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In This Lecture 

 SIMD Processing 

 Vector and Array Processors 

 

 Graphics Processing Units (GPUs) 
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Flynn’s Taxonomy of Computers 

 Mike Flynn, “Very High-Speed Computing Systems,” Proc. 
of IEEE, 1966 

 

 SISD: Single instruction operates on single data element 

 SIMD: Single instruction operates on multiple data elements 

 Array processor 

 Vector processor 

 MISD: Multiple instructions operate on single data element 

 Closest form: systolic array processor, streaming processor 

 MIMD: Multiple instructions operate on multiple data 
elements (multiple instruction streams) 

 Multiprocessor 

 Multithreaded processor 
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Data Parallelism 

 Concurrency arises from performing the same operation on 
different pieces of data 

 Single instruction multiple data (SIMD) 

 E.g., dot product of two vectors 
 

 Contrast with data flow 

 Concurrency arises from executing different operations in parallel (in 
a data driven manner) 

 

 Contrast with thread (“control”) parallelism 

 Concurrency arises from executing different threads of control in 
parallel 

 

 SIMD exploits operation-level parallelism on different data 

 Same operation concurrently applied to different pieces of data 

 A form of ILP where instruction happens to be the same across data 
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SIMD Processing 

 Single instruction operates on multiple data elements 

 In time or in space 

 Multiple processing elements  

 

 Time-space duality 

 

 Array processor: Instruction operates on multiple data 
elements at the same time using different spaces 

 

 Vector processor: Instruction operates on multiple data 
elements in consecutive time steps using the same space 
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Array vs. Vector Processors 
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ARRAY PROCESSOR VECTOR PROCESSOR 

LD     VR  A[3:0] 

ADD  VR  VR, 1  

MUL  VR  VR, 2 

ST     A[3:0]  VR 

Instruction Stream 

Time 

LD0 LD1 LD2 LD3 

AD0 AD1 AD2 AD3 

MU0 MU1 MU2 MU3 

ST0 ST1 ST2 ST3 

LD0 

LD1 AD0 

LD2 AD1 MU0 

LD3 AD2 MU1 ST0 

AD3 MU2 ST1 

MU3 ST2 

ST3 

Space Space 

Same op @ same time 

Different ops @ same space 

Different ops @ time 

Same op @ space 



SIMD Array Processing vs. VLIW 

 VLIW (Very Long Instruction Word): Multiple independent operations 
packed together by the compiler 
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SIMD Array Processing vs. VLIW 

 Array processor: Single operation on multiple (different) data elements 
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Vector Processors (I) 

 A vector is a one-dimensional array of numbers 

 Many scientific/commercial programs use vectors 

for (i = 0; i<=49; i++) 

 C[i] = (A[i] + B[i]) / 2 

 

 A vector processor is one whose instructions operate on 
vectors rather than scalar (single data) values 

 Basic requirements 

 Need to load/store vectors  vector registers (contain vectors) 

 Need to operate on vectors of different lengths  vector length 

register (VLEN) 

 Elements of a vector might be stored apart from each other in 
memory  vector stride register (VSTR) 

 Stride: distance in memory between two elements of a vector 
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Vector Processors (II) 

 A vector instruction performs an operation on each element 
in consecutive cycles 

 Vector functional units are pipelined 

 Each pipeline stage operates on a different data element 

 

 Vector instructions allow deeper pipelines 

 No intra-vector dependencies  no hardware interlocking 

needed within a vector 

 No control flow within a vector 

 Known stride allows easy address calculation for all vector 
elements 

 Enables prefetching of vectors into registers/cache/memory 
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Vector Processor Advantages 

+ No dependencies within a vector  

 Pipelining & parallelization work really well 

 Can have very deep pipelines, no dependencies!  

 

+ Each instruction generates a lot of work  

 Reduces instruction fetch bandwidth requirements 

 

+ Highly regular memory access pattern  

 

+ No need to explicitly code loops  

 Fewer branches in the instruction sequence 
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Vector Processor Disadvantages 

-- Works (only) if parallelism is regular (data/SIMD parallelism) 

 ++ Vector operations 

    -- Very inefficient if parallelism is irregular 

     -- How about searching for a key in a linked list? 
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Vector Processor Limitations 

-- Memory (bandwidth) can easily become a bottleneck, 
especially if 

 1. compute/memory operation balance is not maintained 

 2. data is not mapped appropriately to memory banks 
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Vector Processing in More Depth 

 

 

 

 

 

 



Vector Registers 

 Each vector data register holds N M-bit values 

 Vector control registers: VLEN, VSTR, VMASK 

 Maximum VLEN can be N 

 Maximum number of elements stored in a vector register 

 Vector Mask Register (VMASK) 

 Indicates which elements of vector to operate on 

 Set by vector test instructions 

 e.g., VMASK[i] = (Vk[i] == 0) 
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V0,0 
V0,1 

V0,N-1 

V1,0 
V1,1 

V1,N-1 

M-bit wide M-bit wide 



Vector Functional Units 

 Use a deep pipeline to execute 
element operations 

 fast clock cycle 

 

 Control of deep pipeline is 
simple because elements in 
vector are independent   
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V1 * V2  V3 

Six stage multiply pipeline 

Slide credit: Krste Asanovic 



Vector Machine Organization (CRAY-1) 

 CRAY-1 

 Russell, “The CRAY-1 
computer system,” 
CACM 1978. 

