
COMPUTER ARCHITECTURE II

PART 7: SIMD PROCESSORS

AND GPUS

University Of Diyala

College Of Engineering

Computer Engineering Department

Asst. Prof. Ahmed Salah Hameed

Second stage

2022-2023

1

In This Lecture

 SIMD Processing

 Vector and Array Processors

 Graphics Processing Units (GPUs)

2

Flynn’s Taxonomy of Computers

 Mike Flynn, “Very High-Speed Computing Systems,” Proc.
of IEEE, 1966

 SISD: Single instruction operates on single data element

 SIMD: Single instruction operates on multiple data elements

 Array processor

 Vector processor

 MISD: Multiple instructions operate on single data element

 Closest form: systolic array processor, streaming processor

 MIMD: Multiple instructions operate on multiple data
elements (multiple instruction streams)

 Multiprocessor

 Multithreaded processor

3

Data Parallelism

 Concurrency arises from performing the same operation on
different pieces of data

 Single instruction multiple data (SIMD)

 E.g., dot product of two vectors

 Contrast with data flow

 Concurrency arises from executing different operations in parallel (in
a data driven manner)

 Contrast with thread (“control”) parallelism

 Concurrency arises from executing different threads of control in
parallel

 SIMD exploits operation-level parallelism on different data

 Same operation concurrently applied to different pieces of data

 A form of ILP where instruction happens to be the same across data
4

SIMD Processing

 Single instruction operates on multiple data elements

 In time or in space

 Multiple processing elements

 Time-space duality

 Array processor: Instruction operates on multiple data
elements at the same time using different spaces

 Vector processor: Instruction operates on multiple data
elements in consecutive time steps using the same space

5

Array vs. Vector Processors

6

ARRAY PROCESSOR VECTOR PROCESSOR

LD VR  A[3:0]

ADD VR  VR, 1

MUL VR  VR, 2

ST A[3:0]  VR

Instruction Stream

Time

LD0 LD1 LD2 LD3

AD0 AD1 AD2 AD3

MU0 MU1 MU2 MU3

ST0 ST1 ST2 ST3

LD0

LD1 AD0

LD2 AD1 MU0

LD3 AD2 MU1 ST0

AD3 MU2 ST1

MU3 ST2

ST3

Space Space

Same op @ same time

Different ops @ same space

Different ops @ time

Same op @ space

SIMD Array Processing vs. VLIW

 VLIW (Very Long Instruction Word): Multiple independent operations
packed together by the compiler

7

SIMD Array Processing vs. VLIW

 Array processor: Single operation on multiple (different) data elements

8

Vector Processors (I)

 A vector is a one-dimensional array of numbers

 Many scientific/commercial programs use vectors

for (i = 0; i<=49; i++)

 C[i] = (A[i] + B[i]) / 2

 A vector processor is one whose instructions operate on
vectors rather than scalar (single data) values

 Basic requirements

 Need to load/store vectors  vector registers (contain vectors)

 Need to operate on vectors of different lengths  vector length

register (VLEN)

 Elements of a vector might be stored apart from each other in
memory  vector stride register (VSTR)

 Stride: distance in memory between two elements of a vector

9

Vector Processors (II)

 A vector instruction performs an operation on each element
in consecutive cycles

 Vector functional units are pipelined

 Each pipeline stage operates on a different data element

 Vector instructions allow deeper pipelines

 No intra-vector dependencies  no hardware interlocking

needed within a vector

 No control flow within a vector

 Known stride allows easy address calculation for all vector
elements

 Enables prefetching of vectors into registers/cache/memory

10

Vector Processor Advantages

+ No dependencies within a vector

 Pipelining & parallelization work really well

 Can have very deep pipelines, no dependencies!

+ Each instruction generates a lot of work

 Reduces instruction fetch bandwidth requirements

+ Highly regular memory access pattern

+ No need to explicitly code loops

 Fewer branches in the instruction sequence

11

Vector Processor Disadvantages

-- Works (only) if parallelism is regular (data/SIMD parallelism)

 ++ Vector operations

 -- Very inefficient if parallelism is irregular

 -- How about searching for a key in a linked list?

12

Vector Processor Limitations

-- Memory (bandwidth) can easily become a bottleneck,
especially if

 1. compute/memory operation balance is not maintained

 2. data is not mapped appropriately to memory banks

13

Vector Processing in More Depth

Vector Registers

 Each vector data register holds N M-bit values

 Vector control registers: VLEN, VSTR, VMASK

 Maximum VLEN can be N

 Maximum number of elements stored in a vector register

 Vector Mask Register (VMASK)

 Indicates which elements of vector to operate on

 Set by vector test instructions

 e.g., VMASK[i] = (Vk[i] == 0)

15

V0,0
V0,1

V0,N-1

V1,0
V1,1

V1,N-1

M-bit wide M-bit wide

Vector Functional Units

 Use a deep pipeline to execute
element operations

 fast clock cycle

 Control of deep pipeline is
simple because elements in
vector are independent

16

V
1

V
2

V
3

V1 * V2  V3

Six stage multiply pipeline

Slide credit: Krste Asanovic

Vector Machine Organization (CRAY-1)

 CRAY-1

 Russell, “The CRAY-1
computer system,”
CACM 1978.

