solution is

0.16(s + 1) 0.16(s + 3) + 0.08
V= - 1,2 , 35
s“+s+9 s+ +7

Hence by the first shifting theorem and the formulas for cos and sin in Table 6.] we obtain

35 0.08 35
=¥ Y(v) = 2|0, [—t+ ——sin /] —
W) Y)=e 0.16 cos 1 t %\/35 sin 2 t

= ¢~ 090,16 cos 2.96¢ + 0.027 sin 2.961).

This agrees with Example 2, Case (IIT) in Sec. 2.4. The work was less.

@2+ s+ 9¥ = 0.16(s + 1).
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OBTAINING TRANSFORMS BY
DIFFERENTIATION
Using (1) or (2), find &£(f) if f(r) equals:
1. te*t 2. 1 cos 5t
. cos? 7t
. cosh? 3¢
(Use Prob. 3.)

3. sin? wr
S. sinh? at

7. t sin 371

- NN

sin® ¢

9. (Derivation by different methods) It is typical that
various transforms can be obtained by several methods.
Show this for Prob. 1. Show it for $(cos®27) (a) by

232 CHAP. 6 Laplace Transforms
Advantages of the Laplace Method
1. Solving a nonhomogeneous ODE does not require first solving the
homogeneous ODE. See Example 4.
2. Initial values are automatically taken care of. See Examples 4 and 5.
3. Complicated inputs r(t) (right sides of linear ODEs) can be handled very
efficiently, as we show in the next sections.
EXAMPLE 6 Shifted Data Problems
This means initial value problems with initial conditions given at some 1 = 1 > 0 instead of t = 0. For such
a problem set £ = T + tg, so that = £ gives T = 0 and the Laplace transform can be applied. For instance,
solve
"+y=2, yGm) = §m, yém=2-V2
Solution. We have 1 = £ and we set 1 = T + 1. Then the problem is
F 4y =27 + 1o, F0) = Lm, FO)y=2-V2
where F(F) = y(f). Using (2) and Table 6.1 and denoting the transform of ¥ by Y, we see that the subsidiary
equation of the “shifted” initial value problem is
~ - 2 i ~ 2 Lo 1
S —sdn—Q2-V)+¥="75+ ZT this (% DY = 5 + 2=+ Sm+2-V2
s s
Solving this algebraically for Y, we obtan
7 2 L 27T 2-V2
= + +
2+ D2 6 Ds 0 2 s2+1
The inverse of the first two terms can be seen from Example 3 (with @ = 1), and the last two terms give cos
and sin,
¥=%¥)=2F— sinT) + 37(1 — cos¥) + fmwcosT + 2 — V2) sin¥
=27+ im — V2sint.

. - 1 .

Nowf=1r1— %77, sinf = Vi(sin f — cos 1), so that the answer (the solution) is
y=2t—sins + cost | |
=T RNt =TT

expressing cos? 1t in terms of cost, (b) by using
Prob. 3.

10-24| INITIAL VALUE PROBLEMS

Solve the following initial value problems by the Laplace
transform. (If necessary, use partial fraction expansion as
in Example 4. Show all details.)

10. y' + 4y = 0. ¥(0) = 2.8

1. y' + 1y = 17 sin 21, y(0) = —1
12. y" =y’ — 6y = 0, ¥(0) = 6,
y'(0) =13
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y(0) = 4, y'(0) =0
0, y(0) = 2.1,

13. y" — éy =0,
14. y" — 4y" + 4y
y'(0) = 3.9
15. y" + 2y" + 2y
y'(0) = =3

16. y" + ky' — 2k%y = 0,
y'(0) = 2k

17. y" + 7y" + 12y = 21e%,
y'(0) = —10

18. y" + 9y = 107", ¥(0) =0,

19. y” + 3y’ + 2.25y = 913 + 64,
y'(0) = 31.5

20. y" — 6y’ + 5y = 29 cos 2t.
y'(0) = 6.2

21. (Shifted data) y' — 6y = 0,

22.y" — 2y — 3y =0,
y'a)y=-17

23. y" + 3y — 4y = 6272,
y'(1y =5

24. y" + 2y’ + 5y = 50¢ — 150,
y'3) =14

I

0, y(0) = 1,
y(0) = 2,
y(0) = 3.5,

y'(0) =0
y(0) = 1,

y(0) = 3.2,

y(2) =4
y(1) = =3,

y(1) = 4,

¥(3) = —4,

25. PROJECT. Comments on Sec. 6.2. (a) Give reasons

why Theorems 1 and 2 are more important than
Theorem 3.
(b) Extend Theorem 1 by showing that if f(#) is
continuous, except for an ordinary discontinuity (finite
jump) at some ¢+ = a (>0), the other conditions
remaining as in Theorem 1, then (see Fig. 116)

%) Lf') = sH(f) — £O) — [fla + 0) = fla — 0)e™™.

(c¢) Verify (1%) for f() = ¢ *if 0 < <1 and 0 if
t> 1.

(d) Verify (1*) for two more complicated functions of
your choice.

(e) Compare the Laplace transform of solving ODEs
with the method in Chap. 2. Give examples of your

6.3 Unit Step Function.
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own to illustrate the advantages of the present method
(to the extent we have seen them so far).
f@® |
|
| fla-0)
P
le— fla + O}

T~

|
o] [ t

Fig. 116. Formula (1%)

26. PROJECT. Further Results by Differentiation.
Proceeding as in Example 1, obtain

5’2‘_(1)2

(a) (t cos wi) = m

and from this and Example 1: (b) formula 21, (c) 22,
(d) 23 in Sec. 6.9,

e) tcoshat) = E— P
f) SLrsinhan = —
(§9) (tsinh at) = % — 2R

27-34| OBTAINING TRANSFORMS BY

INTEGRATION
Using Theorem 3, find f(z) if £(f) equals:
1 10
27. 5%+ 52 28. s3 — ms?
1 1
29. e 30. Ty
5 2
3. §2 — Ss 32. s34+ 95
1 1
R R

35. (Partial fractions) Solve Probs. 27, 29, and 31 by
using partial fractions.

t-Shifting

This section and the next one are extremely important because we shall now reach the point
where the Laplace transform method shows its real power in applications and its superiority
over the classical approach of Chap. 2. The reason is that we shall introduce two auxiliary
functions, the unit step function or Heaviside function u(t — a) (below) and Dirac’s delta
8(r — a) (in Sec. 6.4). These functions are suitable for solving ODEs with complicated
right sides of considerable engineering interest, such as single waves, inputs (driving forces)
that are discontinuous or act for some time only, periodic inputs more general than just
cosine and sine, or impulsive forces acting for an instant (hammerblows, for example).
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Unit Step Function (Heaviside Function) u(t — a)

The unit step function or Heaviside function u(r — a) is O for < a, has a jump of size
1 at r = a (where we can leave it undefined), and is 1 for 7 > a, in a formula:

0 ifr<a
a u(t —a) = (a = 0).
1 fr>a

Figure 117 shows the special case u(r), which has its jump at zero, and Fig. 118 the general
case u(t — a) for an arbitrary positive a. (For Heaviside see Sec. 6.1.)
The transform of u(r — a) follows directly from the defining integral in Sec. 6.1,

ke oc —st |=®
e

Plu(t — a)} = f e Stu(t — a) dr = f et ldt=— ;
0

a S t=a

here the integration begins at r = a (Z 0) because u(t — a) is 0 for t < a. Hence

e—as

2) Flut — a)} = S (s > 0).

The unit step function is a typical “engineering function” made to measure for
engineering applications. which often involve functions (mechanical or electrical
driving forces) that are either “off” or “on.” Multiplying functions f(z) with u(t — a).
we can produce all sorts of effects. The simple basic idea is illustrated in Figs. 119
and 120. In Fig. 119 the given function is shown in (A). In (B) it is switched off
between r = 0 and r = 2 (because u(t — 2) = 0 when ¢t < 2) and is switched on
beginning at r = 2. In (C) it is shifted to the right by 2 units, say, for instance, by 2 secs,
so that it begins 2 secs later in the same fashion as before. More generally we have the
following.

Let f(t) = O for all negative t. Then f(t — a)u(t — a) with a > 0 is f(t) shifted
(rranslated) to the right by the amount a.

Figure 120 shows the effect of many unit step functions, three of them in (A) and
infinitely many in (B) when continued periodically to the right; this is the effect of a
rectifier that clips off the negative half-waves of a sinuosidal voltage. CAUTION! Make
sure that you fully understand these figures, in particular the difference between parts (B)
and (C) of Fagure 119. Figure 119(C) will be applied next.

u(t) Wt —a)

I 1 —

0 t 0
Fig. 7. Unit step function u(t) Fig. 18. Unit step function u(t — a)

1
1
1
I
a t
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@)
5 5t 5

N, TN

;) { Loy g

L_l T
o022 7 Yo% or ¢ Uz mzoee
AV A VR |

(A) f(©)=5sint ®B) fOu-2) ©) & -2 -2)

Fig. 19. Effects of the unit step function: (A) Given function.
(B) Switching off and on. (C) Shift.

I AN

0 2 4 6 8 10 t

(A) klat—1)— 20t — 4) + u(t — 6)] (B) 4 sin (%m‘)[u(t) —u(t -2y +ut—4)—+ -]

Fig. 120. Use of many unit step functions.

Time Shifting (t-Shifting): Replacing t by t — a in f(t)

The first shifting theorem (“s-shifting”) in Sec. 6.1 concerned transforms F(s) = £{f(®)}
and F(s — a) = $£{e™f()}. The second shifting theorem will concern functions f(f) and
f(t — a). Unit step functions are just tools, and the theorem will be needed to apply them
in connection with any other functions.

THEOREM 1 Second Shifting Theorem; Time Shifting

If f(©) has the transform F(s), then the “shifted function™
N 0 iftr<a

3) f@=ft - aut —a)= { )
ftt — a) ift>a

has the transform e *F(s). That is, if £{f(1)} = F(s), then
4) Llf(t — Qult — a)} = e “F(s).
Or, if we take the inverse on both sides, we can write

(4% f(t — a)u(t — a) = L7 e “H(s)).

Practically speaking, if we know F(s), we can obtain the transform of (3) by multiplying
F(s) by ¢e~*. In Fig. 119, the transform of 5 sin ¢ is F(s) = 5/(s® + 1), hence the shifted
function 5 sin (¢ — 2) u(¢t — 2) shown in Fig. 119(C) has the transform

e 2F(s) = 5¢ /(s + 1).
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PROOF

EXAMPLE 1

CHAP. 6 Laplace Transforms

We prove Theorem 1. In (4) on the right we use the definition of the Laplace transform,
writing 7 for f (to have 1 available later). Then, taking ¢~ inside the integral, we have

e—asF(s) — e—asf e—s-rf(T) dr :J- e_S(T+a)f(T) dr.
0 0

Substituting 7 + a = ¢, thus 7 =t — a, dv = dft, in the integral ( "AUTION, the lower limit
changes!), we obtain

(v.]

e ®F(s) = f e Stf(t — a) dt.

a

To make the right side into a Laplace transform, we must have an integral from O to o,
not from a to <. But this is easy. We multiply the integrand by u(z — a). Then for ¢ from
O to a the integrand is 0, and we can write, with f as in (3),

o0 oo

e F(s) = J- e Stf(t — a)u(t — ay dt = f e St (r) dr.
0 0

(Do you now see why u(t — a) appears?) This integral is the left side of (4), the Laplace
transform of f(7) in (3). This completes the proof. [ |

Application of Theorem 1. Use of Unit Step Functions

Write the following function using unit step functions and find its wansform.

