CHAPTER ] 2

Partial Differential
Equations (PDEs)

A PDE is an equation that contains one or more partial derivatives of an unknown function
that depends on at least two variables. Usually one of these deals with time ¢ and the
remaining with space (spatial variable(s)). The most important PDEs are the wave
equations that can model the vibrating string (Secs. 12.2, 12.3, 12.4, 12.12) and the
vibrating membrane (Secs. 12.8, 12.9, 12.10), the heat equation for temperature in a bar
or wire (Secs. 12.5, 12.6), and the Laplace equation for electrostatic potentials (Secs.
12.6, 12.10, 12.11). PDEs are very important in dynamics, elasticity, heat transfer,
electromagnetic theory, and quantum mechanics. They have a much wider range of
applications than ODEs, which can model only the simplest physical systems. Thus PDEs
are subjects of many ongoing research and development projects.

Realizing that modeling with PDEs is more involved than modeling with ODEs, we
take a gradual, well-planned approach to modeling with PDEs. To do this we carefully
derive the PDE that models the phenomena, such as the one-dimensional wave equation
for a vibrating elastic string (say a violin string) in Sec. 12.2, and then solve the PDE
in a separate section, that is, Sec. 12.3. In a similar vein, we derive the heat equation in
Sec. 12.5 and then solve and generalize it in Sec. 12.6.

We derive these PDEs from physics and consider methods for solving initial and
boundary value problems, that is, methods of obtaining solutions which satisfy the
conditions required by the physical situations. In Secs. 12.7 and 12.12 we show how PDEs
can also be solved by Fourier and Laplace transform methods.

COMMENT. Numerics for PDEs is explained in Secs. 21.4-21.7, which, for greater
teaching flexibility, is designed to be independent of the other sections on numerics in
Part E.

Prerequisites: Linear ODEs (Chap. 2), Fourier series (Chap. 11).
Sections that may be omitted in a shorter course: 12.7, 12.10-12.12.
References and Answers to Problems: App. 1 Part C, App. 2.

12.1 Basic Concepts of PDEs
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A partial differential equation (PDE) is an equation involving one or more partial
derivatives of an (unknown) function, call it u, that depends on two or more variables,
often time 7 and one or several variables in space. The order of the highest derivative is
called the order of the PDE. Just as was the case for ODEs, second-order PDEs will be
the most important ones in applications.
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Just as for ordinary differential equations (ODEs) we say that a PDE is linear if it is
of the first degree in the unknown function u and its partial derivatives. Otherwise we
call it nonlinear. Thus, all the equations in Example 1 are linear. We call a linear PDE
homogeneous if each of its terms contains either u# or one of its partial derivatives.
Otherwise we call the equation nonhomogeneous. Thus, (4) in Example 1 (with f not
identically zero) is nonhomogeneous, whereas the other equations are homogeneous.

Important Second-Order PDEs
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Here ¢ is a positive constant, 7 is time, x, y, z are Cartesian coordinates, and dimension is the number of these
coordinates in the equation. [ |

A solution of a PDE in some region R of the space of the independent variables is a
function that has all the partial derivatives appearing in the PDE in some domain D
(definition in Sec. 9.6) containing R, and satisfies the PDE everywhere in R.

Often one merely requires that the function is continuous on the boundary of R, has
those derivatives in the interior of R, and satisfies the PDE in the interior of R. Letting R
lie in D simplifies the situation regarding derivatives on the boundary of R, which is then
the same on the boundary as it is in the interior of R.

In general, the totality of solutions of a PDE is very large. For example, the functions

() u=x>-— yz, u = e"cosy, u = sin x cosh y, u=In@xZ+ yz)

which are entirely different from each other, are solutions of (3), as you may verify. We
shall see later that the unique solution of a PDE corresponding to a given physical problem
will be obtained by the use of additional conditions arising from the problem. For instance,
this may be the condition that the solution # assume given values on the boundary of the
region R (“boundary conditions”). Or, when time # is one of the variables, u (or u; = du/dt
or both) may be prescribed at t = 0 (“initial conditions”).

We know that if an ODE is linear and homogeneous, then from known solutions we
can obtain further solutions by superposition. For PDEs the situation is quite similar:

Fundamental Theorem on Superposition

If uy and us are solutions of a homogeneous linear PDE in some region R, then
u = ciuq +-c2u2

with any constants ¢1 and cg is also a solution of that PDE in the region R.




