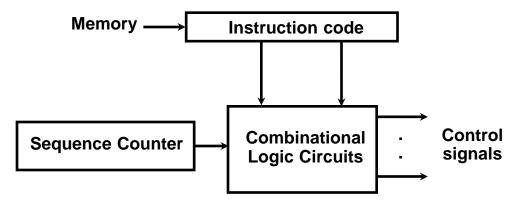
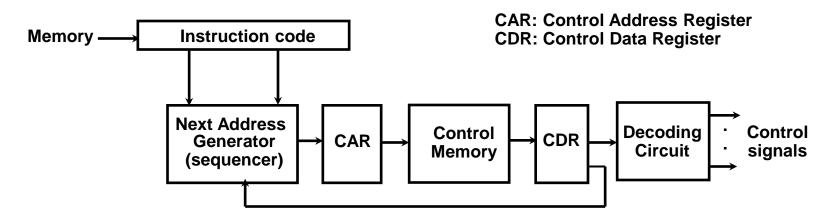
University Of Diyala College Of Engineering Computer Engineering Department

COMPUTER ARCHITECTURE I


PART 6: MICROPROGRAMMED CONTROL

Asst. Prof. Ahmed Salah Hameed Second stage 2022-2023


CONTENTS

- Control Memory
- Address Sequencing
- Microprogram Example
- Design of Control Unit

• Hardwired

Microprogrammed

MICROPROGRAMMED CONTROL UNIT

Control signals

 Group of bits used to select paths in multiplexers, decoders, arithmetic logic units

Control variables

- Binary variables specify microoperations
- Certain microoperations initiated while others idle

Control word

String of 1's and 0's represent control variables

MICROPROGRAMMED CONTROL UNIT

Control memory

Memory contains control words

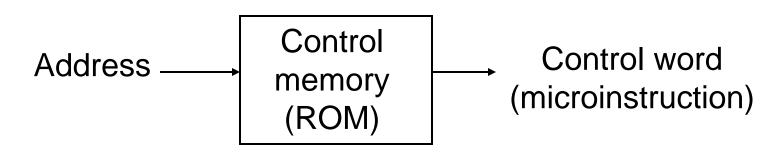
Microinstructions

- Control words stored in control memory
- Specify control signals for execution of microoperations

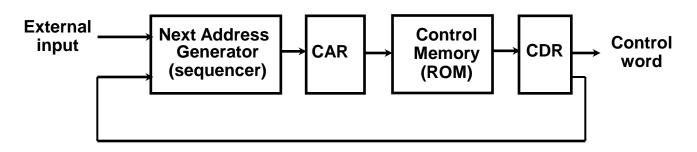
Microprogram

Sequence of microinstructions

CONTROL MEMORY


Read-only memory (ROM)

Content of word in ROM at given address specifies microinstruction


Each computer instruction initiates series of microinstructions (microprogram) in control memory

These microinstructions generate microoperations to

- Fetch instruction from main memory
- Evaluate effective address
- Execute operation specified by instruction
- Return control to fetch phase for next instruction

MICROPROGRAMMED CONTROL ORGANIZATION

Control memory

- Contains microprograms (set of microinstructions)
- Microinstruction contains
 - Bits initiate microoperations
 - Bits determine address of next microinstruction

Control address register (CAR)

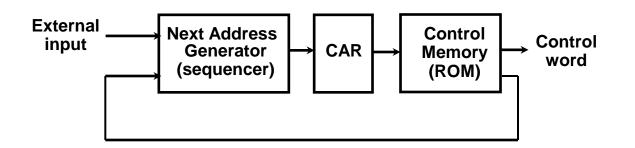
Specifies address of next microinstruction

MICROPROGRAMMED CONTROL ORGANIZATION

Next address generator (microprogram sequencer)

• Determines address sequence for control memory

Microprogram sequencer functions


- Increment CAR by one
- Transfer external address into CAR
- Load initial address into CAR to start control operations

MICROPROGRAMMED CONTROL ORGANIZATION

Control data register (CDR)- or pipeline register

- Holds microinstruction read from control memory
- Allows execution of microoperations specified by control word simultaneously with generation of next microinstruction

Control unit can operate without CDR

MICROPROGRAM ROUTINES

Routine

 Group of microinstructions stored in control memory
Each computer instruction has its own microprogram routine to generate microoperations that execute the instruction

MICROPROGRAM ROUTINES

Subroutine

 Sequence of microinstructions used by other routines to accomplish particular task

Example

 Subroutine to generate effective address of operand for memory reference instruction

Subroutine register (SBR)