2 fo<i<i
fo =142 ifl<t<inm (Fig. 121)
cost if t> 17

Solution. Step 1. In terms of unit step functions,
F0) =200 — u(t — 1) + 22w — 1) — u@t — im) + (cos Hu(t — im).

Indeed, 2(f — u(r — 1)) gives f(#) for 0 <t < 1, and so on.

Step 2. To apply Theorem 1, we must write each term in f(7) in the form f(t — a)u(t — a). Thus, 2(1 — u(t — 1))
remains as it is and gives the transform 2(1 — e~5)/s. Then

o) - 3o 539+ T3

1
52{(cos nDu (r -3 7,—)

[S——
Il
8
|
—
=]
—
~
|
N —
<
N—
=
——
~
W =
L
[S——)
il
|
n
N
_I,_ I
—
[
]
=

Together,

2 2 i 1 1 1 - w2 1
2US) = PR S+ (A—3 + - + _)e_s - (-g + —5 + —)e_mlz — e~ ™2,
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If the conversion of f(f) to f(t — a) is inconvenient. replace it by
(4*%) E{f(ut — a)} = e “L{f(t + a)}.
(4**) follows from (4) by writing f(t — a) = g(). hence f(¢) = g(t + a) and then again writing f for g. Thus,
1, —seo) 1 5 sl 1 2 1 _sf 1 1 1
— — — — — _ _ L __ —_ 4 — i
éf{ztu(t 1)} € :B{Z(t+l) € §£2t+t+2 e 3 s2+2€
as before. Similarly for £{%u(t — Lm)}. Finally, by (4*%),

1 1 1
.SE{cost u(t - 517)} =g ™2 E{cos (t + Ew)} = e ™PP{—sint} = —e ™ TR |

2
b
[ ! m ! /T\J |
27 Aar
Fig. 121. f(t) in Example 1

EXAMPLE 2 Application of Both Shifting Theorems. Inverse Transform

Find the inverse transform f(7) of
-8 —2s —3s

e
F(s) = + .
) 2+ 7 2+ 72 (s1-2)2

Solution. Without the exponential functions in the numerator the three terms of F(s) would have the inverses
(sin 7r2)/ a7, (sin 7r£)/ 7, and te 2 because 1/52 has the inverse £, so that 1/(s + 2)2 has the inverse e by the
first shifting theorem in Sec. 6.1. Hence by the second shifting theorem (#-shifting),

1 I —2t—3)
f@® = — sin (mt — D)u(—1) + s (mt — 2)u(t — 2) + (¢ — e u(t — 3).
Now sin (7 — 7r) = —sin 77 and sin (772 — 241) = sin 77¢, so that the second and third terms cancel each other

when ¢ > 2. Hence we obtain f() = 0if0 < t < 1, —(sin #)/7rif 1 <t < 2,0if2 << 3,and (t — 3)e 2¢~F
if r > 3. See Fig. 122. [

0.3
0.2
0 L L
0 1 2 3 4 5 6 t

Fig. 122. f(t} in Example 2

EXAMPLE 3 Response of an RC-Circuit to a Single Rectangular Wave

Find the current i(z) in the RC-circuit in Fig. 123 if a single rectangular wave with voltage V;, is applied. The
circuit is assumed to be quiescent before the wave is applied.
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EXAMPLE 4

CHAP. 6 Laplace Transforms

" v(®) i)
It

T__/\N\’ﬁ 0o m Tt VO/Ro c[ \b-i/ ¢

Fig. 123. RC-circuit, electromotive force v(t), and current in Example 3

Solution. The input is Vglu(t — @) — u(t — b)]. Hence the circuit is modeled by the integro-differential
equation (see Sec. 2.9 and Fig. 123)

t
1
Ri(r) + ﬂ = Ri(r) + —J i(7) dr = v() = Vglult — @) — u(t — b)].
C ClJy

Using Theorem 3 in Sec. 6.2 and formula (1) in this section, we obtain the subsidiary equation

1(s) — & —as —bs
RI(s) + < s le e ).

Solving this equation algebraically for I(s). we get

Vo/R Vo
$) = F(s)e™® — ¢ b g= — > . —1ry — ~t/(RC)
I(s) (s)e e ) where F(s) s+ R and STNF) R e ,

the last expression being obtained from Table 6.1 in Sec. 6.1. Hence Theorem 1 yields the solution (Fig. 123)

Vi
i) = XD = e SFis)) — £ He PF(s)) = ?0 [e—(t_a)l(RC)u(r —g) — e EOIRO, b)];

that is. i(1) = 0 if f < a. and

K e YRO fa<t<b
in =
Ky — Koy Y EO ifa>b
where Ky = Voe™” FOUR and Ky, = Ve BOUR. [ ]
0 2 0

Response of an RLC-Circuit to a Sinusoidal Input Acting Over a Time Interval
Find the response (the current) of the RLC-circuit in Fig. 124, where E(?) is sinusoidal, acting for a short time
interval only, say.

E(r) = 100 sin 400 if 0 <t <27 and En)=0ifr> 27

and current and charge are initially zero.

Solution. The electromotive force E(f) can be represented by (100 sin 4007)(1 — u(r — 27)). Hence the
model for the current #(f) in the circuit is the integro-differential equation (see Sec. 2.9)
t

0.1/ + 11/ + 100 J i(7) dr = (100 sin 4001)(1 — wu(t — 2m)), i0)=0. '0)=0.
(4]

From Theorems 2 and 3 in Sec. 6.2 we obtain the subsidiary equation for /(s) = (i)

I 100-400s (1 7275
O.1s/ + 11 + 100 — = )
§

2+4002 \s s
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Solving it algebraically and noting that s2 + 110s + 1000 = (s + 10)(s + 100), we obtain

1000 - 400 s se”27S
I(s) = )

(s + 10)(s + 1000 \ 52 + 400% 52 + 400%
For the first term in the parentheses (- - -) times the factor in front of them we use the partial fraction expansion

400 000s A . B Ds + K
= +
(s + 10)(s + 100)(s> + 400%) s+ 10 s+ 100 = 2 + 4002

Now determine A, B, D, K by your favorite method or by a CAS or as follows. Multiplication by the common
denominator gives

400 000s = A(s + 100)(sZ + 400%) + B(s + 10)(s® + 400%) + (Ds + K)(s + 10)(s + 100).

We set s = —10 and —100 and then equate the sums of the 53 and 52 terms to zero, obtaining (all
values rounded)

(s = —10) —4.000 000 = 90(10% + 400%)A, A = —0.27760
(s = —100) —40 000 000 = —90(100% + 400%)B, B = 26144
(s3-terms) 0=A+B+D, D = —2.3368
(sZ-terms) 0= 100A + 10B + 110D + K, K = 258.66.

Since K = 258.66 = 0.6467 - 400, we thus obtain for the firstterm Iy in I = I; — I,

0.2776 2.6144 2.3368s 0.6467 - 400

= + +
1 s+10  s+100 2 + 4002 52 + 4002

From Table 6.1 in Sec. 6.1 we see that its inverse is
ity = —0.2776e7 10 + 2.6144¢71%0t — 23368 cos 4007 + 0.6467 sin 4001.

This is the current i(f) when 0 < r < 2. [t agrees for O < 1 < 247 with that in Example 1 of Sec. 2.9 (except
for notation), which concerned the same RLC-circuit. Its graph in Fig. 62 in Sec. 2.9 shows that the exponential
terms decrease very rapidly. Note that the present amount of work was substantially less.

The second term [y of 1 differs from the first term by the factor €~ 27%. Since cos 400(1 — 27) = cos 400t
and sin400(s — 27) = sin 400¢, the second shifting theorem (Theorem 1) gives the inverse in(r) = 0 if
0 <t < 2, and for > 2 it gives

is(r) = —0.2776¢710¢ 2™ 1. 9 614471004 =2™ _ 9 3368 cos 4007 + 0.6467 sin 4001
Hence in i(#) the cosine and sine terms cancel, and the current for t > 27 is

it) = —0.2776(6_1(” _ e—lO(t—2‘n‘)) + 2.6144(6_10(” _ e—lOO(t—Z-n'))_

1t goes to zero very rapidly, practically within 0.5 sec. |
C=1072F
—
R=11Q § L=01H
L—o
E@)

Fig. 124. RLC-circuit in Example 4
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1. WRITING PROJECT. Shifting Theorem. Explain
and compare the different roles of the two shifting
theorems, using your own formulations and examples.

UNIT STEP FUNCTION AND SECOND
SHIFTING THEOREM

Sketch or graph the given function (which is assumed to
be zero outside the given interval). Represent it using unit
step functions. Find its transform. Show the details of your
work.

2.1 (0<t< 1) .8 (0< 1< 2)
4. sin3r(0<r<m 5.1r2(0<1<2)
6. 12 (t > 3) 7. cos wi (1 <t < 4)

8.1l —et(0<t<m9%Nt(5<t<10)
10. sin ot (r > 67/ w) 11. 20 cos 1 (3 <1< 6)
12. sinhr (0 <1 < 2) 13. et (2 <1< 4)

INVERSE TRANSFORMS BY THE
SECOND SHIFTING THEOREM

Find and sketch or graph f(r) if £(f) equals:

14. se™%/(s% + 0?)

15. e~ 45/52

16. s72 — (s72 + s71)e~s

17. (67275 — e 8™)/(s2 + 1)

18. e~ ™/(s2 + 2s + 2) 19. e~ 25/5°

20. (1 — e~ S**) /(s — k) 21. se™35/(s% — 4)

22, 2.5(e 385 — 7265y
INITIAL VALUE PROBLEMS, SOME WITH
DISCONTINUOUS INPUTS

Using the Laplace transform and showing the details, solve:

14-22

23. 9" + 2y" + 2v =0, y(0) = 0,
y'(0) =1

24. 9y" — 6y +y =0, ¥0) = 3,
y'(0) =1

25. y" + 4y" + 13y = 145 cos 21, »(0) = 10,
y'(0) = 14

26. y" + 10y' + 24y = 1442, ¥(0) = 13,
y'(0) = =5

27.v" + 9y = r(1), Ht) = 8sintif 0 < r < s and O
ift>m y0) =0,y ) =4
28. " + 3y’ + 2y = /D), F(1) = 1if 0 <t < 1 and

Oifr>1; y0)=0,y(0)=0
29.y" +y=r@0), r) =1if0<:<1andO0if
1> 1 ¥0) =y'(0) =0

30. y" — 16y = r(#), r(r) = 48¢%'if 0 <t < 4 and
0ift > 4: ¥(0) = 3. y' (0) = —4
31. _v" +y' - 2y = r(t), r(t) = 3 sint — cos t if
0 <t<2mand 3 sin2r — cos 2r if t > 2
»0) =1, y'(0) =0
32. y" + 8y + 15y = r(f), r(t) = 35¢% if
O0<r<2andOifr> 2; y(0) = 3,
y'(0) = -8
33. (Shifted data) v" + 4y = 82if 0 <t < 5and 0
ift>5,y1)=1+cos2,y (1) =4 — 2sin2
3. y" +2v' + 5y =10sintif 0 <t < 277 and O if
t>2my(m) =1,y (7)) = 27" — 2

MODELS OF ELECTRIC CIRCUITS

35. (Discharge) Using the Laplace transform, find the
charge ¢(t) on the capacitor of capacitance C in Fig. 125
if the capacitor is charged so that its potential is V and
the switch is closed at 7 = 0.