The simple proof of this important theorem is quite similar to that of Theorem 1 in Sec. 2.1

Verification of solutions in Probs. 2—13 proceeds as for ODEs. Problems 16-23 concern
PDEs solvable like ODEs. To help the student with them, we consider two typical examples.

Since no y-derivatives occur, we can solve this PDE like u” — u = 0.1In Sec. 2.2 we would have
obtained u = Ae®™ + Be™" with constant A and B. Here A and B may be functions of y, so that the answer is

u(x,y) = A(y)e* + B(y)e™

with arbitrary functions A and B. We thus have a great variety of solutions. Check the result by differentiation. Hl
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and is left to the student.
EXAMPLE 2 Solving u,, — u = 0 Like an ODE
Find solutions u of the PDE u,,, — u = 0 depending on x and y.
Solution.
EXAMPLE 3 Solving u,, = —u, Like an ODE

Find solutions u = u(x, y) of this PDE.

Solution. Setting u, = p, we have p, = —p, =—1, Inlp|=—y+ &x). p=cxe ¥ and b
g Uy = p Py Ps Pylp P y P y

integration with respect to x,

u(x,y) = f(x)e ¥ + g where fx) = Jc(x) dx,

here, f(x) and g(y) are arbitrary.

1. Fundamental theorem. Prove it for second-order
PDEs in two and three independent variables. Hint.
Prove it by substitution.

VERIFICATION OF SOLUTIONS
Verifiy (by substitution) that the given function is a solution
of the PDE. Sketch or graph the solution as a surface in space.

2-5 Wave Equation (1) with suitable ¢

x2 + 12

= cos 4t sin 2x

w
s =
(!

4. u = sin kct cos kx

5. u = sin at sin bx
Heat Equation (2) with suitable ¢
6. u=e 'sinx
7. u= e~ cos wx
8. u=e%sin wx
9. u=¢"""cos 25x
Laplace Equation (3)
10. u = ¢* cosy, e’ siny
11. u = arctan (y/x)
12. u = cos y sinh x, sin y cosh x

PROBLEM SET 12.1

13, u = x/( + y2), /(% + y?)

14. TEAM PROJECT. Verification of Solutions
(a) Wave equation. Verify thatu(x, 1) = v(x + ¢t) +
w(x — ct) with any twice differentiable functions v and
w satisfies (1).

(b) Poisson equation. Verify that each u satisfies (4)
with f(x, y) as indicated.

u=y/x f=2y/x*
u = sin xy f= 2+ y?)sinxy
u=e""Y =42+ yz)exz_y2

u=1/Va2+y2  f=@2+ A7
(¢) Laplace equation. Verify that
u=1/ \/m satisfies (6) and
u=1In (x? + y?) satisfies 3). Is u = 1/Vx% + y%a
solution of (3)? Of what Poisson equation?

(d) Verify that u with any (sufficiently often differ-
entiable) v and w satisfies the given PDE.

u=v + w( Ugy = 0
u=v@w) Ullyy = Uglly
u=vkx+ 2+ wkx — 21 wyy = 4ty

15. Boundary value problem. Verify that the function
ulx,y) =aln (x2 + yz) + bsatisfies Laplace’s equation
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(3) and determine a and b so that u satisfies the
boundary conditions # = 110 on the circle
x2+y%=1and u = 0 on the circle x2 + yZ = 100.

16-23 | PDEs SOLVABLE AS ODEs

This happens if a PDE involves derivatives with respect to
one variable only (or can be transformed to such a form),
so that the other variable(s) can be treated as parameter(s).
Solve for u = u(x, y):

16. uyy =0 17. uyy + 16720 = 0

543

18. 25uy, —4u =0 19. uy + y?u =0

20. 2uyy + u, + 4u = —3 cosx — 29 sin x

21. uyy + 6uy + 13u = 43

23. xzum + 2xuy — 2u =0
24. Surface of revolution. Show that the solutions z =
z(x, y) of yz, = xz, represent surfaces of revolution. Give
examples. Hint. Use polar coordinates r, 6 and show that
the equation becomes z4 = 0.