Stores return address during subroutine call

CONDITIONAL BRANCHING

Branching from one routine to another depends on status bit conditions

Status bits provide parameter info such as

- Carry-out of adder
- Sign bit of number
- Mode bits of instruction

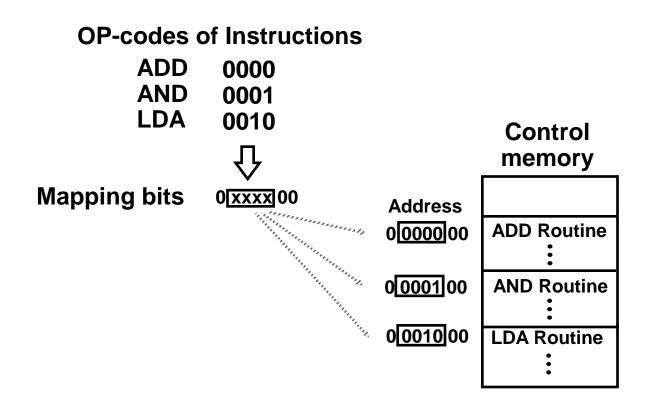
Info in status bits can be tested and actions initiated based on their conditions: 1 or 0

Unconditional branch

• Fix value of status bit to 1

MAPPING OF INSTRUCTION

Each computer instruction has its own microprogram routine stored in a given location of the control memory

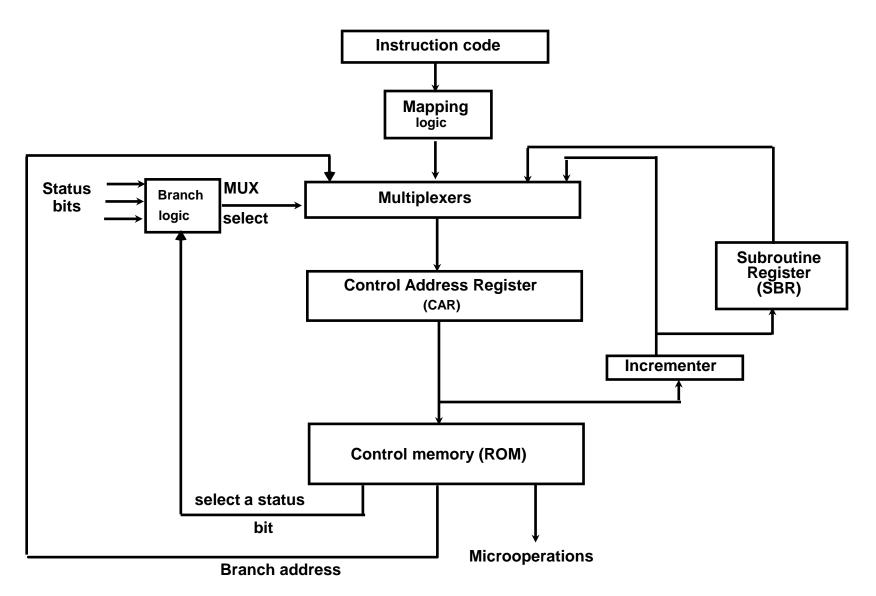

Mapping

 Transformation from instruction code bits to address in control memory where routine is located

MAPPING OF INSTRUCTION

Example

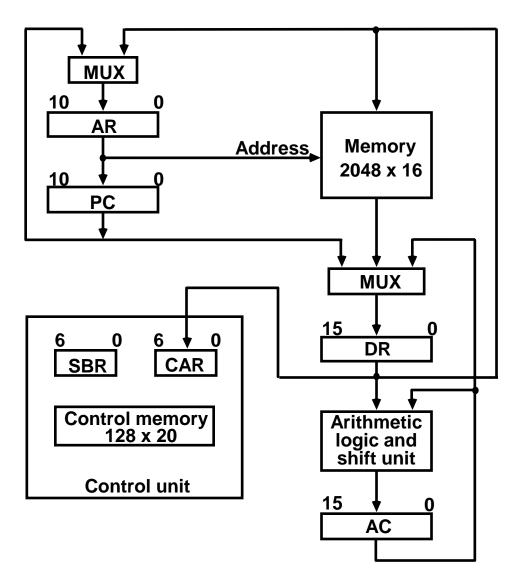
Mapping 4-bit operation code to 7-bit address



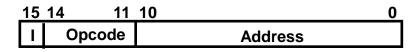
ADDRESS SEQUENCING

Address sequencing capabilities required in control unit

- Incrementing CAR
- Unconditional or conditional branch, depending on status bit conditions
- Mapping from bits of instruction to address for control memory
- Facility for subroutine call and return


ADDRESS SEQUENCING

9


MICROPROGRAM EXAMPLE

Computer Configuration

MICROPROGRAM EXAMPLE

Computer instruction format

Four computer instructions

Symbol	OP-code	Description
ADD	0000	$AC \leftarrow AC + M[EA]$
BRANCH	0001	if (AC < 0) then (PC \leftarrow EA)
STORE	0010	M[EA] ← AC
EXCHANGE	0011	$AC \leftarrow M[EA], M[EA] \leftarrow AC$

