University Of Diyala
College Of Engineering
Computer Engineering Department

COMPUTER ARCHITECTURE II

PART 2: MEMORY HIERARCHY

Asst. Prof. Ahmed Salah Hameed Second stage 2022-2023

1.Memory hierarchy
☐ Basic concepts
☐ Design techniques
2.Caches
☐ Types of caches: Fully associative, Direct mapped, Set associative
☐ Ten optimization techniques
3.Main memory
☐ Memory technology
☐ Memory optimization
□ Power consumption

4. Virtual memory

Memory is mainly of three types:

☐ Secondary Memory

☐ Main Memory

□ Cache Memory

☐ Secondary Memory

☐ Main Memory

□ Cache Memory

MEMORY

What is needed?

Unlimited amounts of memory with low access time is wanted.

Consideration:

Fast memory technology is more expensive per bit than slower memory

Solution:

Organize memory system into a hierarchy

- Entire addressable memory space available in largest, slowest memory
- Incrementally smaller and faster memories, each containing a subset of the memory below it, proceed in steps up toward the processor

(A) Memory hierarchy for a personal mobile device

(C) Memory hierarchy for server

MEMORY HIERARCHY DESIGN

Designers of memory hierarchies focused on optimizing:
☐ Average memory access time (cache access time)
how long it takes for a character in memory to be transferred to or from the CPU.
☐ Miss rate
Ratio of no. of memory access leading to a cache miss to the total number of instructions
☐ Miss penalty
time/cycles required for making a data item in the cache
☐ Power (new factor)

MAIN MEMORY AND CACHE MEMORY

Block placement and **Mapping** between main and cache memories.

CACHE ORGANIZATION (PLACEMENT POLICIES)

Fully Associative Cache

Direct Mapped Cache

Set Associative Cache

FULLY ASSOCIATIVE CACHE ORGANIZATION

DIRECT MAPPED CACHE ORGANIZATION

SET ASSOCIATIVE CACHE ORGANIZATION

HOMEWORK 1

A computer uses a mapping procedure between main and cache memory. If the main memory has 128 blocks (0 - 127) and cache memory has 32 blocks (0 - 31) with four sets (set0 - set3), List the entire block addresses of the main memory used in each of the following situations:

- (1) The entire block addresses of the main memory that can be placed in location15 of the cache memory. (When the computer uses *Direct Mapped Cache*)
- (2) The entire block addresses of the main memory that can be placed in **set2** of the cache memory. (When the computer uses *Set Associative Cache*)
- (3) The entire block addresses of the main memory that can be placed in location10 of the cache memory. (When the computer uses *Fully Associative Cache*)