C== R
—o/
Fig. 125. Problem 35
36-38| RC-CIRCUIT

Using the Laplace transform and showing the details, find

the current i(z) in the circuit in Fig. 126 with R = 10 Q) and

C = 1072 F, where the current at f = 0 is assumed to be

zero, and:

36. v(r) = 100 V if 0.5 < 1 < 0.6 and O otherwise.
Why does i(¢) have jumps?

J7.v=0ifr<2and 100(t —~2)Vifr>2

38.v=0ift<4and 14-10% 3 Vifr> 4

RES 3

u(?)
Fig. 126. Problems 36—38

RL-CIRCUIT

Using the Laplace transform and showing the details, find
the current i(7) in the circuit in Fig. 127, assuming i(0) = 0
and:
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39.R=10Q0,L=05H,v =200t Vif 0 < r < 2 and
Oift>2

40. R = 1 kQ (= 1000Q), L = 1 H, v = 0 if CT L
O<t<mand40sint Vifr> 7

41. R =25 Q,L = 0.1 H, v = 490" V if “ut)
0<f<landQifs>1 Fig. 128. Problems 42-44

RLC-CIRCUIT

Using the Laplace transform and showing the details, find
R § the current i(#) in the circuit in Fig. 129, assuming zero
initial current and charge and:

L © 45.R=20Q,L=1H,C=05F, v(t) = 1kVif
v 0<t<2and0ifr>2
Fig. 127. Problems 39-41 4. R=4Q,L=1H,C=0.05F,v=34etV
fO<i<4andOQift> 4
42-44 LC-CIRCUIT 47. =20 L=1H,C=0.1F,v=25sintV

Using the Laplace transform and showing the details, find fO0<t<2mand0ift> 2=

the current i(¢) in the circuit in Fig. 128, assuming zero

c
initial current and charge on the capacitor and: —]
42. L =1H,C=025F v =200( — i) Vif
0<t<1landOift>1 R§ L
43.L=1H,C=10"2F, v = —9900 cos f V if
7 < t < 37 and O otherwise L 5
44. L =05H,C=0.05F,v="78sintV if v
O<t<wandQifr> =« Fig. 129. Problems 45-47

6.4 Short Impulses. Dirac’s Delta Function.
Partial Fractions

Phenomena of an impulsive nature, such as the action of forces or voltages over short
intervals of time, arise in various applications, for instance, if a mechanical system is hit
by a hammerblow, an airplane makes a “hard” landing, a ship is hit by a single high wave,
or we hit a tennisball by a racket, and so on. Our goal is to show how such problems are
modeled by “Dirac’s delta function™ and can be solved very efficiently by the Laplace
transform.

To model situations of that type, we consider the function

1k fa=t=a+k
M fut —a) = (Fig. 130)

0 otherwise

(and later its limit as kK — 0). This function represents. for instance, a force of magnitude
1/k acting from t = a to t = a + k, where k is positive and small. In mechanics, the
integral of a force acting over a time interval @ = t = g + k is called the impulse of the
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force; similarly for electromotive forces E(f) acting on circuits. Since the blue rectangle
in Fig. 130 has area 1, the impulse of f; in (1) is

a+k

@) Ik:fofk(r—mdr:f Cdr=1.

a

To find out what will happen if k becomes smaller and smaller, we take the limit of f,
as k — 0 (k > 0). This limit is denoted by &(t — a), that is,

8 — a) = lim £t = ).

8(t — a) is called the Dirac delta function? or the unit impulse function.

8(r — a) is not a function in the ordinary sense as used in calculus, but a so-called
generalized function.? To see this, we note that the impulse I, of fy is |, so that from (1)
and (2) by taking the limit as k — 0 we obtain

o iftr=a %
3) 8t — a) = and | st —aar=1.
0 otherwise 0

but from calculus we know that a function which is everywhere O except at a single point
must have the integral equal to 0. Nevertheless, in impulse problems it is convenient to
operate on &(f — a) as though it were an ordinary function. In particular, for a continuous
function g(r) one uses the property [often called the sifting property of 6(r — a), not to
be confused with shifting]

oc

@) Lgmw—mm=mm

which is plausible by (2).
To obtain the Laplace transform of 8(t — a), we write

1
frt —a) = % [t — a) — u(t — (a + k))]
Area=1
1k

a a+k t
Fig. 130. The function f,(t — a) in (1)

ZPAUL DIRAC (1902-1984), English physicist, was awarded the Nobel Prize [jointly with the Austrian
ERWIN SCHRODINGER (1887-1961)] in 1932 for his work in quantum mechanics.

Generalized functions are also called distributions. Their theory was created in 1936 by the Russian
mathematician SERGEI L"VOVICH SOBOLEV (1908-1989), and in 1945, under wider aspects, by the French
mathematician LAURENT SCHWARTZ (1915-2002).
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and take the transform [see (2)]
1 1— e
<P t—a)) = — [e—as _ e—(a+k)s] — oS
{fi( ) ks s

We now take the limit as k— 0. By I’Hopital’s rule the quotient on the right has the limit
1 (differentiate the numerator and the denominator separately with respect to &, obtaining
se” %% and s, respectively, and use se *%/s — 1 as k — 0). Hence the right side has the
limit e~ %, This suggests defining the transform of §(r — @) by this limit, that is,

5 {6 — a)} = e,

The unit step and unit impulse functions can now be used on the right side of ODEs
modeling mechanical or electrical systems, as we illustrate next.

Mass—Spring System Under a Square Wave

Determine the response of the damped mass—spring system (see Sec. 2.8) under a square wave, modeled by (see
Fig. 131)
Y+ 3y 2y =) = ult — 1) — u(t — 2. ¥(0) = 0. y'(0) = 0.

Solution. From (1) and (2) in Sec. 6.2 and (2) and (4) in this section we obtain the subsidiary equation

1
Y4 3sY+2V = — (5 & ). Solution Y(s) = (€ — ).
s

s(s2 + 35+ 2)
Using the notation F(s) and partial fractions, we obtain

e — 1 1 n L
(S)_s(s2+3s+2)_s(s+1)(s+2)_ s s+1  s+2°

From Table 6.1 in Sec. 6.1. we see that the inverse is
fO=¢Y =1t +ic
Therefore, by Theorem 1 in Sec. 6.3 (z-shifting) we obtain the square-wave response shown in Fig. 131,

y = £ Y F(s)e™S — F(s)e™2%)
=f@— Du(t — 1) — f(t — Du(t — 2)

0 O<tr<D
= {4 D 12D a<t<2)
—e D g D 12D 1 2D ¢>2.1

(&)

|

0.5

|

o f e ——— e

o

Fig. 131. Square wave and response in Example 1
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Hammerblow Response of a Mass—Spring System

Find the response of the system in Example | with the square wave replaced by a unit impulse at time
r=1

Solution. We now have the ODE and the subsidiary equation
¥+ 3y 4+ 2y =8¢ — 1), and Z+3s+2r=¢"

Solving algebraically gives

V) — e’ {1 1 s
O st e+ \s+i s+2)°"
By Theorem 1 the inverse is

0 fo<r<i1
y(t)=§£“(Y>:{

g—-(t—l) _ E—Z(t—l) il 1> 1.

W1) is shown in Fig. 132. Can you imagine how Fig. 131 approaches Fig. 132 as the wave becomes shorter and
shorter. the area of the rectangle remaining 1?7 |

¥(t)
0.2}

0.1

] 1
001 3 5 t

Fig. 132. Response to a hammerblow in Example 2

Four-Terminal RLC-Network

Find the output voltage response in Fig. 133ifR=20Q,L=1H,C = 1072 F, the input is 8(r) (a unit impulse
at time + = 0), and current and charge are zero at time r = 0.

Solution. To understand what is going on, note that the network is an RLC-circuit to which two wires at A
and B are attached for recording the voltage v(f) on the capacitor. Recalling from Sec. 2.9 that current i(r) and
charge ¢(1) are related by i = q' = dgldt, we obtain the model

Li' +Ri + % = 14" + Rq' + % =¢" + 204" + 10000g = &(1).

From (1) and (2) in Sec. 6.2 and (5) in this section we obtain the subsidiary equation for O(s) = ¥(q)

1

2 -
+ 20s + 10000)Q = 1. Solution =D .
(S g 0 ! €= G+ 107 + 9900

By the first shifting theorem in Sec. 6.1 we obtain from Q damped oscillations for ¢ and v; rounding
9900 =~ 99.50%, we get (Fig. 133)

_ 1 _ .
g=%%0) = —— ¢ 1% in 99,50+ and v = % = 1005¢ % sin9950r, W

99.50
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8(2) v
80 7‘"
R L 40 \
/ N
C( OG5t T/ o5 02 ~o%5 03
Al 5 “ \./5 o».{/ 150 0.2 Y025 03 ¢
O e,
o) =7 -80}
Network Voltage on the capacitor
Fig. 133. Network and output voltage in Example 3

More on Partial Fractions

We have seen that the solution Y of a subsidiary equation usually appears as a quotient
of polynomials Y(s) = F(s)/G(s), so that a partial fraction representation leads to a
sum of expressions whose inverses we can obtain from a table, aided by the first
shifting theorem (Sec. 6.1). These representations are sometimes called Heaviside
expansions.

An unrepeated factor s — a in G(s) requires a single partial fraction A/(s — a). See
Examples 1 and 2 on pp. 243, 244. Repeated real factors (s — a)?, (s — a)®, etc., require
partial fractions

As Ay As Az A

(s — a)® ’ s—a® (s—ap

s — a

The inverses are (Aar + Ae™, (3As1% + Aot + Ap)e™, etc.

Unrepeated complex factors (s — a)(s — a),a = a + i3, a = a — if3, require a partial
fraction (As + B)/[(s — @)® + B2]. For an application, see Example 4 in Sec. 6.3.
A further one is the following.

Unrepeated Complex Factors. Damped Forced Vibrations

Solve the initial value problem for a damped mass—spring system acted upon by a sinusoidal force for some
time interval (Fig. 134).

