
COMPUTER ARCHITECTURE I

PART 2: REGISTER TRANSFER

AND MICRO-OPERATIONS

University Of Diyala

College Of Engineering

Computer Engineering Department

Asst. Prof. Ahmed Salah Hameed

Second stage

2022-2023

1

CONTENTS

2

• Register Transfer Language

• Register Transfer

• Bus and Memory Transfers

• Arithmetic Micro-operations

4-1 REGISTER TRANSFER LANGUAGE

(RTL)

Digital System: An interconnection of

hardware modules that do a certain task on

the information.

Registers + Operations performed on the

data stored in them = Digital Module

Modules are interconnected with common

data and control paths to form a digital

computer system

3

4-1 REGISTER TRANSFER LANGUAGE
CONT.

Microoperations: operations executed on

data stored in one or more registers.

For any function of the computer, a

sequence of Microoperations is used to

describe it

The result of the operation may be:

• replace the previous binary information of a register or

• transferred to another register

4

101101110011 010110111001
Shift Right Operation

The internal hardware organization of a digital computer is defined

by specifying:

• The set of registers it contains and their function

• The sequence of microoperations performed on the binary

information stored in the registers

• The control that initiates the sequence of microoperations

Registers + Microoperations Hardware +

Control Functions = Digital Computer

5

4-1 REGISTER TRANSFER LANGUAGE
CONT.

Register Transfer Language (RTL) : a symbolic

notation to describe the Microoperations transfers among

registers

Next steps:

• Define symbols for various types of Microoperations,

• Describe the hardware that implements these

Microoperations

6

4-1 REGISTER TRANSFER LANGUAGE
CONT.

4-2 REGISTER TRANSFER
(OUR FIRST MICRO-OPERATION)

Computer registers are designated by capital letters

(sometimes followed by numerals) to denote the function of

the register

• R1: processor register

• MAR: Memory Address Register (holds an address for a

memory unit)

• PC: Program Counter

• IR: Instruction Register

• SR: Status Register

7

4-2 REGISTER TRANSFER CONT.

The individual flip-flops in an n-bit register are numbered in

sequence from 0 to n-1 (from the right position toward the

left position)

8

R1 7 6 5 4 3 2 1 0

A block diagram of a register

Register R1 Showing individual bits

9

PC

Numbering of bits

Partitioned into two parts

15 0

PC(H) PC(L)

0 7 8 15

Lower byte Upper byte

Other ways of drawing the block diagram of a register:

4-2 REGISTER TRANSFER CONT.

Information transfer from one register to another is described by a
replacement operator: R2 ← R1

This statement denotes a transfer of the content of register R1
into register R2

The transfer happens in one clock cycle

The content of the R1 (source) does not change

The content of the R2 (destination) will be lost and replaced by the
new data transferred from R1

We are assuming that the circuits are available from the outputs of
the source register to the inputs of the destination register, and
that the destination register has a parallel load capability

1
0

4-2 REGISTER TRANSFER CONT.

Conditional transfer occurs only under a control condition

Representation of a (conditional) transfer

 P: R2 ← R1

A binary condition (P equals to 0 or 1) determines when the
transfer occurs

The content of R1 is transferred into R2 only if P is 1

1
1

4-2 REGISTER TRANSFER CONT.

1
2

n

Clock

R1

R2
Control

Circuit
Load

t t+1

Clock

Load

Transfer occurs here

Synchronized

with the clock

P

Hardware implementation of a controlled transfer:

P: R2 ← R1

Block diagram:

Timing diagram

4-2 REGISTER TRANSFER CONT.

Basic Symbols for Register Transfers

Symbol Description Examples

Letters &

numerals

Denotes a register MAR, R2

Parenthesis () Denotes a part of a

register

R2(0-7), R2(L)

Arrow ← Denotes transfer of

information

R2 ← R1

Comma , Separates two

microoperations

R2 ← R1, R1 ← R2

1
3

4-2 REGISTER TRANSFER CONT.

