Lec.1

What is a Data structure?
Data structure is one of the most fundamentals subject in Computer Science & in-depth

understanding of this topic is very important especially when you are into
development/programming domain where you build efficient software systems & applications.

Definition-
In computer science, a data structure is a data organization, management and storage format that
enables efficient access and modification.

In Simple words-
Data Structure is a way in which data is stored on a computer.

Why do we need Data structures?
- Each Data Structure allows data to be stored in specific manner.

- Data Structure allow efficient data search and retrieval.

- Specific data structures are decided to work for specific problems.

- It allows to manage large amount of data such as large database and
indexing services such as hash table.

0 & FlistName « Sumass - Agw
1 John jorey 5

J 2 Tracey Serath 13
- b oo 3 Anne McNei 0
4 . | 4 Andren Francs 37
[dik-shub-nar-ce) T ": :; 3 | 3 Gillan Carpetng 1z
- - : - \ n R 5 2
rou, plured Wetiaewivs” - 5 S o g 5 | & Kare ofars 2
— 1.8 Bk, (peal o, ik denn, on i b y . e, L bComd fal | 7 Ay Sanders az
soeave cverarg st e mords s B 8 . : ' J S I &.Xevn While 58
B Legaay priag sbavidan doat thas irnsngs : 3 » N * 4 1 - -
prorencsans, opmobgo. aSand ke, : / \ [T Cluwcliv Artiuruon M
- Feriven! K o8 exprrssed i avhey e v g . e 7, N - 10 Mary Brown %
". Tewawe gy, ree ‘ ,“._:‘ ..u 3 .‘.‘ ° i 1A = 5
\ ALy b ¥ "‘""""'f.- e . Y, 13 lamey Feanciy %
" - Z o 13 Karan 008 30
< = = 4 |
= hyaros ¢ pre “,l 14 Edward Kent 32
L R 13 Jenewy _Senth 36
. L d 15 Angeln Jorms. 2
& e / -~ Aacn =
ADAI T 9, vl

Algorithms

What is an Algorithm ?

Dictionary Definition : A process or set of rules to be followed in calculations or other
problem-solving operations, especially by a computer.

Formal Definition : An algorithm is a finite set of instructions that are carried in a specific
order to perform specific task.

Algorithms typically have the following characteristics —

Inputs : 0 or more input values.

Qutputs : 1 or more than 1 output.
Unambiguity : clear and simple instructions.
Finiteness : Limited number of instructions.

Effectiveness : Each instruction has an impact on the overall process.

Page 1 of 15

Lec.1

Real World example of an Algorithm -

Algorithm(aka process) to make a lemonade —
. Cut your lemon in half.
. Squeeze all the juice out of it that you can.

. Pour your juice into a container with 1/4 cup
(2 oz) sugar.

. Add a very small amount of water to your
container.

. Stir your solution until sugar dissolves.
6. Fill up container with water and add ice.

7. Put your lemonade in the fridge for five
minutes.

. Serve and enjoy!

Example of an Algorithm in Programming -

Write an algorithm to add two numbers entered by g)
user. —

Declare variables - ‘

. Step 1: Start num1, num2 & sum

. Step 2: Declare variables numl, num2 and l

Read values -

sum. num1 & num2

. Step 3: Read values num1 and num2. | l

4. Step 4: Add num1 and num2 and assign the | som= vt a2
result to sum.(sumé&numl+num?2) l

5. Step 5: Display sum Display sum

6. Step 6: Stop L

program = Algorithm + Data Structure

Page 2 of 15

Lec.1

What is Abstract Data Type?
Definition: ADTs are entities that are definitions of data and operations but do not have
implementation details.
Two ways of looking at Data Structures-
- Mathematical/Logical/Abstract Models/Views
- Implementation

Real world Example

smartphone

Abstract/logical view Implementation view
-4 GBRAM class Smartphone{

private:
int ramSize;

- Snapdragon 2.2GHz processor
- 5.5 inch LCD screen string processorName;
- Dual Camera float screenSize;
- Android 8.0 int cameraCount;
string androidVersion;
- call() public:
- text() void call();
- photo() void text();
- video() void photo();
' void video();