 

 Scalar and vector modes 

 8 64-element vector 
registers 

 64 bits per element 

 16 memory banks 

 8 64-bit scalar registers 

 8 24-bit address registers 
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CRAY X-MP-28 @ ETH (CAB, E Floor) 
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CRAY X-MP System Organization 
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Cray Research Inc., “The 

CRAY X-MP Series of 

Computer Systems,” 1985 



SIMD ISA Extensions 

 Single Instruction Multiple Data (SIMD) extension 
instructions 

 Single instruction acts on multiple pieces of data at once 

 Common application: graphics 

 Perform short arithmetic operations (also called packed 
arithmetic) 

 For example: add four 8-bit numbers 

 Must modify ALU to eliminate carries between 8-bit values 

padd8 $s2, $s0, $s1
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Intel Pentium MMX Operations 

 Idea: One instruction operates on multiple data elements 
simultaneously 

 À la array processing (yet much more limited) 

 Designed with multimedia (graphics) operations in mind 
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Peleg and Weiser, “MMX Technology 

Extension to the Intel Architecture,” 
IEEE Micro, 1996. 

No VLEN register 

Opcode determines data type: 

8 8-bit bytes 

4 16-bit words 

2 32-bit doublewords 

1 64-bit quadword 

 

Stride is always equal to 1. 

 



MMX Example: Image Overlaying (I) 

 Goal: Overlay the human in image 1 on top of the background in image 2 

22 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 



MMX Example: Image Overlaying (II) 

23 Peleg and Weiser, “MMX Technology Extension to the Intel Architecture,” IEEE Micro, 1996. 

Y = Blossom image X = Woman’s image 



NVIDIA GeForce GTX 285 

 NVIDIA-speak: 

 240 stream processors 

 “SIMT execution” 

  

 

 Generic speak: 

 30 cores 

 8 SIMD functional units per core 

Slide credit: Kayvon Fatahalian 24 



NVIDIA GeForce GTX 285 “core” 

… 

= instruction stream decode = SIMD functional unit, control  

   shared across 8 units 

    
= execution context storage  = multiply-add 

= multiply 

64 KB of storage  

for thread contexts 

(registers) 

Slide credit: Kayvon Fatahalian 25 



NVIDIA GeForce GTX 285 “core” 

… 
64 KB of storage  

for thread contexts 

(registers) 

 Groups of 32 threads share instruction stream (each group is 
a Warp) 

 Up to 32 warps are simultaneously interleaved 

 Up to 1024 thread contexts can be stored    

 
Slide credit: Kayvon Fatahalian 26 



NVIDIA GeForce GTX 285 
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30 cores on the GTX 285: 30,720 threads 

Slide credit: Kayvon Fatahalian 27 



Evolution of NVIDIA GPUs 
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NVIDIA V100 

 NVIDIA-speak: 

 5120 stream processors 

 “SIMT execution” 

  

 

 Generic speak: 

 80 cores 

 64 SIMD functional units per core 

 

 Tensor cores for Machine Learning 

 
 NVIDIA, “NVIDIA Tesla V100 GPU Architecture. White Paper,” 2017. 
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NVIDIA V100 Block Diagram 

80 cores on the V100 
https://devblogs.nvidia.com/inside-volta/ 
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NVIDIA V100 Core 

15.7 TFLOPS Single Precision 

7.8 TFLOPS Double Precision 

125 TFLOPS for Deep Learning (Tensor cores) 
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https://devblogs.nvidia.com/inside-volta/ 



Food for Thought 

 What is the main bottleneck in GPU programs? 
 

 “Tensor cores”: 
 Can you think about other operations than matrix multiplication? 
 What other applications could benefit from specialized cores? 

 
 Compare and contrast GPUs vs other accelerators (e.g., systolic 

arrays) 
 
 Which one is better for machine learning? 

 
 Which one is better for image/vision processing? 

 
 What types of parallelism each one exploits? 

 
 What are the tradeoffs? 
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Clarification of some GPU Terms 
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Generic Term NVIDIA Term AMD Term Comments 

Vector length Warp size Wavefront size Number of threads that run in parallel (lock-step) 
on a SIMD functional unit 

Pipelined 
functional unit / 
Scalar pipeline 

Streaming 
processor / 
CUDA core 

- Functional unit that executes instructions for one 
GPU thread 

SIMD functional 
unit / 
SIMD pipeline 

Group of N 
streaming 
processors (e.g., 
N=8 in GTX 285, 
N=16 in Fermi) 

Vector ALU SIMD functional unit that executes instructions for 
an entire warp 

GPU core Streaming 
multiprocessor 

Compute unit It contains one or more warp schedulers and one 
or several SIMD pipelines 