Y +2y v 2y =1, r()=10sin2%if0<t<mandOQift>m w0 =1 ' (0)= -5

Solution. From Table 6.1, (1), (2) in Sec. 6.2, and the second shifting theorem i Sec. 6.3, we obtain the
subsidiary equation

2
G —s+5) +2s¥ — D+ 2 =10 (1 —e ™).
s

+ 4
We collect the Y-terms, (s2 + 25 + 2)Y, take —s + 5 — 2 = —s + 3 to the right, and solve,

v 20 206"
TR+ + 2+ (A2 +2)

s—3
+ .
24+ 25 +2

©

For the last fraction we get from Table 6.1 and the first shifting theorem

_1{ s+1—4

7
™ s+1D%+1

} = e._t(cos t— 4sint).
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In the first fraction in (6) we have unrepeated complex roots, hence a partial fraction representation

20 As + B Ms + N

= + .
(s2 + &% + 25 + 2) sZ2+4 s2+25+2

Multiplication by the common denominator gives
20 = (As + BYsZ + 25 + 2) + (Ms + N)(s® + 4).
We determine A, B, M, N. Equating the coefficients of each power of s on both sides gives the four equations

@ ° o=a+m ® 2k o=24+B+N

© sk 0=24+2B+4m (@ [% 20=2B+ 4N
We can solve this, for instance, obtaining M = —A from (a), then A = B from (c), then N = —3A from (b),
and finally A = —2 from (d). Hence A = —2, B = —2, M = 2, N = 6, and the first fraction in (6) has the
representation
—2s — 2 s+ 1) +6—-2

2 + 2

s°+ 4 s+ D +1

Inverse transform: —2 cos 2r — sin 2t + e_t(2 cost + 4sini).

&)

The sum of this and (7) is the solution of the problem for 0 < t < . namely (the sines cancel).
©) W) = 3¢ " cost — 2 cos 2t — sin 2 ifo<t<mm

T

In the second fraction in (6) taken with the minus sign we have the factor e~ ™%, so that from (8) and the second

shifting theorem (Sec. 6.3) we get the inverse transform

+2cos (2t — 2m) + sin (2t — 2m) — ¢ ™ [2cos (t — @) + 4sin(t — )]

=2cos2t +sin2r + ¢ "™ (2cos t + 4sin).
The sum of this and (9) is the solution for t > 77,
(10) ) = e t[3 + 2¢™)cost + 4eTsin 1] if 1 > .

Figure 134 shows (9) (for 0 < r < 1) and (10) (for r > 77), a beginning vibration, which goes to zero rapidly
because of the damping and the absence of a driving force after r = .

y(@)
2 I
1 -
————— y = 0 (Equilibrium & | o ! ]
iti 0
1 position) V] - o 3 4r ¢
_ y Lk
Driving forcel
Dashpot (damping) ) %
Mechanical system Output (solution)

Fig. 134. Example 4

The case of repeated complex factors [(s — a)(s — @)]%, which is important in connection
with resonance, will be handled by “convolution” in the next section.
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[1-12] EFFECT OF DELTA FUNCTION ON

VIBRATING SYSTEMS

Showing the details. find. graph. and discuss the solution.

L.y +v=860—2m, v(0) = 10,
¥ =0

2.y + 2 +2v =€+ 5801 — 2).
¥0)=0. ¥'(0)=

3.y — ¥y =108 — &) — 1008¢ — 1).
¥0) =10. ¥ =1

4. x" + 3y + 2y = 10(sint + 8¢ — 1)).
»0) = y'(0) = —1

59"+ 4y + 5y =[1 — u@t — 10)] et — €'°8(r — 10),
»0) =0, Y =

6. »" + 2v' — 3y = 1008(r — 2) + 1008(r — 3).
¥(0) = 1. ¥'(0) =

7.v" + 2" + 10y = 10[1 — ur — 4)] — 108 — 5).
¥0) =1, ¥ =1

8 v +5v + 6y =80 — L7 + u(t — ) cost,
¥(©0) =0, Vi) =0

9. v" + 2¥' + 5y = 25t — 1008( — ).
¥(0) = —2, v =5

10. v" + 5y = 251 — 1008(r — o). ¥(0)= -2
¥'(0) = 5. (Compare with Prob. 9.)

1L ¥" + 3y’ — 4y = 2¢t — 8628(r — 2),
¥(0) = 2. y'(0) =0

12. v/ + y = —2sin1 + 108(t — o), y(0) =0,
y'(0) =

13. CAS PROJECT. Effect of Damping. Consider a
vibrating system of your choice modeled by

Yo k=1

with r(#) involving a &-function. (a) Using graphs of
the solution. describe the effect of continuously
decreasing the damping to 0. keeping k constant.
(b) What happens if ¢ is kept constant and k is
continuously increased, starting from 0?
(c¢) Extend your results to a system with two
o-functions on the right. acting at different times.

14. CAS PROJECT. Limit of a Rectangular Wave.

Effects of Impulse.

(a) In Example 1. take a rectangular wave of area 1
from 1 to | + k. Graph the responses for a sequence
of values of k approaching zero, illustrating that for
smaller and smaller A those curves approach the curve
shown in Fig. 132. Hipz: If your CAS gives no solution

15.

16.

247

for the differential equation. involving k, take specific
k’s trom the beginning.

(b) Experiment on the response of the ODE in
Example 1 (or of another ODE of your choice) to an
impulse 8(r — a) for various systematically chosen a
(> 0); choose initial conditions y(0) # 0, y'(0) = 0.
Also consider the solution if no impulse is applied. Is
there a dependence of the response on a? On b if you
choose b&(r — a)? Would —6(r — ad) with @ > a
annihilate the effect of 6(r — a)? Can you think of
other questions that one could consider
experimentally by inspecting graphs?

PROJECT. Heaviside Formulas. (a) Show that for a
simple root a and fraction A/(s — a) in F(s}/G(s) we
have the Heaviside formula

(s — a)F(s)
G(s)

= lim
s—a

(b) Similarly, show that for a root a of order m and
fractions in

Fi (-‘) — Am Am—l .
G(s) (s — a)™ s —ay™!
A, .
+ + further fractions

s—a
we have the Heaviside formulas for the first coefficient

(s — a)"F(s)

A, =1
m m G(s)

s—>a

and for the other coefficients

A I i amk
T m— k) S0 ds™k

(s — a)"F(s)
G(s)

k=1---.m— 1
TEAM PROJECT. Laplace Transform of Periodic
Functions

(a) Theorem. The Laplace transform of a piecewise
continuous function f(t) with period p is

1 P
e = —st
an  *H= 1" foe fOod (s> 0).

Prove this theorem. Hinr: Write f = f + f

Set 1 = (n — 1)p in the nth integral. Take out e—‘"_“p
from under the integral sign. Use the sum formula for
the geometric series.
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(b) Half-wave rectifier. Using (11), show that the
half-wave rectification of sin wt in Fig. 135 has the

(c) Full-wave rectifier. Show that the Laplace
transform of the full-wave rectification of sin wf is

Laplace transform
s

5 5 coth — .
(1 + e—wslw) 5+ w 2w

(S2 + (1)2)(1 _ e—2'n's/w)

#(f) =

(d) Saw-tooth wave. Find the Laplace transform of
the saw-tooth wave in Fig. 137.

w

- (s2 + wZ)(l _ e—Trsllu) N @

k
(A half-wave rectifier clips the negative portions of the ) i :

. ape |
curve. A full-wave rectifier converts them to positive; E i i /
- i i
see Fig. 136.) v
0 P 2p 3p t

Fig. 137. Saw-tooth wave

(e) Staircase function. Find the Laplace transform of
the staircase function in Fig. 138 by noting that it is
the difference of ki/p and the function in (d).

N\

2rilw 3nlw t

f(t)
1
0 o

Fig. 135. Half-wave rectification

106} .
f@ e
3 —
1 ) /—\ . /‘\ J/\W /‘\ lI \ |
0 wlw 2nlw 3rio t 0 p 2p 3p t

Fig. 136. Full-wave rectification Fig. 138. Staircase function

6.5 Convolution. Integral Equations

Convolution has to do with the multiplication of transforms. The situation is as follows.
Addition of transforms provides no problem; we know that £(f + g) = £(f) + £L(g).
Now multiplication of transforms occurs frequently in connection with ODEs, integral
equations, and elsewhere. Then we usually know £(f) and £(g) and would like to know
the function whose transform is the product £(f)¥(g). We might perhaps guess that it is
fg, but this is false. The transform of a product is generally different from the product of
the transforms of the factors,
L(fe) # L(HE () in general.

To see this take f = ef and g = 1. Then fg = €', L(fg) = /(s — 1), but L(f) = /(s — 1)
and £(1) = Us give L(H¥L(g) = /(s> — s).

According to the next theorem, the correct answer is that £(f)S£(g) is the transform of
the convolution of f and g, denoted by the standard notation f * g and defined by the
integral

f
) o) = (f * g)r) = fo F(@g — 7 dr.
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THEOREM 1

EXAMPLE 1

EXAMPLE 2

PROOF

Convolution Theorem

If two functions f and g satisfy the assumption in the existence theorem in Sec. 6.1,
50 that their transforms F and G exist, the product H = FG is the transform of h
given by (1). (Proof after Example 2.)

Convolution
Let H(s) = 1/[(s — a)s]. Find h(z).

Solution. /(s — a) has the inverse f(r) = ¢®. and 1/s has the inverse g(t) = 1. With f(7) = ¢%7 and
g(t — 7) = 1 we thus obtain from (1) the answer
t

1
h(t)=eat*l=fem-ld'r= — (-1
o a

To check. calculate

1 1 1 1 a 1 1

His) = L(h)(s) = — ( - —) =—-— = - — = Py %) [ |
a S —a Ny a 5T — as sS—a s

Convolution

Let H(s) = 1/(s% + w2 Find h(f).

Solution. The inverse of 1/(s®> + &) is (sin w?)/w. Hence from (1) and the trigonometric formula (11) in
App. 3.1 with x = §(wt + w7 and y = (0wt — ©7) we obtan

t
sin wt  sin wt 1 . i
h(t) = * = — | sin o7 sin w(t — 7)d7
© %) w® Jg
t
1
=3 [—cos wt + cos w7] dT
2w 0
1 sin w7 |*
=5 | —Tcoswt + ———
2w w =0
1 sin wt
= —5 | —tcoswr +
2w w
in agreement with formula 21 in the table in Sec. 6.9. |

We prove the Convolution Theorem 1. CAUTION! Note which ones are the variables
of integration! We can denote them as we want, for instance, by 7and p, and write

oC o0

F(s) = Jo e *"f(7) d7 and G(s) = jo e *Pg(p) dp.

We now set ¢t = p + 7, where 7is at first constant. Then p = ¢ — 7, and ¢ varies from 7
to ce. Thus

oC oC

G(s) = f e St — D dr = & f e Ste(r — 7 dt.

T T
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7in F and t in G vary independently. Hence we can insert the G-integral into the
F-integral. Cancellation of ¢™*" and &°" then gives

¢ oc

F(s)G(s) = ST ST “Slo(t — D dtdr = - — 7 dtdr.
(5)G(s) foe f(ne fe g( T dtdt fof(f)fTe g(t — 1) dtdr.

