# Differential Equation

A differential equation is an equation that involves one or more derivatives, or differentials. Differential equations are classified by:

- 1. **Type:** Ordinary or partial.
- 2. *Order:* The order of differential equation is the highest order derivative that occurs in the equation.
- 3. **Degree:** The exponent of the highest power of the highest order derivative.

A differential equation is an **ordinary D.Eqs**. if the unknown function depends on only one independent variable. If the unknown function depends on two or more independent variable, the D.Eqs. is a **partial D.Eqs**..

Ex1:

$$\frac{dy}{dx} = 5x + 3$$
 1st order-1st degree

**Ex2:** 

$$\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx}\right)^5$$
 3rd order-2nd degree

**Ex3**:

$$4\frac{d^3y}{dx^3} + \sin x \frac{d^2y}{dx^2} + 5xy = 0$$
 3rd order-1st degree

Ex.(4): Find the order and degree of these differential equations.

1. 
$$\frac{dy}{dx} + \cos x = 0$$
 ans:1st order-1st degree

2. 
$$3dx + 4y^2dy = 0$$
 ans:1st order-1st degree

$$3. \quad \frac{d^2y}{dx^2} + y = y^2$$

4. 
$$(y'')^2 + 2y' = x^2$$

5. 
$$y''' + 2(y'')^2 = xy$$

$$6)\,\frac{dy}{dx}=5y$$

$$3\frac{dy}{dx} - \sin x = 0$$

8) 
$$\left(\frac{d^3 y}{dx^3}\right)^2 + \left(\frac{d^2 y}{dx^2}\right)^5 - \frac{dy}{dx} = e^x$$

H.w(1)

- 1. Show that  $y=3e^{2x}-e^{-2x}$  is a solution to y"-4y=0
- Determine whether y(x)= 2e<sup>-x</sup>+xe<sup>-x</sup> is a solution of y"+2y'+y=0
   Determine whether y= x²-1 is a solution of (y')<sup>4</sup>+y²=-1
- 4. Check if  $y = e^{-x}$  is a solution for the D.E. y'' + 3y' + 2y = 0

### **Ordinary Differential Equation:**

Ordinary Differential Equations are Equations involve derivatives and solved by four methods:

- Variable Separable.
- Homogenous.
- Linear.
- Exact.

#### 1- Variable Separable:

A first order D.Eq. can be solved by integration if it is possible to collect all y terms with dy and all x terms with dx, that is, if it is possible to write the D.Eq. in the form

$$f(x)dx + g(y)dy = 0$$

then the general solution is:

$$\int f(x)dx + \int g(y)dy = c \qquad \text{where } \mathbf{c} \text{ is an arbitrary constant.}$$

**Ex.1**:

Solve 
$$\frac{dy}{dx} = e^{x+y}$$

Sol.:

$$\frac{dy}{dx} = e^x \cdot e^y$$

$$\frac{dy}{e^y} = e^x dx$$

$$\int e^{-y} dy = \int e^x \cdot dx$$

$$-\int e^{-y} \cdot (-dy) = \int e^x dx \implies -e^{-y} = e^x + c$$

H.w (2): Solve The following D.E. using the separating of variables method

1. 
$$x(2y-3)dx+(x^2+1)dy=0$$
 ans:  $(x^2+1)(2y-3)=c$ 

2. 
$$dy=e^{x-y} dx$$
 ans:  $e^y=e^x+c$ 

3. 
$$sinx + cosh2y \frac{dy}{dx} = 0$$
 ans:  $sinh 2y-2cosx=c$ 

4. 
$$xe^{y}dy + \frac{x^{2}+1}{y}dx = 0$$
 ans:  $e^{y}(y-1) + \frac{x^{2}}{2} + \ln|x| = c$ 

5. 
$$\sqrt{2} \frac{dy}{dx} = 1$$
 ans:  $\frac{\sqrt{2}}{3} y^{\frac{3}{2}} = x^{\frac{1}{2}} + c$ 

## **Homogeneous Function** (λ)

If  $f(\lambda x, \lambda y) = \lambda^n f(x, y)$  then f(x, y) is homogeneous function and n represents the degree of the homogeneous function.

# **Example**

For the function  $f(x, y) = x^2 + y^2$  then

$$f(\lambda x, \lambda y) = (\lambda x)^{2} + (\lambda y)^{2}$$
$$= \lambda^{2} x^{2} + \lambda^{2} y^{2}$$
$$= \lambda^{2} (x^{2} + y^{2}) = \lambda^{2} f(x, y)$$

So, the function f(x, y) is homogeneous with degree 2.

### **Example**

For the function  $f(x, y) = x + y^2$  then

$$f(\lambda x, \lambda y) = \lambda x + (\lambda y)^{2}$$
$$= \lambda x + \lambda^{2} y^{2}$$
$$= \lambda (x + \lambda y^{2})$$

So, the function f(x, y) is not homogeneous.

#### 2- Homogeneous Equation:

Some times a D.Eq. which variables can't be separated can be transformed by a change of variables into an equation which variables can be separated. This is the case with any equation that can be put into form:

$$\frac{dy}{dx} = f(\frac{y}{x})...(1)$$

Such an equation is called homogenous

Put 
$$\frac{y}{x} = u$$
  $\Rightarrow y = ux$ ,  $\frac{dy}{dx} = u + x \cdot \frac{du}{dx}$  and (1) becomes  $x \cdot \frac{du}{dx} + u = f(u)$ 

Ex.1:

Solve 
$$\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$$

Sol.:

$$\frac{dy}{dx} = \frac{1 + \frac{y^2}{x^2}}{\frac{y}{x}} \implies \text{homo. Put} \qquad \frac{y}{x} = u \implies \frac{dy}{dx} = x \cdot \frac{du}{dx} + u$$

$$x \cdot \frac{du}{dx} + u = \frac{1 + u^2}{u} \implies x \cdot \frac{du}{dx} = \frac{1 + u^2 - u^2}{u}$$

$$x \cdot \frac{du}{dx} = \frac{1}{u} \quad , \qquad \int u \cdot du = \int \frac{dx}{x}$$

$$\frac{u^2}{2} = \ln x + c \implies \frac{y^2}{2x^2} = \ln x + c$$

Ex.(2): Show that the following differential equations are homogenous and solve. 1.  $(x^2+y^2)dx+xy dy=0$  ans:  $x^2(x^2+2y^2)=c$ 

1. 
$$(x^2+y^2)dx+xy dy=0$$
 ans:  $x^2(x^2+2y^2)=0$ 

2. 
$$x^2 dy + (y^2 - xy) dx = 0$$
 ans:  $y = \frac{x}{\ln x - c}$ 

3. 
$$(xe^{\frac{y}{x}} + y)dx - xdy = 0$$
 ans:  $\ln|x| + e^{\frac{-y}{x}} = c$