EA is the effective address

Microinstruction Format

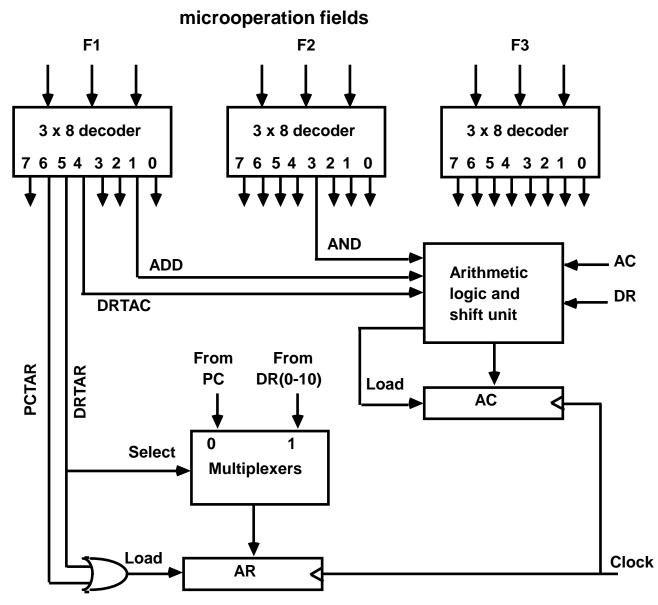
3	3	3	2	2	7
F1	F2	F3	CD	BR	AD

F1, F2, F3: Microoperation fields CD: Condition for branching BR: Branch field AD: Address field

MICROINSTRUCTION FIELDS

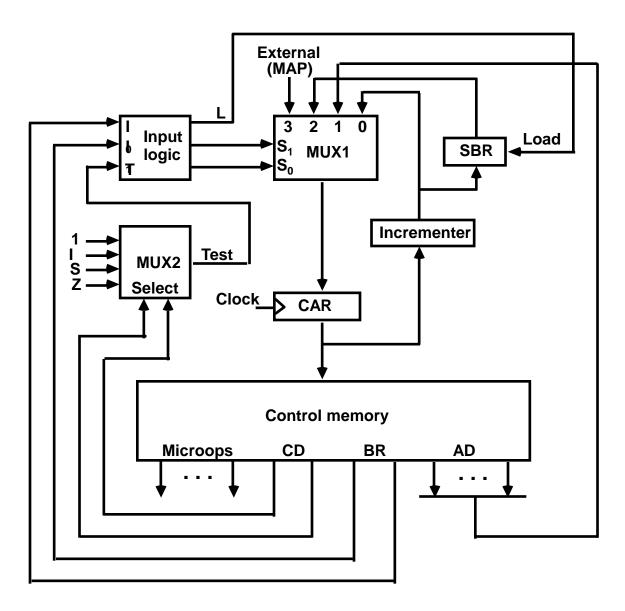
F1	Microoperation	Symbol
000	None	NOP
001	$AC \leftarrow AC + DR$	ADD
010	$AC \leftarrow 0$	CLRAC
011	$AC \leftarrow AC + 1$	INCAC
100	$AC \leftarrow DR$	DRTAC
101	AR ← DR(0-10)	DRTAR
110	$AR \leftarrow PC$	PCTAR
111	M[AR] ← DR	WRITE

F2	Microoperation	Symbol
000	None	NOP
001	$AC \leftarrow AC - DR$	SUB
010	$AC \leftarrow AC \lor DR$	OR
011	$AC \leftarrow AC \land DR$	AND
100	$DR \leftarrow M[AR]$	READ
101	$DR \leftarrow AC$	ACTDR
110	$DR \leftarrow DR + 1$	INCDR
111	DR(0-10) ← PC	PCTDR


F3	Microoperation	Symbol
000	None	NOP
001	$AC \leftarrow AC \oplus DR$	XOR
010	AC ← AC'	СОМ
011	$AC \leftarrow shl AC$	SHL
100	$AC \leftarrow shr AC$	SHR
101	PC ← PC + 1	INCPC
110	PC ← AR	ARTPC
111	Reserved	

MICROINSTRUCTION FIELDS

CD	Condition	Symbol	Comments
00	Always = 1	U	Unconditional branch
01	DR(15)	1	Indirect address bit
10	AC(15)	S	Sign bit of AC
11	AC = 0	Z	Zero value in AC


BR	Symbol	Function
00	JMP	$CAR \leftarrow AD$ if condition = 1
		$CAR \leftarrow CAR + 1$ if condition = 0
01	CALL	$CAR \leftarrow AD$, $SBR \leftarrow CAR + 1$ if condition = 1
		$CAR \leftarrow CAR + 1$ if condition = 0
10	RET	CAR ← SBR (Return from subroutine)
11	MAP	CAR(2-5) ← DR(11-14), CAR(0,1,6) ← 0

DESIGN OF CONTROL UNIT

3

MICROPROGRAM SEQUENCER

22