Page 3 of 15

Lec.1

Data Structure Example
Integer Array

index postion

0 1 2 3

memory_ 1000 1004 1008 1012
address

Abstract/logical view Implementation View

store a set of elements of int are[5] = {1,2,3,4,5);

Int type + cout<<arr[1];
read elements by postion ar[2]=10;

i.e index
modify elements by index
perform sorting

Representation of algorithm can written By:-
In natural language (English) / pseudo-code / diagrams (Flow chart) / etc.
Pseudo- code:-

A mixture of natural language and high — level programming concepts that describes the main
ideas behind a generic implementation of a data structure or algorithm. Pseudo- code is more
structured than usual language but less formal than a programming language.

Ex.:- Algorithm to find the maximum number in array
input: An array with n integers
output: The Maximum element in A

currentMax «— A[0]

fori «— lton-1do

if currentMax < A[i] then currentMax « A[i]
return currentMax

Page 4 of 15

Ex: An algorithm to find sum n numbers for N range
1- Start
2- Read N
3- Sum =0
4-Forl=1to N
4.1 sum =sum + |
4.1 next |
5- print Sum
6- End

What Makes a Good Algorithm?
Suppose you have two possible algorithms or data structures that basically do the same
thing; which is better?
e Faster
® [ess space
e Easier to code
e Easier to maintain

Data Structures
|

1 1

Primilive Dala Structures MNon-Primitive Data Structures
s B B 3
Integer Real Character Boolean Linear Data Non-linear Data
Structures Structures
—= Arrays Troes
= Linked List Graphs
= Stacks
= Qugues

Fig.1 Classifications of data structures
Classification of data structure

Data structures are broadly divided into two:

Lec.1

1. Primitive data structures: These are the basic data structures and are directly operated upon by the
machine instructions, which is in a primitive level. They are integers, floating point numbers,
characters, string constants, pointers etc. These primitive data structures are the basis for the

discussion of more sophisticated (non-primitive) data structures.

2. Non-primitive data structures: It is a more sophisticated data structure emphasizing on structuring
of a group of homogeneous (same type) or heterogeneous (different type) data items. Array, list,

files, linked list, trees and graphs fall in this category.

Page 5 of 15

Lec.1

How to choose the suitable data structure:-
For each set of data, there are different methods to organize these data in a particular data structure.
To choose the suitable data structure, we must use the following criteria:-

1- Data size and the required memory.

2- The dynamic nature of the data.

3- The required time to obtain any data element from the data structure.

4- The programming approach and the algorithm that will be used to manipulate these data.

Assignment -1-
e Write an algorithm for the following
a- count even& odd numbers in given range

LINKED LIST DATA STRUCTURE

A linked list is a linear collection of specially designed data elements, called nodes,
linked to one another by means of pointers. Each node is divided into two parts: the first
part contains the information of the element, and the second part contains the address of
the next node in the linked list. Address part of the node is also called linked or next field.
Following Fig 5:1 shows a typical example of node.

PTR

\

. PTR < DATA = 50
50 NULL PTR 9 Next = NULL
DATA Next

Fig. 5.1. Nodes.

START
\l- DATA |—+% pata [+» lmTﬁJ

Fig. 5.2. Linked List.

Fig.5.2.shows a schematic diagram of a linked list with 3 nodes. Each node is pictured with two
parts. The left part of each node contains the data items and the right part represents the address of
the next node; there is an arrow drawn from it to the next node. The next pointer of the last node
contains a special value, called the NULL pointer, which does not point to any address of the node.
That is NULL pointer indicates the end of the linked list. START pointer will hold the address of the
1st node in the list START = NULL if there is no list (i.e.; NULL list or empty list).