Paths must be provided to transfer information
from one register to another

A Common Bus System is a scheme for
transferring information between registers in a
multiple-register configuration

A bus: set of common lines, one for each bit of
a register, through which binary information is
transferred one at a time

Control signals determine which register is
selected by the bus during each particular
register transfer

1
4

4-3 BUS AND MEMORY TRANSFERS

4-3 BUS AND MEMORY TRANSFERS

1
5

3 2 1 0

Register D

D3 D2 D1 D0

3 2 1 0

Register C

C3 C2 C1 C0

3 2 1 0

Register B

B3 B2 B1 B0

3 2 1 0

Register A

A3 A2 A1 A0

D3 C3 B3 A3

S0

S1 MUX3

3 2 1 0

D2 C2 B2 A2

S0

S1
MUX2

3 2 1 0

D1 C1 B1 A1

S0

S1
MUX1

3 2 1 0

D0 C0 B0 A0

S0

S1 MUX0

3 2 1 0

4-Line Common Bus

Register A Register B Register C Register D

Bus lines

4-3 BUS AND MEMORY TRANSFERS

 The transfer of information from a bus into
one of many destination registers is done:
 By connecting the bus lines to the inputs of all

destination registers and then:

 activating the load control of the particular destination
register selected

 We write: R2 ← C to symbolize that the
content of register C is loaded into the
register R2 using the common system bus

 It is equivalent to: BUS ←C, (select C)

 R2 ←BUS (Load R2)

1
6

4-3 BUS AND MEMORY TRANSFERS:
THREE-STATE BUS BUFFERS

A bus system can be constructed with three-state buffer

gates instead of multiplexers

A three-state buffer is a digital circuit that exhibits three

states: logic-0, logic-1, and high-impedance (Hi-Z)

1
7

Normal input A

Control input C

Three-State Buffer

Output B

4-3 BUS AND MEMORY TRANSFERS:
THREE-STATE BUS BUFFERS CONT.

1
8

A

C=1

B A B

A

C=0

B A B

Buffer

Open Circuit

1
9

2×4

Decoder

Select

Enable

0

1

2

3

S1

S0

E

Bus line for bit 0
A0

B0

C0

D0

Bus line with three-state

buffer (replaces MUX0 in the

previous diagram)

4-3 BUS AND MEMORY TRANSFERS:
THREE-STATE BUS BUFFERS CONT.

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER

 Memory read : Transfer from memory

 Memory write : Transfer to memory

 Data being read or wrote is called a memory
word (called M).

 It is necessary to specify the address of M
when writing /reading memory.

 This is done by enclosing the address in
square brackets following the letter M.

 Example: M[0016] : the memory contents at
address 0x0016

2
0

2
1

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER CONT.

2
1

Assume that the address of a memory unit is stored in a

register called the Address Register AR

Lets represent a Data Register with DR, then:

Read: DR ← M[AR]

Write: M[AR] ← DR

2
2

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER CONT.

2
3

AR

x12
x0C

x0E

x10

x12

x14

x16

x18

19

34

45

66

0

13

22 R1←M[AR]

R1

100

R1

66

RAM

R1

100

4-3 BUS AND MEMORY TRANSFERS:

MEMORY TRANSFER CONT.

SUMMARY OF REGISTER

TRANSFER MICROOPERATIONS

2
4

2
4

4-4 ARITHMETIC MICRO-OPERATIONS

The microoperations most often encountered in

digital computers are classified into four

categories:

• Register transfer microoperations

• Arithmetic microoperations (on numeric data stored

in the registers)

• Logic microoperations (bit manipulations on non-

numeric data)

• Shift microoperations

2
5

4-4 ARITHMETIC MICRO-OPERATIONS
CONT.

