Lec. 6
QUEUE USING LINKED LIST

Queue is a First In First Out [FIFO] data structure. In chapter 4, we have discussed about stacks
and its different operations. And we have also discussed the implementation of stack using array,
ie; static memory allocation. Implementation issues of the stack (Last In First Out - LIFO) using

linked list is illustrated in the following figures.

Rear

RS

Frarit

Fig. 5.16. push (10)

Rear

Fig. 5.17. push [20)

Hear

10 » 20 | Hsn:uﬁﬁ|

Front
Fig. 5.18, push (30)
/F-‘:ea{
(0] @] el o] e[e fnu]

Front

Fig. 5.19. push (40)

Rear

__ ¥

Front

Fig. 5.20. X = popl) (Le; X = 10)

Page 1 of 3

Lec. 6
Rear

X
| | ‘JULL| | | NL.ILL| | 20 _|_,,| 20 |hULL |
/i

Front

Fig. 5.21. X = pop() {ie; X = 20)

ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE

REAR is a pointer in queue where the new elements are added. FRONT is a pointer, which is

pointing to the queue where the elements are popped. DATA is an element to be pushed.

1.

Input the DATA element to be pushed

2. Create a New Node

3. NewNode — DATA = DATA

4,

5. If(front is equal to NULL and rear is equal to NULL)

NewNode — Next = NULL

(a) front = rear = NewNode
(b) exit

. rear — next = NewNode
. rear = NewNode
. Exit

ALGORITHM FOR POPPING AN ELEMENT FROM A QUEUE

REAR is a pointer in queue where the new elements are added. FRONT is a pointer, which is

pointing to the queue where the elements are popped. DATA is an element popped from the

queue.

1.
2.

declare temp = FRONT
If (FRONT is equal to NULL)
(a) Display “The Queue is empty”

3. Else if (FRONT is equal to REAR)

4.

(@) FRONT = REAR = NULL
Else

Page 2 of 3

Lec. 6
(a) FRONT = FRONT — next

5. delete temp
6. Exit

Page 3 of 3