Page 6 of 15

Lec.1

0x80017
DATA(0x80010 DATA| 0x80031 DATA|NULL
0x80017 0x80010 0x80031
Fig. Linked List representation in memory.
Explanation:

Because each node of a linked list has two components, we need to declare each node as a class or
struct. The data type of each node depends on the specific application—that is, what kind of data is
being processed. However, the link component of each node is a pointer. The data type of this pointer
variable is the node type itself. For the previous linked list, the definition of the node is as follows.
(Suppose that the data type is int.)

struct nodename
{
int info;
nodename *link;

}

The variable declaration is as follows:
nodename *head:;

Linked List: Some Properties

To better understand the concept of a linked list and a node, some important properties of linked lists
are described next.

Consider the linked list in Figure 5-4.

. 2000 2800 1500 3600
2000 17 :aoo—+—+{ 92 ‘15@0—%—*| 63 |3600—+—a{ 45 ‘ 0 —%1
info 1link info link info link info 1link

FIGURE 5-4 Linked list with four nodes

This linked list has four nodes. The address of the first node is stored in the pointer head.

Each node has two components: info, to store the info, and link, to store the address of the next node.
For simplicity, we assume that info is of type int.

Suppose that the first node is at location 2000, the second node is at location 2800, the third node is
at location 1500, and the fourth node is at location 3600. Table Table 5-1 shows the values of head
and some other nodes in the list shown in Figure 5-4.

Page 7 of 15

Lec.1

TABLE 5-1 Values of head and some of the nodes of the linked list in Figure 5-4

head 2000
. Because head is 2000 and the info of the
head=>into L7 node at location 2000 is 17
head->1ink 2800
head=>1ink->info 92 Because head->1ink is 2800 and the

info of the node at location 2800 is 92

Suppose that current is a pointer of the same type as the pointer head. Then the
statement
current = head,
copies the value of head into current. Now consider the following statement:
current = current->link;
This statement copies the value of current->link, which is 2800, into current.
Therefore, after this statement executes, current points to the second node in the list. (When working
with linked lists, we typically use these types of statements to advance a pointer to the next node in
the list.) See Figure 5-5.

head 2000 2800 1500 3600

17 |2800 92 |1s00f—{ €3 [se00t—f 45 | o—h
info link info 1link info 1link info link
current

FIGURE 5-5 List after the statement current = current->link; executes

Table 5-2 shows the values of current, head, and some other nodes in Figure 5-5
TABLE 5-2 Values of current, head, and some of the nodes of the linked list in Figure 5-5

current 2800

current->info 92

current->link 1500
current->1ink->info 63

head->1ink->1ink 1500
head->1ink->1link->info 63
head->1ink->1ink->1ink 3600
current->1ink->1link->1ink 0 (that is, NULL)
current->1ink->1ink->1ink->info Does not exist (run-time error)

Page 8 of 15

Lec.1

TRAVERSING A LINKED LIST
The basic operations of a linked list are as follows: Search the list to determine whether a particular
item is in the list, insert an item in the list, display the elements of the list, and delete an item from the
list.
These operations require the list to be traversed. That is, given a pointer to the first node of the list,
we must step through the nodes of the list.
Suppose that the pointer head points to the first node in the list, and the link of the last node is NULL.
We cannot use the pointer head to traverse the list because if we use the head to traverse the list, we
would lose the nodes of the list. This problem occurs because the links are in only one direction. The
pointer head contains the address of the first node, the first node contains the address of the second
node, the second node contains the address of the third node, and so on. If we move head to the second
node, the first node is lost (unless we save a pointer to this node). If we keep advancing head to the
next node, we will lose all the nodes of the list (unless we save a pointer to each node before advancing
head, which is impractical because it would require additional computer time and memory space to
maintain the list). Therefore, we always want head to point to the first node. It now follows that we
must traverse the list using another pointer of the same type. Suppose that current is a pointer of the
same type as head. The following code traverses the list:

current = head;

while (current = NULL)

{

/IProcess current
current = current->link;

For example, suppose that head points to a linked list of numbers. The following code outputs the
data stored in each node:
current = head,;
while (current = NULL)
{
cout << current->info << " ";
current = current->link;

LINKED LIST ALGORITHMS
This section discusses the algorithms of linked list data structures. Consider the following definition
of a node. (For simplicity, we assume that the info type is int.)

struct nodename

{
int info;
nodename *link;

o

We will use the following variable declaration:
nodename *head, *p, *q, *newNode;

Page 9 of 15

ALGORITHM FOR INSERTING A NODE

START ~

Lec.1

)

Fig. 5.14. Insertion of New Node

Suppose START is the first position in linked list. Let DATA be the element to be inserted in the
new node. POS is the position where the new node is to be inserted. TEMP is a temporary pointer to

hold the node address.

