
 Lec.1

Page 1 of 15

 What is a Data structure?

Data structure is one of the most fundamentals subject in Computer Science & in-depth

understanding of this topic is very important especially when you are into

development/programming domain where you build efficient software systems & applications.

Definition-

In computer science, a data structure is a data organization, management and storage format that

enables efficient access and modification.

In Simple words-

Data Structure is a way in which data is stored on a computer.

Why do we need Data structures?

- Each Data Structure allows data to be stored in specific manner.

- Data Structure allow efficient data search and retrieval.

- Specific data structures are decided to work for specific problems.

- It allows to manage large amount of data such as large database and

indexing services such as hash table.

Algorithms

 Lec.1

Page 2 of 15

program = Algorithm + Data Structure

 Lec.1

Page 3 of 15

What is Abstract Data Type?

Definition: ADTs are entities that are definitions of data and operations but do not have

implementation details.

Two ways of looking at Data Structures-

- Mathematical/Logical/Abstract Models/Views

- Implementation

 Lec.1

Page 4 of 15

Representation of algorithm can written By:-

In natural language (English) / pseudo-code / diagrams (Flow chart) / etc.

Pseudo- code:-

 A mixture of natural language and high – level programming concepts that describes the main

ideas behind a generic implementation of a data structure or algorithm. Pseudo- code is more

structured than usual language but less formal than a programming language.

Ex.:- Algorithm to find the maximum number in array

 input: An array with n integers

 output: The Maximum element in A

 currentMax ← A[0]

 for i ← 1 to n-1 do

 if currentMax < A[i] then currentMax ← A[i]

 return currentMax

 Lec.1

Page 5 of 15

Ex: An algorithm to find sum n numbers for N range

1- Start

2- Read N

3- Sum =0

4- For I= 1 to N

 4.1 sum = sum + I

 4.1 next I

5- print Sum

6- End

What Makes a Good Algorithm?

 Suppose you have two possible algorithms or data structures that basically do the same

thing; which is better?

● Faster

● Less space

● Easier to code

● Easier to maintain

Fig.1 Classifications of data structures

Classification of data structure

Data structures are broadly divided into two:

1. Primitive data structures: These are the basic data structures and are directly operated upon by the

machine instructions, which is in a primitive level. They are integers, floating point numbers,

characters, string constants, pointers etc. These primitive data structures are the basis for the

discussion of more sophisticated (non-primitive) data structures.

2. Non-primitive data structures: It is a more sophisticated data structure emphasizing on structuring

of a group of homogeneous (same type) or heterogeneous (different type) data items. Array, list,

files, linked list, trees and graphs fall in this category.

 Lec.1

Page 6 of 15

How to choose the suitable data structure:-

For each set of data, there are different methods to organize these data in a particular data structure.

To choose the suitable data structure, we must use the following criteria:-

 1- Data size and the required memory.

 2- The dynamic nature of the data.

 3- The required time to obtain any data element from the data structure.

 4- The programming approach and the algorithm that will be used to manipulate these data.

Assignment -1-

 Write an algorithm for the following

a- count even& odd numbers in given range

LINKED LIST DATA STRUCTURE

Fig.5.2.shows a schematic diagram of a linked list with 3 nodes. Each node is pictured with two

parts. The left part of each node contains the data items and the right part represents the address of

the next node; there is an arrow drawn from it to the next node. The next pointer of the last node

contains a special value, called the NULL pointer, which does not point to any address of the node.

That is NULL pointer indicates the end of the linked list. START pointer will hold the address of the

1st node in the list START = NULL if there is no list (i.e.; NULL list or empty list).

 Lec.1

Page 7 of 15

Explanation:

Because each node of a linked list has two components, we need to declare each node as a class or

struct. The data type of each node depends on the specific application—that is, what kind of data is

being processed. However, the link component of each node is a pointer. The data type of this pointer

variable is the node type itself. For the previous linked list, the definition of the node is as follows.

(Suppose that the data type is int.)

struct nodename

 {

 int info;

 nodename *link;

 };

The variable declaration is as follows:

nodename *head;

Linked List: Some Properties

To better understand the concept of a linked list and a node, some important properties of linked lists

are described next.