T
Here we integrate for fixed 7 over r from 7 to 2 and then over 7 from O to %. This is the
blue region in Fig. 139. Under the assumption on f and g the order of integration can be

reversed (see Ref. [A5] for a proof using uniform convergence). We then integrate first
over 7 from O to 1 and then over t from 0 to <, that is,

x t oc
F(s)G(s) = f e~ st f f(Nglt — Ndrdt = f e Sth(n) dt = $(h) = H(s).
0 0 0

This completes the proof. |

t

Fig. 139. Region of integration in the
tr-plane in the proof of Theorem 1

From the definition it follows almost immediately that convolution has the properties

fxg=gxf (commutative law)
fr@+g)=f*g +F*g (distributive law)
fxg)*xv=7F=*(g*v) (associative law)

fF=0=0=xf=20
similar to those of the multiplication of numbers. Unusual are the following two properties.

Unusual Properties of Convolution

f * 1 # f in general. For instance.
t
r*l=f1--1d~r=§rz¢t.
0

(f * f)(r) = 0 may not hold. For instance, Example 2 with w = 1 gives

sinz *sint = —47cost + 3sint (Fig. 140). W
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Fig. 140. Example 3

We shall now take up the case of a complex double root (left aside in the last section in
connection with partial fractions) and find the solution (the inverse transform) directly by
convolution.

Repeated Complex Factors. Resonance

In an undamped mass—spring system, resonance occurs if the frequency of the driving force equals the natural
frequency of the system. Then the model is (see Sec. 2.8)

”n .
y + wozy = Ksin wg?

where woz = k/m, k is the spring constant, and i is the mass of the body attached to the spring. We assume
¥(0) = 0 and y'(0) = 0, for simplicity. Then the subsidiary equation is

Ko Kow
Y + wozY = 2702 . Its solution is Y= 27022 .
$°+ wgy ° + wg?)
This is a transform as in Example 2 with w = wg and multiplied by Kewq. Hence from Example 2 we can see
directly that the solution of our problem is

K.
¥ = o

B = —5 (—wgl €08 wyl + sin wgi).
2(1)0

sin wot) K
2wg

—1cos wpt +
wWo

We see that the first term grows without bound. Clearly, in the case of resonance such a term must occur. (See
also a similar kind of solution in Fig. 54 in Sec. 2.8.) ]

Application to Nonhomogeneous Linear ODEs

Nonhomogeneous linear ODEs can now be solved by a general method based on
convolution by which the solution is obtained in the form of an integral. To see this, recall
from Sec. 6.2 that the subsidiary equation of the ODE

2) Y+ ay' + by = r(t) (a. b constant)
has the solution [(7) in Sec. 6.2]

¥Gs) = [s + @)y(©0) + 3" )]QGs) + R)Q(s)
with R(s) = %(r) and Q(s) = 1/(s® + as + b) the transfer function. Inversion of the first

term [+ - -] provides no difficulty; depending on whether 2a® — b is positive, zero, or
negative, its inverse will be a linear combination of two exponential functions, or of the
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form (¢; + coe 2, or a damped oscillation, respectively. The interesting term is
1 2 p P y g

R(s)Q(s) because r(f) can have various forms of practical importance, as we shall see. If
1(0) = 0 and y'(0) = 0, then ¥ = RQ, and the convolution theorem gives the solution

t
3) W = fo gt — Drio) dr.

Response of a Damped Vibrating System to a Single Square Wave

Using convolution, determine the response of the damped mass—spring system modeled by
¥+ 3+ 2y =r), r@) = 1if 1 <t < 2 and O otherwise. w0) = ¥'(0) = 0.

This system with an input (a driving force) that acts for some time only (Fig. 141) has been solved by partial
fraction reduction in Sec. 6.4 (Example 1).

Solution by Convolution. The transfer function and its inverse are

1 B 1 o 1 ) e et
2+3s+2 G+Ds+2) s+1 s+2° ence gn=e —e -

o) =
Hence the convolution integral (3) is (except for the limits of integration)
W) = J-q“ —D-ldr= J.[e-(t—'r) _ e—Z(t—-r)] dr = e~ _ %e-Z(t—‘r)'

Now comes an important point in handling convolution. r(7) = 1 if 1 < 7< 2 only. Hence if ¢ < 1, the integral
is zero. If 1 < ¢t < 2. we have to integrate from 7 = 1 (not 0) to ¢. This gives (with the first two terms from the
upper limit)

0 1,-0_ (e—(t—l) _ %9—2("’_1)) —

W) =e®—le e~ tD 4 172D

1

2

If + > 2, we have to integrate from 7 = 1 to 2 (not to 7). This gives
(@) = e—(t—2) _ ée—2(t—2) _ (e_(t_l) _ %e—Z(t—l))_

Figure 141 shows the input (the square wave) and the interesting output, which is zero from 0 to 1. then increases,

reaches a maximum (near 2.6) after the input has become zero (why?), and finally decreases to zero in a monotone
fashion. u

¥(t)

0.5

/Output (response)

! I ]
0 1 2 3 4 t

Fig. 141. Square wave and response in Example 5

Integral Equations

Convolution also helps in solving certain integral equations, that is, equations in which
the unknown function y(f) appears in an integral (and perhaps also outside of it). This
concerns equations with an integral of the form of a convolution. Hence these are special
and it suffices to explain the idea in terms of two examples and add a few problems in
the problem set.
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EXAMPLE 6 A Volterra Integral Equation of the Second Kind

Solve the Volterra integral equation of the second kind®

t

() — f ¥7)sin(t — Ddr=1
0

Solution.

From (1) we see that the given equation can be written as a convolution, y — y * sin f = . Writing

Y = £(y) and applying the convolution theorem, we obtain

1
Y(s) — Y
(s) (s) 211

The solution is
241

s
Y(s) =

2

1 1
= — 4+ —
52 s*

K _ 1
ST TR
A
and gives the answer W =1t+ ik

Check the result by a CAS or by substitution and repeated integration by parts (which will need patience). Il

EXAMPLE 7

Solve the Volterra integral equation

Another Volterra Integral Equation of the Second Kind

y(t)—f(l + Dyt — 1)dr=1 —sinht.
o

Solution.

By (1) we can write y — (1 + f)*y = 1 — sinh#. Writing ¥ = $(y), we obtain by using the

convolution theorem and then taking common denominators

(Ee )]t
Y&) | L — S+52 =3

2_] >

2 2

(s2 — s — 1)/s cancels on both sides, so that solving for Y simply gives

s
Ws) = Sz —

PROBEEMSET-6-5

CONVOLUTIONS BY INTEGRATION
Find by integration:

1. 11 2. t%t

3.rx¢é 4. ¢ = e (a # b)
5. 1 * cos wt 6. 1= f()

7. &t x e7Ht 8. sint * cost

INVERSE TRANSFORMS

BY CONVOLUTION
Find f(2) if £(f) equals:
1 1
9. - —
(s —3)s +5) s(s — 1)
9 — _r
T os(s® + 4) sHs — 2)

s“—s5s-1 s“=-1-—s5
hence Ws)- 2 = s(52 D
and the solution is ¥(r) = cosh . |
1 14 Ky
s+ 1) T (s2 + 16)2
1 5
15, ———57 * T2 0 12 4 oRy
s(s® —9) (s + 1D(s° + 25)

17. (Partial fractions) Solve Probs. 9, 11, and 13 by using
partial fractions. Comment on the amount of work.

18-25| SOLVING INITIAL VALUE PROBLEMS
Using the convolution theorem, solve:

18. y" + y = sin s y(0) =0. ¥v'(©0)=0
19. y” + 4y = sin 31, ¥0) =0, y0) =0
20. y" + 5y’ + 4y = 2¢7%, ¥(0) = 0,

y'(0) =0

3If the upper limit of integration is variable, the equation is named after the Italian mathematician VITO
VOLTERRA (1860-1940), and if that limit is constant, the equation is named after the Swedish mathematician
IVAR FREDHOLM (1866-1927). “Of the second kind (first kind)” indicates that y occurs (does not occur)

outside of the integral.
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21.

22.

23,
24.

2s.

26.

CHAP. 6 Laplace Transforms

Y+ 9y =8sinrif0<t< wand0ifr > 7;

¥0) =0, ¥'(0)=4

Y43y +2v=1if0<r<aand0if t > a:
y0) =0, y (=0

_)-‘" + 4y = Su(r — 1); ¥0) =0, y'(O) =0
v sy 4+ 6y =8(r —3); ¥0) =1,

v(©0) =0

v+ 6y + 8y =28(r — 1) + 28(r — 2):

W0 =1. y'(©) =0

TEAM PROJECT. Properties of Convolution.

Prove:

(a) Commutativity, f*g =g * f

(b) Associativity, (f * g) v = f * (g *v)

(¢) Distributivity, f * (gy + g2) = f* g, + f * go
(d) Dirac’s delta. Derive the sifting formula (4) in
Sec. 6.4 by using f;. with a = 0 [(1), Sec. 6.4] and
applying the mean value theorem for integrals.

(e) Unspecified driving force. Show that forced
vibrations governed by

)'" + tu2_\' = r(n. »0) = K,, y'(O) =K,

with w # 0 and an unspecified driving force r(#) can
be written in convolution form,

| K, .
y = — sin wt * () + Ky cos wt + — sin wt.
w w

27-34| INTEGRAL EQUATIONS

Using Laplace wansforms and showing the details, solve:

27.

28.

29.

30.

31

32.

33.

3.

35.

1

y(t) — f)’(’T) dr =1
0
t

y() + f_v(ﬂ cosh(t — Vdr =1+ ¢
0
t

v(r) — f_\'(r) sin(t — 7) d7 = cos t
o

t
¥ + 2 fy(-r) cos(r — 7)d7 = cost
0

t

y(r) + f(r — 7y(r)dr =1
0
t

y() — fy("r)(! — 1) dr =
0

|
N
|
Wl
=

t

y(r) + ?_etfe"_y(ﬂ dr = te!
0

t
() + JeZ(t_T)_\'(T) dr =12 —1—1+ L2
0

CAS EXPERIMENT. Variation of a Parameter.
(a) Replace 2 in Prob. 33 by a parameter k and
investigate graphically how the solution curve changes
if you vary k, in particular near k = —2.

(b) Make similar experiments with an
equation of your choice whose solution is oscillating.

integral

6.6 Differentiation and Integration of Transforms.
ODEs with Variable Coefficients

The variety of methods for obtaining transforms and inverse transforms and their
application in solving ODE:s is surprisingly large. We have seen that they include direct
integration, the use of linearity (Sec. 6.1), shifting (Secs. 6.1, 6.3), convolution (Sec. 6.5),
and differentiation and integration of functions f(r) (Sec. 6.2). But this is not all. In this
section we shall consider operations of somewhat lesser importance. namely.
differentiation and integration of transforms F(s) and corresponding operations for
functions f(f), with applications to ODEs with variable coefficients.

Differentiation of Transforms

It can be shown that if a function f(f) satisfies the conditions of the existence theorem in
Sec. 6.1, then the derivative F'(s) = dF/ds of the transform F(s) = ¥(f) can be obtained
by differentiating F(s) under the integral sign with respect to s (proof in Ref. [GR4] listed

in App. 1). Thus, if

F(s) = f (D) di,
0

then F'(s) = —f e St f() dt.
o
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EXAMPLE 1

Consequently, if £(f) = F(s), then

) L{tft)} = —F'(s), hence LTHF ()} = —1f()

where the second formula is obtained by applying %=1 on both sides of the first formula.
In this way, differentiation of the transform of a function corresponds to the multiplication
of the function by —t.

