
COMPUTER ARCHITECTURE I

PART 7: CENTRAL PROCESSING

UNIT

University Of Diyala

College Of Engineering

Computer Engineering Department

Asst. Prof. Ahmed Salah Hameed

Second stage

2022-2023

1

MAJOR COMPONENTS OF CPU

2

Storage Components:
 Registers
 Flip-flops

Execution (Processing) Components:
 Arithmetic Logic Unit (ALU):
 Arithmetic calculations, Logical computations, Shifts/Rotates

Transfer Components:
 Bus

Control Components:
 Control Unit

Register
File ALU

Control Unit

GENERAL REGISTER ORGANIZATION

3

MUX SELA { MUX } SELB

ALU OPR

R1

R2

R3

R4

R5

R6

R7

Input

3 x 8
 decoder

SELD

Load
 (7 lines)

Output

A bus B bus

Clock

OPERATION OF CONTROL UNIT

4

The control unit directs the information flow through ALU by:

 - Selecting various Components in the system

 - Selecting the Function of ALU

Example: R1 <- R2 + R3
[1] MUX A selector (SELA): BUS A  R2
[2] MUX B selector (SELB): BUS B  R3
[3] ALU operation selector (OPR): ALU to ADD
[4] Decoder destination selector (SELD): R1  Out Bus

Control Word

Encoding of register selection fields
Binary
Code SELA SELB SELD
000 Input Input None
001 R1 R1 R1
010 R2 R2 R2
011 R3 R3 R3
100 R4 R4 R4
101 R5 R5 R5
110 R6 R6 R6
111 R7 R7 R7

SELA SELB SELD OPR

3 3 3 5

ALU CONTROL

5

Encoding of ALU operations OPR
Select Operation Symbol
00000 Transfer A TSFA
00001 Increment A INCA
00010 ADD A + B ADD
00101 Subtract A - B SUB
00110 Decrement A DECA
01000 AND A and B AND
01010 OR A and B OR
01100 XOR A and B XOR
01110 Complement A COMA
10000 Shift right A SHRA
11000 Shift left A SHLA

Examples of ALU Microoperations

 Symbolic Designation

Microoperation SELA SELB SELD OPR Control Word

Control

R1  R2 - R3 R2 R3 R1 SUB 010 011 001 00101

R4  R4  R5 R4 R5 R4 OR 100 101 100 01010

R6  R6 + 1 R6 - R6 INCA 110 000 110 00001

R7  R1 R1 - R7 TSFA 001 000 111 00000

Output  R2 R2 - None TSFA 010 000 000 00000

Output  Input Input - None TSFA 000 000 000 00000

R4  shl R4 R4 - R4 SHLA 100 000 100 11000

R5  0 R5 R5 R5 XOR 101 101 101 01100

REGISTER STACK ORGANIZATION

6

 Register Stack

Push, Pop operations

/* Initially, SP = 0, EMPTY = 1, FULL = 0 */

PUSH POP
SP  SP + 1 DR  M[SP]

M[SP]  DR SP  SP - 1

If (SP = 0) then (FULL  1) If (SP = 0) then (EMPTY  1)

EMPTY  0 FULL  0

Stack
 - Very useful feature for nested subroutines, nested loops control
 - Also efficient for arithmetic expression evaluation
 - Storage which can be accessed in LIFO
 - Pointer: SP
 - Only PUSH and POP operations are applicable

A

B

C

0

1

2

3

4

63

Address

FULL EMPTY

SP

DR

Flags

Stack pointer

stack

MEMORY STACK ORGANIZATION

7

 - A portion of memory is used as a stack with a
 processor register as a stack pointer

 - PUSH: SP  SP - 1

 M[SP]  DR
 - POP: DR  M[SP]

 SP  SP + 1

 - Most computers do not provide hardware to check
 stack overflow (full stack) or underflow(empty stack)

Memory with Program, Data,
 and Stack Segments

DR

4001
4000

3999
3998
3997

3000

Data
 (operands)

Program
 (instructions)

1000

PC

AR

SP
stack

REVERSE POLISH NOTATION

8

A + B Infix notation
+ A B Prefix or Polish notation
A B + Postfix or reverse Polish notation