Insert a Node at the beginning

. Input DATA to be inserted
. Create a NewNode
. NewNode -> DATA = DATA
. If (SATRT equal to NULL)

(@) NewNode -> Link = NULL
5. Else

(a) NewNode -> Link = START

6. START = NewNode
7. Exit

A W DN

Insert a Node at the end

1. Input DATA to be inserted
2. Create a NewNode
3. NewNode -> DATA = DATA
4. NewNode -> Next = NULL
5. If (SATRT equal to NULL)
(@) START = NewNode
6. Else
(a) TEMP = START
(b) While (TEMP -> Next not equal to NULL)
(i) TEMP = TEMP -> Next
7. TEMP -> Next = NewNode
8. Exit

Insert a Node at any specified position

1. Input DATA and POS to be inserted
2. initialize TEMP = START; and k=0
3. Repeat the step 3 while(k is less than POS)

Page 10 of 15

Lec.1

(@) TEMP = TEMP -> Next
(b) If (TEMP is equal to NULL)
(1) Display “Node in the list less than the position”
(i) Exit
©)k=k+1
4. Create a New Node
5. NewNode -> DATA = DATA
6. NewNode -> Next = TEMP -> Next
7. TEMP -> Next = NewNode
8. Exit
Consider the linked list shown in Figure 5-6.

headEl—>|q5| —Ej65| 34 F7¢] —I_l

B

FIGURE 5-8 Linked list before item insertion

Suppose that p points to the node with info 65, and a new node with info 50 is to be created and
inserted after p. Consider the following statements:

newNode = new nodename; //create newNode

newNode->info = 50; //store 50 in the new node

newNode->link = p->link;

p->link = newNode;

Table 5-3 shows the effect of these statements.
TABLE 5-3 Inserting a node in a linked list

vese [F-{as I e [F{s [+
p[1]
newNDdeB—-ED
headE—-|45|-|—-|ss|-|—-|34|-|—-|7e|-h
p[1]
newNode
nead []{a5] &[] EIEREEE

newNode = new nodeType;

newNode=->info = 50;

newNode->1ink = p->1link; r[]
newNode l l
nead [J—{2s [{65] [34[471
p->link = newNode; p[1]

newlode l =

Note that the sequence of statements to insert the node, that is,
newNode->link = p->link;
p->link = newNode;

Page 11 of 15

Lec.1

is very important because to insert newNode in the list we use only one pointer, p, to adjust the links
of the nodes of the linked list. Suppose that we reverse the sequence of the statements and execute the
statements in the following order:

p->link = newNode;

newNode->link = p->link;
Figure 5-7 shows the resulting list after these statements execute.

EIERIGE

headl:—|—>| a5 [+—{ &5]
o]

newlode l

FIGURE 5-7 List after the execution of the statement p->1ink = newlode; followed by the
execution of the statement newbode->1ink = p=>1ink;
From Figure 5-7, it is clear that newNode points back to itself and the remainder of the list is lost.

Using two pointers, we can simplify the insertion code somewhat. Suppose g points to the node with
info 34. (See Figure 5-8.)

headB_-|45|—|—:|65| 34 76
e[

I

newlode .