Differentiation of Transforms. Formulas 21-23 in Sec. 6.9

We shall derive the following three formulas.

26 fo
@) 2;22 % (sin Bt — Btcos Br)
(s* + B 2B
S I3 N
©) m % sin Bt
“ zi L (sin Br + Brcos B1)
(s + p3? 2B

Solution. From (1) and formula 8 (with @ = B) in Table 6.1 of Sec. 6.1 we obtain by differentiation
(CAUTION! Chain rule!)
D 2Bs

t 1) = 5 o9

(¢ sin 1) >+ 52)2
Dividing by 28 and using the linearity of &, we obtain (3).

Formulas (2) and (4) are obtained as follows. From (1) and formula 7 (with @ = ) in Table 6.1 we find
(s2 + Bz) — 262 2 - B2

5) £(tcos Bt) = — =
( B %+ Bz)z &+ g2

From this and formula 8 (with @ = B) in Table 6.1 we have

2 — B2 1
+
(52 + B2)2 i SZ T BZ

1
B

if(tcos Bt = sin Bt) =

On the right we now take the common denominator. Then we see that for the plus sign the numerator becomes
-p+ s% + B2 = 252, so that (4) follows by division by 2. Similarly. for the minus sign the numerator
takes the form s% — g% — 5% — B = —282, and we obtain (2). This agrees with Example 2 in Sec. 6.5. Wl

Integration of Transforms

Similarly, if f(r) satisfies the conditions of the existence theorem in Sec. 6.1 and the limit
of f(t)/t, as t approaches O from the right, exists, then for s > £,

6) { 1 } f F@)ds hence { f F(5) ds } f(t)

1

In this way, integration of the transform of a function f(t) corresponds 1o the division of

fi byt
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EXAMPLE 2

CHAP. 6 Laplace Transforms

We indicate how (6) is obtained. From the definition it follows that

fs " re) ds = f m[ fo - dt:I a5,

and it can be shown (see Ref. [GR4] in App. 1) that under the above assumptions we may
reverse the order of integration, that is,

fs "Ry ds = fo w[ f ") ds”:| dr = fo " ho [ f T ds”:| dr.

Integration of ¢~ with respect to § gives e "/(—1). Here the integral over § on the right
equals e¢—*Yr. Therefore,

oo o0
g IO @
JF(s)ds=Je_St—dr=.§£— s>k N
s 0 t t
Differentiation and Integration of Transforms
w® 2+ o
Find the inverse transform of In {1 + —5 } = In >
s s
Solution. Denote the given transform by F(s). Tts derivative is
d 2s 2s
1) = —— 1n (s2 20 .2} _ =
F(s) PR (n(s‘ + o) —Ins 212 2

Taking the inverse transform and using (1), we obtain

2s 2 5 ) )
- —t= t— = —tf(1).
21 o2 p cos w f(

$HF @) = :g—l{

Hence the inverse f(7) of F(s) is f(1) = 2(1 — cos wr)/t. This agrees with formula 42 in Sec. 6.9.
Alternatively, if we let

2s 2 _1
G(s) = —5 5 then g = LTHG = 2cos wr — 1).
5+ w s

From this and (6) we get, in agreement with the answer just obtained,
52+ o

In > = f G(s) ds =

s s

z 2
—&)- = — (1 — cos wr).
r r

the minus occurring since s is the lower limit of integration.
In a similar way we obtain formula 43 in Sec. 6.9,

2
2
g1 [ln (I - a_z)] =7 (1 — cosh af). |
s

Special Linear ODEs with Variable Coefficients

Formula (1) can be used to solve certain ODEs with variable coefficients. The idea is this.
Let £(y) = Y. Then £(y") = s¥ — y(0) (see Sec. 6.2). Hence by (1),

, d Y
@) Sty) = —d—[sY—y(O)] = —Y—Sd—-
s ds
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EXAMPLE 3

Similarly, £(y™) = s2Y — sy(0) — y'(0) and by (1)

[ d 2 [ 2 dY
®) Lty"y = — — [$%Y — sy(0) — y'(0)] = —25Y — s — + (0.
ds ds

Hence if an ODE has coefficients such as at + b, the subsidiary equation is a first-order ODE
for Y, which is sometimes simpler than the given second-order ODE. But if the latter has
coefficients at® + bt + c, then two applications of (1) would give a second-order ODE for
Y, and this shows that the present method works well only for rather special ODEs with variable
coefficients. An important ODE for which the method is advantageous is the following.

Laguerre’s Equation. Laguerre Polynomials

Laguerre’s ODE is
® "+ (=Y +ny=0.
We determine a solution of (9) with n = 0, I, 2. - - - . From (7)—(9) we get the subsidiary equation
o - 2L v | sy (© y—sZY) +ar=o0
s K s y0) s y(0) s s nY = 0.
Simplification gives
o dY
—s)—+n+1—s5Y=0.
ds

Separating variables, using partial fractions, integrating (with the constant of integration taken zero), and taking
exponentials, we get

. dy n+1l—s n n+ 1 s— D
(10%) TZEﬁdS: -1 s ds and Y=s—n+1—.
We write [,, = .‘,P_l( Y) and prove Rodrigues’s formula
i " —t
(10) Io=1, In(t):"; dt—n(t e "), n=12---.

These are polynomials because the exponential terms cancel if we perform the indicated differentiations. They
are called Laguerre polynomials and are usually denoted by L,, (see Problem Set 5.7, but we continue to reserve
capital letters for transforms). We prove (10). By Table 6.1 and the first shifting theorem (s-shifting),

. n! d" . ns™
n,_— o : —_— n, - —_
L") = e 1)n+1 ) hence by (3) in Sec. 6.2 7 { o (t"e )} = P I)"+1

because the derivatives up to the order n — 1 are zero at 0. Now make another shift and divide by n! to get [see
(10) and then (10%)]

s—n"
)= —a1 =1 u

T R Z2s tam r i - T
- A W B gy S - . .

TRANSFORMS BY DIFFERENTIATION 5. te™2 sint 6. 12 sin 31
Showing the details of your work, find £(f) if () equals: 7. 2 sinh 4r 8. ekt

1. 4zet 2. —f cosh 2t 9. 1% sin wt 10. ¢ cos wt

3.  sin wr 4. r cos (r + k) 1L 1 sin (t + k) 12. re™* sint
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13-20| INVERSE TRANSFORMS (b) Show that
Using differentiation, integration. s-shifting. or convolution m o —qym
(and showing the details), find f(r) if £(f) equals: L= ) m

6 s oo ™! m

+ 1)? W ¥ 1ep

(s S ) and calculate Iy, * * + , o from this formula.
15 2s + 2) 16. s (¢) Calculate Iy, - - -, ;o recursively from I, = 1,
T s+ 22+ 12 (s — 12 I,=1—tby

2 s+ a _ _ _

17. A 18. In — 4+ Dy =@n+1— 0L, —nl,_,.
ol s 1 1 - S ... 3

19. In 20. arccot —— (d) Expe'nment with the.glaphs 9f Io, . I")j ﬁnd]ng

s—1 w out empirically how the first maximum. first minimum.

-+ + is moving with respect to its locatton as a function
21, WRITING PROJECT. Differentiation and of n. Write a short report on this.

Integration of Functions and Transforms. Make a
short draft of these four operations from memory. Then
compare your notes with the text and write a report of

(e) A generating function (definition in Problem Set
5.3) for the Laguerre polynomials is

2-3 pages on these operations and their significance in s
applications. 2 L™ = (1 — x)7 ey,

22. CAS PROJECT. Laguerre Polynomials. (a) Write a o
CAS program for finding I,(¢) in explicit form from Obtain ly. - - -, I} trom the corresponding partial sum
(10). Apply it to calculate ly, - - -, [,o. Verify that I, of this power series in.x and compare the [,, with those
-« -, Iy satisfy Laguerre’s differential equation (9). in (a), (b), or (c).

A.7 Systems of ODEs

The Laplace transform method may also be used for solving systems of ODEs, as we shall
explain in terms of typical applications. We consider a first-order linear system with
constant coefficients (as discussed in Sec. 4.1)

(1‘ Vi = auyr t arys + gD
)
Yo = ap1v1 + Gy + ga(0).

Writing ¥, = %(vy), Yo = £L(¥2). G; = L(g1). Gy = £(gs), we obtain from (1) in
Sec. 6.2 the subsidiary system

sY7 = »(0) = a1 Y1 + a19Ys + Gy(s)
sYy = y2(0) = ax1Y; + agsYs + Gy(s).
By collecting the ¥;- and Y,-terms we have

@ (@), — Y, + a12Ys = —»1(0) — G4(s)
agrYy  + (aga — 5)¥a = —x3(0) — Gy(s).

By solving this system algebraically for ¥;(s), Yo(s) and taking the inverse transform we
obtain the solution y; = £7X(Y)), y, = L71(¥,) of the given system (1).
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EXAMPLE 1

Note that (1) and (2) may be written in vector form (and similarly for the systems in
the examples); thus, setting y = [y, ¥2]'» A = lai]. g = [&1 gl Y=[nn Y,
G =[G, G,]" we have

y =Ay + ¢ and (A — sDhY = —y©O) — G.

Mixing Problem Involving Two Tanks

Tank 77 in Fig. 142 contains initially 100 gal of pure water. Tank T contains initially 100 gal of water in which
150 Ib of salt are dissolved. The inflow into 7 is 2 gal/min from T, and 6 gal/min containing 6 1b of salt from
the outside. The inflow into 75 is 8 gal/min from 7. The outflow from 75 is 2 + 6 = 8 gal/min. as shown in
the figure. The mixtures are kept uniform by stirring. Find and plot the salt contents y(r) and yo(f) in 7; and
T, respectively.

Solution. The model is obtained in the form of two equations
Time rate of change = Inflow/min — Outflow/min
for the two tanks (see Sec. 4.1). Thus,

L r_ 8 8
001" 100727 ¥2= 00 *1 T 100 *Z

1

y1 =~
The initial conditions are ¥1(0) = 0, y5(0) = 150. From this we see that the subsidiary system (2) is

6
(_008 - S)Yl + 002Y2 = _?

0.08Y,  + (—0.08 — )Y, = —150.

We solve this algebraically for Y; and Y5 by elimination (or by Cramer’s rule in Sec. 7.7), and we write the
solutions in terms of partial fractions,

9s + 0.48 _ loo 62.5 37.5

s(s + 0.12)s + 0.04) s s+012 s+004

Y; =

15052 + 12s + 048 100 125 75

Yo = = — + .
27 s(s + 0.12)(s + 0.04) s s+012  s+004
By taking the inverse transform we arrive at the solution

100 — 62.5¢ %1% — 37.5,7004

I

»n

yg = 100 + 125¢7012t — 75,7004

Figure 142 shows the interesting plot of these functions. Can you give physical explanations for their main
features? Why do they have the limit 100? Why is yg not monotone, whereas vy is? Why is y; from some time
on suddenly larger than y57? Efc. ]

£

)

150}
[— Salt content in Tz

100

2 gal/min

50| po Salt content in T1
/

| i 1l i
50 100 150 200 t

gul/min

Fig. 142. Mixing problem in Example 1
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EXAMPLE 2

CHAP. 6 Laplace Transforms

Other systems of ODEs of practical importance can be solved by the Laplace transform
method in a similar way, and eigenvalues and eigenvectors as we had to determine them
in Chap. 4 will come out automatically, as we have seen in Example 1.