 - The reverse Polish notation is very suitable for stack
 manipulation

 Evaluation of Arithmetic Expressions
 Any arithmetic expression can be expressed in parenthesis-free
 Polish notation, including reverse Polish notation

(3 * 4) + (5 * 6)  3 4 * 5 6 * +

Arithmetic Expressions: A + B

3 3 12 12 12 12 42

4 5 5

6

30

3 4 * 5 6 * +

INSTRUCTION FORMAT

9

OP-code field - specifies the operation to be performed

Address field - designates memory address(s) or a processor register(s)
Mode field - specifies the way the operand or the
 effective address is determined

The number of address fields in the instruction format
 depends on the internal organization of CPU

- The three most common CPU organizations:

Single accumulator organization:

 ADD X /* AC  AC + M[X] */

General register organization:

 ADD R1, R2, R3 /* R1  R2 + R3 */

 ADD R1, R2 /* R1  R1 + R2 */

 MOV R1, R2 /* R1  R2 */

 ADD R1, X /* R1  R1 + M[X] */

Stack organization:

 PUSH X /* TOS  M[X] */

 ADD

Instruction Fields

THREE, AND TWO-ADDRESS INSTRUCTIONS

1
0

Three-Address Instructions:

 Program to evaluate X = (A + B) * (C + D) :

 ADD R1, A, B /* R1  M[A] + M[B] */

 ADD R2, C, D /* R2  M[C] + M[D] */

 MUL X, R1, R2 /* M[X]  R1 * R2 */

 - Results in short programs
 - Instruction becomes long (many bits)

Two-Address Instructions:

 Program to evaluate X = (A + B) * (C + D) :

 MOV R1, A /* R1  M[A] */
 ADD R1, B /* R1  R1 + M[B] */
 MOV R2, C /* R2  M[C] */
 ADD R2, D /* R2  R2 + M[D] */
 MUL R1, R2 /* R1  R1 * R2 */
 MOV X, R1 /* M[X]  R1 */

ONE, AND ZERO-ADDRESS INSTRUCTIONS

1
1

One-Address Instructions:
- Use an implied AC register for all data manipulation
- Program to evaluate X = (A + B) * (C + D) :

LOAD A /* AC  M[A] */
ADD B /* AC  AC + M[B] */
STORE T /* M[T]  AC */
LOAD C /* AC  M[C] */
ADD D /* AC  AC + M[D] */
MUL T /* AC  AC * M[T] */
STORE X /* M[X]  AC */

 Zero-Address Instructions:
- Can be found in a stack-organized computer
- Program to evaluate X = (A + B) * (C + D) :

PUSH A /* TOS  A */
PUSH B /* TOS  B */
ADD /* TOS  (A + B) */
PUSH C /* TOS  C */
PUSH D /* TOS  D */
ADD /* TOS  (C + D) */
MUL /* TOS  (C + D) * (A + B) */
POP X /* M[X]  TOS */

ADDRESSING MODES

1
2

Addressing Modes:

 * Specifies a rule for interpreting or modifying the
 address field of the instruction (before the operand
 is actually referenced)

 * Variety of addressing modes

 - to give programming flexibility to the user
 - to use the bits in the address field of the
 instruction efficiently

TYPES OF ADDRESSING MODES

1
3

Implied Mode
 Address of the operands are specified implicitly
 in the definition of the instruction
 - No need to specify address in the instruction
 - EA = AC, or EA = Stack[SP], EA: Effective Address.

Immediate Mode
 Instead of specifying the address of the operand,
 operand itself is specified
 - No need to specify address in the instruction
 - However, operand itself needs to be specified
 - Sometimes, require more bits than the address
 - Fast to acquire an operand

Register Mode
 Address specified in the instruction is the register address
 - Designated operand need to be in a register
 - Shorter address than the memory address
 - Saving address field in the instruction
 - Faster to acquire an operand than the memory addressing
 - EA = IR(R) (IR(R): Register field of IR)

1
4

 Register Indirect Mode
 Instruction specifies a register which contains
 the memory address of the operand
 - Saving instruction bits since register address
 is shorter than the memory address
 - Slower to acquire an operand than both the
 register addressing or memory addressing
 - EA = [IR(R)] ([x]: Content of x)

