Lec. 6
QUEUE USING LINKED LIST

Queue is a First In First Out [FIFO] data structure. In chapter 4, we have discussed about stacks
and its different operations. And we have also discussed the implementation of stack using array,
ie; static memory allocation. Implementation issues of the stack (Last In First Out - LIFO) using

linked list is illustrated in the following figures.
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ALGORITHM FOR PUSHING AN ELEMENT TO A QUEUE

REAR is a pointer in queue where the new elements are added. FRONT is a pointer, which is

pointing to the queue where the elements are popped. DATA is an element to be pushed.

1.

Input the DATA element to be pushed

2. Create a New Node

3. NewNode — DATA = DATA

4,

5. If(front is equal to NULL and rear is equal to NULL)

NewNode — Next = NULL

(a) front = rear = NewNode
(b) exit

. rear — next = NewNode
. rear = NewNode
. Exit

ALGORITHM FOR POPPING AN ELEMENT FROM A QUEUE

REAR is a pointer in queue where the new elements are added. FRONT is a pointer, which is

pointing to the queue where the elements are popped. DATA is an element popped from the

queue.

1.
2.

declare temp = FRONT
If (FRONT is equal to NULL)
(a) Display “The Queue is empty”

3. Else if (FRONT is equal to REAR)

4.

(@) FRONT = REAR = NULL
Else
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(a) FRONT = FRONT — next

5. delete temp
6. Exit
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