Consider the linked list in Figure 5-4.

FIGURE 5-4 Linked list with four nodes

This linked list has four nodes. The address of the first node is stored in the pointer head.

Each node has two components: info, to store the info, and link, to store the address of the next node.

For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800, the third node is

at location 1500, and the fourth node is at location 3600. Table Table 5-1 shows the values of head

and some other nodes in the list shown in Figure 5-4.

 Lec.1

Page 8 of 15

TABLE 5-1 Values of head and some of the nodes of the linked list in Figure 5-4

Suppose that current is a pointer of the same type as the pointer head. Then the

statement

 current = head;

copies the value of head into current. Now consider the following statement:

 current = current->link;

This statement copies the value of current->link, which is 2800, into current.

Therefore, after this statement executes, current points to the second node in the list. (When working

with linked lists, we typically use these types of statements to advance a pointer to the next node in

the list.) See Figure 5-5.

FIGURE 5-5 List after the statement current = current->link; executes

Table 5-2 shows the values of current, head, and some other nodes in Figure 5-5

TABLE 5-2 Values of current, head, and some of the nodes of the linked list in Figure 5-5

 Lec.1

Page 9 of 15

TRAVERSING A LINKED LIST

The basic operations of a linked list are as follows: Search the list to determine whether a particular

item is in the list, insert an item in the list, display the elements of the list, and delete an item from the

list.

These operations require the list to be traversed. That is, given a pointer to the first node of the list,

we must step through the nodes of the list.

Suppose that the pointer head points to the first node in the list, and the link of the last node is NULL.

We cannot use the pointer head to traverse the list because if we use the head to traverse the list, we

would lose the nodes of the list. This problem occurs because the links are in only one direction. The

pointer head contains the address of the first node, the first node contains the address of the second

node, the second node contains the address of the third node, and so on. If we move head to the second

node, the first node is lost (unless we save a pointer to this node). If we keep advancing head to the

next node, we will lose all the nodes of the list (unless we save a pointer to each node before advancing

head, which is impractical because it would require additional computer time and memory space to

maintain the list). Therefore, we always want head to point to the first node. It now follows that we

must traverse the list using another pointer of the same type. Suppose that current is a pointer of the

same type as head. The following code traverses the list:

current = head;

while (current != NULL)

{

//Process current

current = current->link;

}

For example, suppose that head points to a linked list of numbers. The following code outputs the

data stored in each node:

current = head;

while (current != NULL)

{

cout << current->info << " ";

current = current->link;

}

LINKED LIST ALGORITHMS

This section discusses the algorithms of linked list data structures. Consider the following definition

of a node. (For simplicity, we assume that the info type is int.)

struct nodename

{

int info;

nodename *link;

};

We will use the following variable declaration:

nodename *head, *p, *q, *newNode;

 Lec.1

Page 10 of 15

ALGORITHM FOR INSERTING A NODE

Suppose START is the first position in linked list. Let DATA be the element to be inserted in the

new node. POS is the position where the new node is to be inserted. TEMP is a temporary pointer to

hold the node address.

Insert a Node at the beginning

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode ->DATA = DATA

4. If (SATRT equal to NULL)

 (a) NewNode ->Link = NULL

5. Else

 (a) NewNode ->Link = START

6. START = NewNode

7. Exit

Insert a Node at the end

1. Input DATA to be inserted

2. Create a NewNode

3. NewNode -> DATA = DATA

4. NewNode -> Next = NULL

5. If (SATRT equal to NULL)

 (a) START = NewNode

6. Else

 (a) TEMP = START

 (b) While (TEMP -> Next not equal to NULL)

 (i) TEMP = TEMP -> Next

7. TEMP -> Next = NewNode

8. Exit

Insert a Node at any specified position

1. Input DATA and POS to be inserted

2. initialize TEMP = START; and k = 0

3. Repeat the step 3 while(k is less than POS)

 Lec.1

Page 11 of 15

(a) TEMP = TEMP -> Next

(b) If (TEMP is equal to NULL)

(i) Display “Node in the list less than the position”

(ii) Exit

(c) k = k + 1

4. Create a New Node

5. NewNode -> DATA = DATA

6. NewNode -> Next = TEMP -> Next

7. TEMP -> Next = NewNode

8. Exit

Consider the linked list shown in Figure 5-6.