 Auto-increment or Auto-decrement features:
 Same as the Register Indirect, but:
 - When the address in the register is used to access memory, the
 value in the register is incremented or decremented by 1 (after or
 before the execution of the instruction)

TYPES OF ADDRESSING MODES

1
5

Direct Address Mode

 Instruction specifies the memory address which

 can be used directly to the physical memory

 - Faster than the other memory addressing modes

 - Too many bits are needed to specify the address

 for a large physical memory space

 - EA = IR(address), (IR(address): address field of IR)

Indirect Addressing Mode
 The address field of an instruction specifies the address of a memory
 location that contains the address of the operand
 - When the abbreviated address is used, large physical memory can
 be addressed with a relatively small number of bits
 - Slow to acquire an operand because of an additional memory
 access
 - EA = M[IR(address)]

TYPES OF ADDRESSING MODES

1
6

Relative Addressing Modes
 The Address fields of an instruction specifies the part of the address

 (abbreviated address) which can be used along with a

 designated register to calculate the address of the operand

 PC Relative Addressing Mode(R = PC)

 - EA = PC + IR(address)

 - Address field of the instruction is short
 - Large physical memory can be accessed with a small number of
 address bits

Indexed Addressing Mode
 XR: Index Register:
 - EA = XR + IR(address)

Base Register Addressing Mode
 BAR: Base Address Register:
 - EA = BAR + IR(address)

TYPES OF ADDRESSING MODES

ADDRESSING MODES - EXAMPLES

1
7

Addressing
Mode

Effective
Address

Content
of AC

Direct address 500 /* AC  (500) */ 800
Immediate operand - /* AC  500 */ 500
Indirect address 800 /* AC  ((500)) */ 300
Relative address 702 /* AC  (PC+500) */ 325
Indexed address 600 /* AC  (XR+500) */ 900
Register - /* AC  R1 */ 400
Register indirect 400 /* AC  (R1) */ 700
Autoincrement 400 /* AC  (R1)+ */ 700
Autodecrement 399 /* AC  -(R) */ 450

Load to AC Mode

Address = 500

Next instruction

200

201

202

399

400

450

700

500 800

600 900

702 325

800 300

Memory Address

PC = 200

R1 = 400

XR = 100

AC

SUBROUTINE CALL AND RETURN

1
8

Call subroutine
Jump to subroutine
Branch to subroutine
Branch and save return address

• Fixed Location in the subroutine(Memory)
• Fixed Location in memory
• In a processor Register
• In a memory stack
 - most efficient way

SUBROUTINE CALL

Two Most Important Operations are Implied;

 * Branch to the beginning of the Subroutine
 - Same as the Branch or Conditional Branch

 * Save the Return Address to get the address
 of the location in the Calling Program upon
 exit from the Subroutine
 - Locations for storing Return Address:

CALL
 SP  SP - 1
 M[SP]  PC

 PC  EA

RTN
 PC  M[SP]

 SP  SP + 1

PROGRAM INTERRUPT

1
9

 Types of Interrupts:

External interrupts
 External Interrupts initiated from the outside of CPU and Memory
 - I/O Device -> Data transfer request or Data transfer complete
 - Timing Device -> Timeout
 - Power Failure

Internal interrupts (traps)
 Internal Interrupts are caused by the currently running program
 - Register, Stack Overflow
 - Divide by zero
 - OP-code Violation
 - Protection Violation

Software Interrupts
 Both External and Internal Interrupts are initiated by the computer Hardware.
 Software Interrupts are initiated by texecuting an instruction.
 - Supervisor Call -> Switching from a user mode to the supervisor mode
 -> Allows to execute a certain class of operations
 which are not allowed in the user mode

INTERRUPT PROCEDURE

2
0

- The interrupt is usually initiated by an internal or
 an external signal rather than from the execution of
 an instruction (except for the software interrupt)

- The address of the interrupt service program is
 determined by the hardware rather than from the
 address field of an instruction

- An interrupt procedure usually stores all the
 information necessary to define the state of CPU
 rather than storing only the PC.

 The state of the CPU is determined from;
 Content of the PC
 Content of all processor registers
 Content of status bits
Many ways of saving the CPU state depending on the CPU architectures

Interrupt Procedure and Subroutine Call