FIGURE 5-8 List with pointers p and g
The following statements insert newNode between p and q:
newNode->link = q;

p->link = newNode;
The order in which these statements execute does not matter. To illustrate this, suppose that we

execute the statements in the following order:
p->link = newNode;
newNode->link = q;

Table 5-4 shows the effect of these statements.
TABLE 5-4 |Inserting a node in a linked list using two pointers

nead[F—2s[F—e5]] 34 [4-{7e [
B[] al]

newlods l

head 45 65 34 76
newNode->1ink = g; D
q
[s0]

p->link = newNode;

newNode

Page 12 of 15

Lec.1

ALGORITHM FOR DELETING A NODE

Consider the linked list shown in Figure 5-9.

head[o 45] —Esﬂ F—{ 34| Jf 7¢] ~h

B

FIGURE 5-9 Node to be deleted is with info 34
Suppose that the node with info 34 is to be deleted from the list. The following
statement removes the node from the list:
p->link = p->link->link;
Figure 5-10 shows the resulting list after the preceding statement executes.

headl:—]—-|45|—|£:|65| |34|—|—-|?6|~|—L

B

FIGURE 5-10 List after the statement p->1ink = p->1ink->1ink; executes
From Figure 5-10, it is clear that the node with info 34 is removed from the list.
However, the memory is still occupied by this node and this memory is inaccessible; that is, this node
is dangling. To deallocate the memory, we need a pointer to this node. The following statements delete
the node from the list and deallocate the memory occupied by this node:

q = p->link;

p->link = g->link;

delete q;

Table 5-5 shows the effect of these statements.
TABLE 5-5 Deleting a node from a linked list

headEI—-|45|-|—:|ss|-|I£j34|-|—-|?e|-|—l

g = p—>link; pﬁ

p->link = g->link; head J45] —E‘| 65 | #ﬁj 34| 4—{7¢] ‘h
D

a

headB—-{45| —Eﬂaﬂ Il 7¢] ~|—l

delete g;

Mode to be deleted (ie; POS =3)

START| - FIR -~ ZT Temp
\ £ 3
i 30 = EE / atf[.
R L=

S Te— A

Page 13 of 15

Deletion of a Node
Suppose START is the first position in linked list. Let DATA be the element to be
deleted. TEMP, HOLD is a temporary pointer to hold the node address.
1. Input the DATA to be deleted
2. if ((START -> DATA) is equal to DATA)
(@) TEMP = START
(b) START = START -> Next
(c) Set free the node TEMP, which is deleted
(d) Exit
3. HOLD = START
4. while ((HOLD -> Next -> Next) not equal to NULL))
(@) if (HOLD -> NEXT -> DATA) equal to DATA)
(i) TEMP = HOLD -> Next
(if) HOLD -> Next = TEMP -> Next
(iii) Set free the node TEMP, which is deleted
(iv) Exit
(b) HOLD = HOLD -> Next
5.if (HOLD -> next -> DATA) == DATA)
(@) TEMP = HOLD -> Next
(b) Set free the node TEMP, which is deleted
(c) HOLD -> Next = NULL
(d) Exit
6. Disply “DATA not found”
7. Exit

ALGORITHM FOR SEARCHING A NODE

Suppose START is the address of the first node in the linked list and DATA is the
information to be searched. After searching, if the DATA is found, POS will contain the
corresponding position in the list.

1. Input the DATA to be searched

2. Initialize TEMP = START,; POS =1,

3. Repeat the step 4, 5 and 6 until (TEMP is equal to NULL)
4. If (TEMP — DATA is equal to DATA)

(a) Display “The data is found at POS”

(b) Exit
5. TEMP = TEMP — Next
6. POS = POS+1
7. 1f (TEMP is equal to NULL)

(a) Display “The data is not found in the list”

8. Exit

Lec.1

Page 14 of 15

Lec.1

ALGORITHM FOR DISPLAY ALL NODES

Suppose START is the address of the first node in the linked list. Following algorithm will visit all
nodes from the START node to the end.
1. If (START is equal to NULL)
(a) Display “The list is Empty”
(b) Exit
2. Initialize TEMP = START
3. Repeat the step 4 and 5 until (TEMP == NULL)
4. Display “TEMP — DATA”
5. TEMP = TEMP — Next
6. Exit

Page 15 of 15