 Scalar and vector modes

 8 64-element vector
registers

 64 bits per element

 16 memory banks

 8 64-bit scalar registers

 8 24-bit address registers

17

CRAY X-MP-28 @ ETH (CAB, E Floor)

18

CRAY X-MP System Organization

19

Cray Research Inc., “The

CRAY X-MP Series of

Computer Systems,” 1985

SIMD ISA Extensions

 Single Instruction Multiple Data (SIMD) extension
instructions

 Single instruction acts on multiple pieces of data at once

 Common application: graphics

 Perform short arithmetic operations (also called packed
arithmetic)

 For example: add four 8-bit numbers

 Must modify ALU to eliminate carries between 8-bit values

padd8 $s2, $s0, $s1

a
0

0781516232432 Bit position

$s0a
1

a
2

a
3

b
0

$s1b
1

b
2

b
3

a
0
 + b

0
$s2a

1
 + b

1
a

2
 + b

2
a

3
 + b

3

+

20

Intel Pentium MMX Operations

 Idea: One instruction operates on multiple data elements
simultaneously

 À la array processing (yet much more limited)

 Designed with multimedia (graphics) operations in mind

21

Peleg and Weiser, “MMX Technology

Extension to the Intel Architecture,”
IEEE Micro, 1996.

No VLEN register

Opcode determines data type:

8 8-bit bytes

4 16-bit words

2 32-bit doublewords

1 64-bit quadword

Stride is always equal to 1.

MMX Example: Image Overlaying (I)

 Goal: Overlay the human in image 1 on top of the background in image 2

22 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

MMX Example: Image Overlaying (II)

23 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996.

Y = Blossom image X = Woman’s image

NVIDIA GeForce GTX 285

 NVIDIA-speak:

 240 stream processors

 “SIMT execution”

 Generic speak:

 30 cores

 8 SIMD functional units per core

Slide credit: Kayvon Fatahalian 24

NVIDIA GeForce GTX 285 “core”

…

= instruction stream decode = SIMD functional unit, control

 shared across 8 units

= execution context storage = multiply-add

= multiply

64 KB of storage

for thread contexts

(registers)

Slide credit: Kayvon Fatahalian 25

NVIDIA GeForce GTX 285 “core”

…
64 KB of storage

for thread contexts

(registers)

 Groups of 32 threads share instruction stream (each group is
a Warp)

 Up to 32 warps are simultaneously interleaved

 Up to 1024 thread contexts can be stored

Slide credit: Kayvon Fatahalian 26

NVIDIA GeForce GTX 285

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

Tex

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

… … …

30 cores on the GTX 285: 30,720 threads

Slide credit: Kayvon Fatahalian 27

Evolution of NVIDIA GPUs

0

2000

4000

6000

8000

10000

12000

14000

16000

0

1000

2000

3000

4000

5000

6000

GTX	285	
(2009)

GTX	480	
(2010)

GTX	780	
(2013)

GTX	980	
(2014)

P100	
(2016)

V100	
(2017)

G
FL
O
P
S

#
St
re
a
m
	P
ro
ce
ss
o
rs

Stream	Processors

GFLOPS

28

NVIDIA V100

 NVIDIA-speak:

 5120 stream processors

 “SIMT execution”

 Generic speak:

 80 cores

 64 SIMD functional units per core

 Tensor cores for Machine Learning

 NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017.

29

NVIDIA V100 Block Diagram

80 cores on the V100
https://devblogs.nvidia.com/inside-volta/

30

NVIDIA V100 Core

15.7 TFLOPS Single Precision

7.8 TFLOPS Double Precision

125 TFLOPS for Deep Learning (Tensor cores)

31

https://devblogs.nvidia.com/inside-volta/

Food for Thought

 What is the main bottleneck in GPU programs?

 “Tensor cores”:
 Can you think about other operations than matrix multiplication?
 What other applications could benefit from specialized cores?

 Compare and contrast GPUs vs other accelerators (e.g., systolic

arrays)

 Which one is better for machine learning?

 Which one is better for image/vision processing?

 What types of parallelism each one exploits?

 What are the tradeoffs?

32

Clarification of some GPU Terms

33

Generic Term NVIDIA Term AMD Term Comments

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step)
on a SIMD functional unit

Pipelined
functional unit /
Scalar pipeline

Streaming
processor /
CUDA core

- Functional unit that executes instructions for one
GPU thread

SIMD functional
unit /
SIMD pipeline

Group of N
streaming
processors (e.g.,
N=8 in GTX 285,
N=16 in Fermi)

Vector ALU SIMD functional unit that executes instructions for
an entire warp

GPU core Streaming
multiprocessor

Compute unit It contains one or more warp schedulers and one
or several SIMD pipelines