Suppose that p points to the node with info 65, and a new node with info 50 is to be created and

inserted after p. Consider the following statements:

newNode = new nodename; //create newNode

newNode->info = 50; //store 50 in the new node

newNode->link = p->link;

p->link = newNode;

Table 5-3 shows the effect of these statements.

Note that the sequence of statements to insert the node, that is,

newNode->link = p->link;

p->link = newNode;

 Lec.1

Page 12 of 15

is very important because to insert newNode in the list we use only one pointer, p, to adjust the links

of the nodes of the linked list. Suppose that we reverse the sequence of the statements and execute the

statements in the following order:

p->link = newNode;

newNode->link = p->link;

Figure 5-7 shows the resulting list after these statements execute.

From Figure 5-7, it is clear that newNode points back to itself and the remainder of the list is lost.

Using two pointers, we can simplify the insertion code somewhat. Suppose q points to the node with

info 34. (See Figure 5-8.)

The following statements insert newNode between p and q:

newNode->link = q;

p->link = newNode;

The order in which these statements execute does not matter. To illustrate this, suppose that we

execute the statements in the following order:

p->link = newNode;

newNode->link = q;

Table 5-4 shows the effect of these statements.

 Lec.1

Page 13 of 15

ALGORITHM FOR DELETING A NODE

Consider the linked list shown in Figure 5-9.

Suppose that the node with info 34 is to be deleted from the list. The following

statement removes the node from the list:

p->link = p->link->link;

Figure 5-10 shows the resulting list after the preceding statement executes.

From Figure 5-10, it is clear that the node with info 34 is removed from the list.

However, the memory is still occupied by this node and this memory is inaccessible; that is, this node

is dangling. To deallocate the memory, we need a pointer to this node. The following statements delete

the node from the list and deallocate the memory occupied by this node:

q = p->link;

p->link = q->link;

delete q;

Table 5-5 shows the effect of these statements.

 Lec.1

Page 14 of 15

Deletion of a Node

Suppose START is the first position in linked list. Let DATA be the element to be

deleted. TEMP, HOLD is a temporary pointer to hold the node address.

1. Input the DATA to be deleted

2. if ((START -> DATA) is equal to DATA)

(a) TEMP = START

(b) START = START -> Next

(c) Set free the node TEMP, which is deleted

(d) Exit

3. HOLD = START

4. while ((HOLD -> Next -> Next) not equal to NULL))

(a) if ((HOLD -> NEXT -> DATA) equal to DATA)

(i) TEMP = HOLD -> Next

(ii) HOLD -> Next = TEMP -> Next

(iii) Set free the node TEMP, which is deleted

(iv) Exit

(b) HOLD = HOLD -> Next

5. if ((HOLD -> next -> DATA) == DATA)

(a) TEMP = HOLD -> Next

(b) Set free the node TEMP, which is deleted

(c) HOLD -> Next = NULL

(d) Exit

6. Disply “DATA not found”

7. Exit

ALGORITHM FOR SEARCHING A NODE

Suppose START is the address of the first node in the linked list and DATA is the

information to be searched. After searching, if the DATA is found, POS will contain the

corresponding position in the list.

1. Input the DATA to be searched

2. Initialize TEMP = START; POS =1;

3. Repeat the step 4, 5 and 6 until (TEMP is equal to NULL)

4. If (TEMP → DATA is equal to DATA)

(a) Display “The data is found at POS”

(b) Exit

5. TEMP = TEMP → Next

6. POS = POS+1

7. If (TEMP is equal to NULL)

(a) Display “The data is not found in the list”

8. Exit

 Lec.1

Page 15 of 15

ALGORITHM FOR DISPLAY ALL NODES

Suppose START is the address of the first node in the linked list. Following algorithm will visit all

nodes from the START node to the end.

1. If (START is equal to NULL)

(a) Display “The list is Empty”

(b) Exit

2. Initialize TEMP = START

3. Repeat the step 4 and 5 until (TEMP == NULL)

4. Display “TEMP → DATA”

5. TEMP = TEMP → Next

6. Exit