Electrical Network

Find the currents i1(f) and ix(7) in the network in Fig. 143 with L and R measured in terms of the usual units
(see Sec. 2.9). v(r) = 100 volts if 0 = 7 = 0.5 sec and O thereafter, and i(0) = 0, i'(0) = 0.

it)

30
201
107
L1=0.8H
ok 1 { |
0 05 1 15 2 25 3 ¢
. v(t) Currents
Network

Fig. 143. Electrical network in Example 2

Solution. The model of the network is obtained from Kirchhoff’s voltage law as in Sec. 2.9. For the lower
circuit we obtain

0.8i] + Wiy — ip) + 140y = 100[1 — utr — B
and for the upper
L0l + Wiz — ip) =0.
Division by 0.8 and ordering gives for the lower circuit
il + 3iy — 12513 = 125[1 — ur — )]
and for the upper

i i+ =0

With #,(0) = 0. i5(0) = 0 we obtain from (1) in Sec. 6.2 and the second shifting theorem the subsidiary system

e—sIZ
(s +3); — 1251, =125 (— - )
s s

*11 + (S + 1)12 ={Q.
Solving algebraically for /y and /5 gives

125(s + 1)

— e
s+ +D) a—e

1

e 125 .
2= wrherp ¢

—sIZ)
The right sides without the factor 1 — ¢2 have the partial fraction expansions

500 125 625
7s 3s+d 2+ D

and
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500 250 250
T T, 7
7s 3(S + f) 21(.5‘ + E)

respectively. The inverse transform of this gives the solution for 0 < ¢t = 1,

125 625 500
i = — T o2 T —Tt/2 _7_

0=r=)
, 250 _yo . 250 g5 . 500
lz(t):—Te +Te +T

According to the second shifting theorem the solution for t > L is iy (1) — iy(t — %) and ix(f) — ix(r — 1), that is,

125 625
LB =— 3 a- 8114) o2 =TS a- Ty T2
>
250 250
i) = — 5 a- 3114) 2 4 S a- o1y T2

Can you explain physically why both currents eventually go to zero, and why i1(#) has a sharp cusp whereas
i5(f) has a continuous tangent direction at t = %‘?

Systems of ODEs of higher order can be solved by the Laplace transform method in a
similar fashion. As an important application, typical of many similar mechanical systems,
we consider coupled vibrating masses on springs.

=1

0 m
yl 5

' k
01— m,=1

Fig. 144. Example 3

EXAMPLE 3 Model of Two Masses on Springs (Fig. 144)

The mechanical system in Fig. 144 consists of two bodies of mass 1 on three springs of the same spring constant
k and of negligibly small masses of the springs. Also damping is assumed to be practically zero. Then the model
of the physical system is the system of ODEs

¥1 = —kyy + k(y2 — y1)
3) "
y2 = —k(yg — y1) ~ kys.

Here y; and y, are the displacements of the bodies from their positions of static equilibrium. These ODEs follow
from Newton’s second law, Mass X Acceleration = Force, as in Sec. 2.4 for a single body. We again regard
downward forces as positive and upward as negative. On the upper body, —ky, is the force of the upper spring
and k(yg — yp) that of the middle spring, y, — y, being the net change in spring length—think this over before
going on. On the lower body, —k(yg — y4) is the force of the middle spring and —kys, that of the lower spring.
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We shall determine the solution corresponding to the initial conditions y;(0) = 1, y»(0) = 1, y1(0) = V3%,
y5(0) = —V3k. Let ¥y = ¥(yy) and Y5 = £(v,). Then from (2) in Sec. 6.2 and the initia] conditions we obtain

the subsidiary system
¥y - s — V3k = —k¥; + k(Ys — ;)

2y — s + \3k = —KYs — V;) — kYa.

This system of linear algebraic equations in the unknowns Y; and ¥, may be written
(2+2h)Y -  kYy =s+ V3
—k¥;  + (2 + 20Y, =5 — V3L

Elimination (or Cramer’s rule in Sec. 7.7) yields the solution, which we can expand in terms of partial fractions.

v (s + V3R)(sZ + 20) + k(s — V3h) s V3

= = +

! (s + 22 — &2 2+ k2 +3k
B (sZ + 20)(s — V3K + ks + V3k) s V3k

2™ 2 + 262 — k2 TS24k 243k

Hence the solution of our initial value problem is (Fig. 145)

»l0) = SB‘I(YI) = cos Vkt + sin V3kt
yo) = (Yz) = cos Vkt — sin V3kt.

We see that the motion of each mass is harmonic (the system is undamped"), being the superposition of a “slow

oscillation and a *rapid” oscillation. |
0 \/\

Fig. 145. Solutions in Example 3

ot

T rwe™ NMESET—6F -

1-20| SYSTEMS OF ODES 3.y = —6vy + dys, yh = —4y, + 4y,
Using the Laplace wransform and showing the details of y1(0) = —2, vo(0) = —
your work, solve the initial value problem: 4. v1 +y,=0, v + 7y, =2cost
»1(0) =1, ¥2(0) =
Lyl=-y1—¥s ¥2=0 ¥ 5 “}(_) —ar _;,Z(J: 0
»(0 =0, »2(0) = 1 Py1 = Ay = 2yp F A yp = 3wy kg
¥,(0) = 5.75, y2(0) = —6.75
2. y; =5y, + Yoo ¥3 = ¥y1 + 5ya 6. y; = 4y, — 8 cos 4r, ¥3 = —3y; — 9 sin 4s,

710 =1, yy(0) = -3 ¥(0) =0, ¥2(0) =
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7.v1 = 5y — 4y, — 9% + 21,
yo = 10y; — Ty, — 1712 — 21,
y1(0) = 2, y2(0) = 0

8 y1 = 6y, + ys, yi = 9y1 + 6vy,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

v1(0) = =3, y2(0) = —3

. y1 = 5y; + 5y, — 15 cost + 27 sint,

ys = —10v; — 5y, — 150 sin ¢.
»1(0) = 2, ¥2(0) =2

y; = - 2y, + 3yo, ¥z = 4y, — ys,

)"1(0) = 4, yZ(O) =3
y;:y2+1—u(1—l),

y; ==y, +1—ut—1), 1(0) = 0,
y2(0) = O

Y1 =2y; + Yo, Yo = 4y + 2y5 + 64tu(t — 1),
y1(0) = 2. y2(0) = 0

¥y =y + 6ult — ), yy =¥, + 2vs,
¥,(0) =0, ¥2(0) = 1

Y1 = —Yo, ¥ = —y + 2[l — u(t — 2m)] cost,
y1(0) = 1, ¥2(0) = 0

y1 = 73y +yp +out — e,

y; = —4y, + 2y, + u(t — 1)é',
y1(0) = 0, y5(0) = 3

U= 20 2y ¥R =2 - Sya
¥1(0) = 1, y3(0) = 0, y3(0) = 3, y(0) =0

y1 =4y, + 8ys, ¥5 = 5y; + ¥a

¥1(0) = 8, ¥1(0) = —18, ¥2(0) = 5,
y2(0) = —21

y7 + vy = —101 sin 10r. y% + y, = 101 sin 10z.
y,(0) = 0, y1(0) = 6, y2(0) = 8,
y5(0) = —6

’ ! —_ ! ? -
y1 ¥+ yo =2e" + €7, yy + y3 = 2 sinhy,

14 ’71’
Yzt yi1=e

»1(0) =0, y2(0) = 1, y3(0) = 1
4y£ + _vé — 2_\'; = 0. —2y; + yé = 1.
2yh — dyh = —16¢

»1(0) = 2, ¥2(0) = 0, ¥s(0) = 0

TEAM PROJECT. Comparison of Methods for
Linear Systems of ODEs.

(a) Models. Solve the models in Examples 1 and 2 of
Sec. 4.1 by Laplace transforms and compare the
amount of work with that in Sec. 4.1. (Show the details
of your work.)

(b) Homogeneous Systems. Solve the systems (8),
(11)—(13) in Sec. 4.3 by Laplace transforms. (Show the
details.)

(¢) Nonhomogeneous System. Solve the system (3)
in Sec. 4.6 by Laplace transforms. (Show the details.)
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FURTHER APPLICATIONS

22. (Forced vibrations of two masses) Solve the model in
Example 3 with kK = 4 and initial conditions v,(0) = 1,
¥1(0) = 1, vo(0) = 1, y5(0) = —1 under the assumption
that the force 11 sin ¢ is acting on the first body and the
force —11 sin 7 on the second. Graph the two curves on
common axes and explain the motion physically.

23. CAS Experiment. Effect of Initial Conditions. In
Prob. 22, vary the initial conditions systematically,
describe and explain the graphs physically. The great
variety of curves will surprise you. Are they always
periodic? Can you find empirical laws for the
changes in terms of continuous changes of those
conditions?

24. (Mixing problem) What will happen in Example 1 if
you double all flows (in particular, an increase to
12 gal/min containing 12 Ib of salt from the outside),
leaving the size of the tanks and the initial conditions
as before? First guess, then calculate. Can you relate
the new solution to the old one?

25. (Electrical network) Using Laplace transforms, find
the currents i(t) and iy(r) in Fig. 146, where
v(®) = 390 cost and i,(0) = 0, i»(0) = 0. How
soon will the currents practically reach their steady
state?

4Q 8Q
u(®) 8Q
2H 4H
Network
i(t)
40 e—11(t)
20+ //%* 1,(8) %
0 A | W | L X
2 ‘4 6 8 10' ¢
-20
_40+
Currents

Fig. 146. Electrical network and
currents in Problem 25

26. (Single cosine wave) Solve Prob. 25 when the EMF
(electromotive force) is acting from O to 247 only. Can
you do this just by looking at Prob. 25, practically
without calculation?



6.8 Laplace Transform:

CHAP. 6 Laplace Transforms

General Formulas

(V]

Formula Name, Comments Sec.
F(s) = L{f(n} = f e () di Definition of Transform
0 6.1
f( = L YF(s)} Inverse Transform
Llaf(d) + bg(D} = aZ{f(1)} + b&L{g(D)} Linearity 6.1
at — —
He"f) = Fs — o) s-Shifting ol
P F(s — a)} = @) (First Shifting Theorem) ’
(") = s — f(O)
Ly = 2L — sfO) — £'(0) Differentiation
of Function
(£(f(n) = s"P(f) — s(n—l)f(o) _ . 6.2
e e — f(‘n—l.)(o')
t 1
£ { f f» (17} = — %) Integration of Function
) R}
t
¢ * o = | femgte - mar
0
t
= J- f(t — Dg(7n) dr Convolution 6.5
0
E(f g = LH L)
L{ft — &) ult — @)} = e *F(s) +-Shifting 63
LY SF(s)) = f(t — a) u(t — a) (Second Shifting Theorem) .
Ltf(} = —F'(s) Differentiation of Transform
> 6.6
t
< {Q} = f F($)ds Integration of Transform
1 p 64
L = PR f et () dt f Periodic with Period p Project

16




SEC. 6.9 Table of Laplace Transforms

6.9 Table of Laplace Transforms

For more extensive tables, see Ref. [A9] in Appendix 1.