 The basic arithmetic microoperations are:

addition, subtraction, increment, decrement, and

shift

 Addition Microoperation:

 R3 ←R1+R2

 Subtraction Microoperation:

 R3 ←R1- R2

or : R3 ←R1+ R2 +1

2
6

One’s Complement Microoperation:

R2 ←R2

Two’s Complement Microoperation:

R2 ←R2+1

Increment Microoperation:

R2 ←R2+1

Decrement Microoperation:

R2 ←R2-1

2
7

4-4 ARITHMETIC MICRO-OPERATIONS
CONT.

SUMMARY OF TYPICAL ARITHMETIC

MICRO-OPERATIONS

2
8

2
8

HALF ADDER/FULL ADDER

2
9

Half Adder

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

cn = xy + xcn-1+ ycn-1
 = xy + (x  y)cn-1

s = x’y’cn-1+x’yc’n-1+xy’c’n-1+xycn-1
 = x  y  cn-1 = (x  y)  cn-1

x

y

cn-1

x

y

cn-1

cn s

c = xy s = xy’ + x’y
 = x  y

x
y c

s

x
y

cn-1

S

cn

Full Adder

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

x y c s

x y cn-1 cn s
0

0

1

0

0

1

1

1

0

1

0

1

1

0

1

0

4-4 ARITHMETIC MICRO-OPERATIONS

BINARY ADDER

3
0

FA FA FA FA C0

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

C1 C2 C3

C4

4-bit binary adder

(connection of FAs)

4-4 ARITHMETIC MICRO-OPERATIONS

BINARY ADDER-SUBTRACTOR

3
1

FA FA FA FA
C0

A0 B0

S0

A1 B1

S1

A2 B2

S2

A3 B3

S3

C1 C2 C3

C4

4-bit adder-subtractor

M

 For unsigned numbers, this gives A – B if A≥B or the 2’s complement
of (B – A) if A < B

 (example: 3 – 5 = -2= 1110)

 For signed numbers, the result is A – B provided that there is no
overflow. (example : -3 – 5= -8)

 1101

 1011 +
 ـــــــــــــــــــــــــــ

 1000

3
2

C3

C4
V =

1, if overflow

0, if no overflow

Overflow detector for signed numbers

4-4 ARITHMETIC MICRO-OPERATIONS

BINARY ADDER-SUBTRACTOR

What is the range of unsigned numbers that can be

represented in 4 bits?

What is the range of signed numbers that can be represented

in 4 bits?

Repeat for n-bit?!

3
3

4-4 ARITHMETIC MICRO-OPERATIONS

BINARY ADDER-SUBTRACTOR

4-4 ARITHMETIC MICRO-OPERATIONS

BINARY INCREMENTER

3
4

C S

x y

HA

C S

x y

HA

C S

x y

HA

C S

x y

HA

S0 S1 S2 S3 C4

1 A0 A1 A2 A3

4-bit Binary Incrementer

 Binary Incrementer can also be implemented using a counter

 A binary decrementer can be implemented by adding 1111 to

the desired register each time!

4-4 ARITHMETIC MICRO-OPERATIONS

ARITHMETIC CIRCUIT

 This circuit performs seven distinct arithmetic

operations and the basic component of it is the

parallel adder

 The output of the binary adder is calculated from

the following arithmetic sum:

• D = A + Y + Cin

3
5

4-4 ARITHMETIC MICRO-OPERATIONS

ARITHMETIC CIRCUIT CONT.

3
6

B0

3 2 1 0 S1 S0

4×1 MUX

FA FA FA FA Cin

D0 D1 D2 D3

C1 C2 C3

Cout

B0 1 0 S1 S0 B1

3 2 1 0 S1 S0

4×1 MUX

B1 1 0 S1 S0 B2

3 2 1 0 S1 S0

4×1 MUX

B2 1 0 S1 S0 B3

3 2 1 0 S1 S0

4×1 MUX

B3 1 0 S1 S0

A0 A1 A2 A3

4-bit Arithmetic Circuit

X0 Y0 X1 Y1 X2 Y2 X3 Y3

Figure A