265

F(s) = L{f(0)} £ Sec.
1 | s 1 )
2 1/s2 t
3 1/s™ n=1,2, ) 7 Hm — 1! vy
4 | UVs 1Vt .
5 /532 2Vil
6 1s*  (a>0) YT (a) )
l N
7 eat
s—a
1
8 te™
(s — a)® ¢
r 6.1
1 1 .
9 =1,2, n—1 at
s — o) (n n— N €
10 _ (k > 0) L k—1,at
(s — a)f I'(k) y
N| ———— @b L ot — oty
(s — a)is — b) (a — b)
s 1
12 . E— (a#b) (ae™ — beh)
(s—a)s—b) (a — b)
1 1 \
13 m — s8in wt
s
14 21 of cos wt
1 1
15 22 ; sinh at
s ‘ 6.1
16 22 cosh at
] l at -
17 (s—a)2+ P ;e sin wt
18 4 % cos wf
w
G af+ o e cos J
1 I ]
19 S6% + o) e (1 — cos i)
r 6.2
20 1 1 i
S22 + o) o (wt — sin wi) )
1
21 - (< _
% + 2P e (sin wt — wt cos wf) 6.6

(continued)
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CHAP. 6 Laplace Transforms

Table of Laplace Transforms (continued)

F(s) = Z{f0)} J@® Sec.
s o
22 (S2 + (1)2)2 E Sin wf 6 6
SZ 1 ] .
23 ———(sz W PN (sin wt + ot cos wr)
s 5 2 1
24 2 + a?)s2 + b?) (a® # b%) FERagE] (cos at — cos bt)
1 . .
B diaa 25 (Sin ki cos ka — cos k sinh k)
s 1 )
26 w W sin kt sinh kt
! | .
27 JERT EYEl (sinh kr — sin kf)
s 1
28 T 2—](2 (cosh kt — cos ki)
1
29 Vs—a—Vs—b 3 (P — )
2Vart
1 a—b
e —(a+b)tf2 5
30 Vs+aVs+b ¢ 10( 2 t) 6
1
3 Jotat) 55
2+ a?
32 . ! (] + 2ar)
T 32 — a
(s — a*? Vart
! Vo [t Y12
33 2 — o (k> 0) ) 2 I_1p0(at) 5.6
34 | e %ls ut — a) 6.3
35 | e* 8t — a) 6.4
1
36 | — e s Jo@Vk) 55
U 1
37 7 e’ - cos 2Vkt
N VT
] 1
38 E ek/S _\/—k sinh 2\/]71‘
T
k 2
39 | e (k> 0) SIS
2V
1
40 " In s —Int— vy (y= 0.5772) 5.6

(continued)




Chapter 6 Review Questions and Problems

Table of Laplace Transforms (continued)
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F(s) = Z{f(O) fn Sec
s—a 1
41 1] (bt _ at
n s— b p (e Va )
s2 + o 2
42 | In 3 " (I — cos wr) 6.6
5
2 — a2 2
43 In 5 — (1 — coshat)
S 1
w |
44 arctan — 7 sin wt
I . App.
45 5 arccot s Si(n A3 |

- -
-t -
1. What do we mean by operational calculus?

What are the steps needed in solving an ODE by Laplace
transform? What is the subsidiary equation?

The Laplace transform is a linear operation. What does
this mean? Why is it important?

For what problems is the Laplace transform preferable
over the usual method? Explain.

What are the unit step and Dirac’s delta functions? Give
examples.

6. What is the difference between the two shifting
theorems? When do they apply?

Is L{f(D)g(D}) = L{f(t)}¥F{g(n)}? Explain.

Can a discontinuous function have a Laplace transform?
Does every continuous function have a Laplace
transform? Give reasons.

hd

State the transforms of a few simple functions from
memory.
10. If two different continuous functions have transforms,

the latter are different. Why is this practically important?

LAPLACE TRANSFORMS

Find the transform (showing the details of your work and
indicating the method or formula you are using):

11. re® 12. ¢~ sin 2¢

13.
15.
17.
19.
21.

23-34

sin® ¢

fu(t — )

e’ ® cos 2t

sint + sinhr

b (a # b)

et — ¢

14.
16.
18.
20.
22.

WEIR = EVIEW-_QUESTIONS AND PROBLEMS

cos? 4t

u(t — 247) sin t
(sin wt) * (cos wt)
coshz — cost
cosh 2t — cosh t

INVERSE LAPLACE TRANSFORMS

Find the inverse transform (showing the details of your work
and indicating the method or formula used):

23.

25,

27.

29.

31.

33.

10s
s2+2
12
s+ 4s + 20
5s+ 4
—2s
2 €
2s + 4
(s® + 45 + 5)2
2 2 s
Erta)e
T

24.

26.

28.

30.

32.

34.

15
s2—4

3s
=25 +2

25— 10

3 e—SS

AY
s2—16
(s% + 16)2

180 + 1852 + 354

S7

2

252 + 25+ 1
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SINGLE ODEs AND SYSTEMS OF ODEs

Solve by Laplace transforms, showing the details and
graphing the solution:

CHAP. 6 Laplace Transforms

35. 3" +y = u(t - 1). v(0) = 0.
y'(0) = 20

36. y" + 16y = 46(t — ), y(0) = —1,
y'(0) =0

37. y" + 4y = 88(r — 5), y(0) = 10,
y'(©0) = -1

38. y" +y = ut — 2). v(0) = O,
y'(0) =0

39. 3" + 23" + 10y = 0, ¥0) =17,
¥y (0) = —1

40. y" + 4y' + 5y = 501, ¥0) = 5,
y'(0) = -5

41. y" - y' — 2y = 12u(t — ™ sint.
yo=1,  y(© = -1

Q2.y" =2y +y=18¢— 1),
y(0) = 0. v(0) =0

43. y" — 4y  + 4y =80 — 1) — 81 — 2),
y(0) = 0. vy (@) =0

4. y" + 4y = 8(t — w) — 8( — 2m),
yo0 =1 y@©=0

45,y + y, = sint, yj + y; = —sint,
»1(0) = 1, ¥2(0) =0

46. y1 = —3y, + yo — 121, yh = —dy, + 2y, + 121,
y1(0) = 0, y,(0) =0

47.y1 = ys, ¥z = —5y1 — 2¥s,
¥1(0) = 0, y2(0) = 1

48. 3| =y, yp = —dy, + 8¢ — m),
y1(0) = 0, ¥2(0) =0

49. y| = 4y, — 4¢'. y3 =3y + ya
yi(0) = 1. yl(0) = 2, vo(0) =2, y50) =3

50. y1 = 16y5, y% = 16y4,
y1(0) = 2. ¥1(0) = 12, yy(0) = 6. y5(0) = 4

MODELS OF CIRCUITS AND NETWORKS

51. (RC-circuit) Find and graph the current i(7) in the RC-
circuit in Fig. 147, where R = 100Q), C = 1073 F,
v =100rVif0 <1< 2,v(f) =200V ifr>2and
the initial charge on the capacitor is O.

"z

-

u(t)
Fig. 147. RC-circuit

52. (LC-circuit) Find and graph the charge g(t) and the
current i(f) in the LC-circuit in Fig. 148, where
L = 05H, C = 002F, v(f) = 1425 sin5tV if

0 <t < v = 0if t > 71, and current and charge at
t=0are (.

—o
u(t)
Fig. 148. LC-circuit

53. (RLC-circuit) Find and graph the current i(¢) in the
RLC-circuit in Fig. 149, where R = 1 Q. L = 0.25H,
C = 0.2 F,v(t) = 377 sin 20¢ V, and current and charge
atr=0are 0.

C
—

. L

L— o

v(t)
Fig. 149. RLC-circuit

54. (Network) Show that by Kirchhoff’s voltage law
(Sec. 2.9), the currents in the network in Fig. 150 are
obtained from the system

Liy + R(i; — iz) = v(1)
’ 1
R(iy — iy) + cia 0.
Solve this system, where R = 1Q, L =2H, C =05
F.u(1) = 90€ ™ V. i(0) = 0. in(0) = 2 A.
L
IO
! Nl
u(f) R C =

T

Fig. 150. Network in Problem 54

1t

55. (Network) Set up the model of the network in Fig. 151
and find and graph the currents, assuming that the
currents and the charge on the capacitor are O when the
switch is closed at 1 = 0.

L=1H
‘/’

L als ]
v=100£2V R, =100 C=0.01F
L 7oAV T
Switch R2=3OQ

Fig. 151. Network in Problem 55
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Laplace Transforms

The main purpose of Laplace transforms is the solution of differential equations and
systems of such equations, as well as corresponding initial value problems. The
Laplace transform F(s) = £(f) of a function f(#) is defined by

o0

o Fs) = L(f) = f ¢S di (Sec. 6.1).
0

This definition is motivated by the property that the differentiation of f with respect
to ¢ corresponds to the multiplication of the transform F by s; more precisely,

L(f") = sLf) — £(0)
(2) , (Sec. 6.2)
L") = s2L(f) — sf©O) - £'(0)

etc. Hence by taking the transform of a given differential equation

N E)) y' + ay' + by = r(t (a, b constant)
and writing &(y) = Y(s), we obtain the subsidiary equation

(4 (s? + as + b)Y = L) + sf(0) + £ (0) + af(0).

Here, in obtaining the transform $£(r) we can get help from the small table in
Sec. 6.1 or the larger table in Sec. 6.9. This is the first step. In the second step we
solve the subsidiary equation algebraically for Y(s). In the third step we determine
the inverse transform y(1) = $7YY), that is, the solution of the problem. This is
generally the hardest step, and in it we may again use one of those two tables. Y(s)
will often be a rational function, so that we can obtain the inverse £~1(Y) by partial
fraction reduction (Sec. 6.4) if we see no simpler way.

The Laplace method avoids the determination of a general solution of the
homogeneous ODE, and we also need not determine values of arbitrary constants
in a general solution from initial conditions: instead, we can insert the latter directly

I into (4). Two further facts account for the practical importance of the Laplace
transform. First, it has some basic properties and resulting techniques that simplify
the determination of transforms and inverses. The most important of these properties
are listed in Sec. 6.8, together with references to the corresponding sections. More
on the use of unit step functions and Dirac’s delta can be found in Secs. 6.3 and

| 6.4, and more on convolution in Sec. 6.5. Second, due to these properties, the present
method is particularly suitable for handling right sides r(f) given by different
expressions over different intervals of time, for instance, when r(?) is a square wave
or an impulse or of a form such as r(r) = cost if 0 = r = 44r and 0 elsewhere.

The application of the Laplace transform to systems of ODEs is shown in
Sec. 6.7. (The application to PDEs follows in Sec. 12.11.)