25. System of PDEs. Solve uy, = 0, u,, = 0

220 Uyy = Uy

12.2 Modeling: Vibrating String, Wave Equation

In this section we model a vibrating string, which will lead to our first important PDE,
that is, equation (3) which will then be solved in Sec. 12.3. The student should pay very
close attention to this delicate modeling process and detailed derivation starting from
scratch, as the skills learned can be applied to modeling other phenomena in general and
in particular to modeling a vibrating membrane (Sec. 12.7).

We want to derive the PDE modeling small transverse vibrations of an elastic string, such
as a violin string. We place the string along the x-axis, stretch it to length L, and fasten it
at the ends x = 0 and x = L. We then distort the string, and at some instant, call it = 0,
we release it and allow it to vibrate. The problem is to determine the vibrations of the string,
that is, to find its deflection u (x, 7) at any point x and at any time ¢ > 0; see Fig. 286.

u(x, 1) will be the solution of a PDE that is the model of our physical system to be
derived. This PDE should not be too complicated, so that we can solve it. Reasonable
simplifying assumptions (just as for ODEs modeling vibrations in Chap. 2) are as follows.

Physical Assumptions

1. The mass of the string per unit length is constant (“homogeneous string”). The string
is perfectly elastic and does not offer any resistance to bending.

2. The tension caused by stretching the string before fastening it at the ends is so large
that the action of the gravitational force on the string (trying to pull the string down

a little) can be neglected.

3. The string performs small transverse motions in a vertical plane; that is, every
particle of the string moves strictly vertically and so that the deflection and the slope
at every point of the string always remain small in absolute value.

Under these assumptions we may expect solutions u (x, f) that describe the physical

reality sufficiently well.

|
|
|
|
|
I
0 x x4+ Ax

Fig. 286. Deflected string at fixed time t. Explanation on p. 544
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Derivation of the PDE of the Model
(“Wave Equation”) from Forces

The model of the vibrating string will consist of a PDE (“wave equation”) and additional
conditions. To obtain the PDE, we consider the forces acting on a small portion of the
string (Fig. 286). This method is typical of modeling in mechanics and elsewhere.

Since the string offers no resistance to bending, the tension is tangential to the curve
of the string at each point. Let 7; and 75 be the tension at the endpoints P and Q of that
portion. Since the points of the string move vertically, there is no motion in the horizontal
direction. Hence the horizontal components of the tension must be constant. Using the
notation shown in Fig. 286, we thus obtain

(nH Ty cosa = T5cos B = T = const.

In the vertical direction we have two forces, namely, the vertical components —177 sin «
and 75 sin B8 of 73 and T5; here the minus sign appears because the component at P is
directed downward. By Newton’s second law (Sec. 2.4) the resultant of these two forces
is equal to the mass pAx of the portion times the acceleration azu/ ar2, evaluated at some
point between x and x + Ax; here p is the mass of the undeflected string per unit length,
and Ax is the length of the portion of the undeflected string. (A is generally used to denote
small quantities; this has nothing to do with the Laplacian V2, which is sometimes also
denoted by A.) Hence

. . &
T5sin B — T1s1na=pr?Z.

Using (1), we can divide this by 75 cos 8 = T cos a« = T, obtaining

LsinB  Tisina =tan,8—tana=pr o2u

15 cos B T; cos a T o®

2

Now tan « and tan 3 are the slopes of the string at x and x + Ax:

0 d
tan o = (_u> and tan B = (l>
ax /|, 0x

Here we have to write partial derivatives because u also depends on time z. Dividing (2)

by Ax, we thus have
L (a_) - (a_> _P &
Ax|\ox/l an \ox/l| T ar*

If we let Ax approach zero, we obtain the linear PDE

x+ Ax

02u 9 02u
— =7
0xX

3
@ at> d

This is called the one-dimensional wave equation. We see that it is homogeneous and
of the second order. The physical constant 7/p is denoted by ¢? (instead of ¢) to indicate
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that this constant is positive, a fact that will be essential to the form of the solutions. “One-
dimensional” means that the equation involves only one space variable, x. In the next
section we shall complete setting up the model and then show how to solve it by a general
method that is probably the most important one for PDEs in engineering mathematics.

12.3 Solution by Separating Variables.
Use of Fourier Series

We continue our work from Sec. 12.2, where we modeled a vibrating string and obtained
the one-dimensional wave equation. We now have to complete the model by adding
additional conditions and then solving the resulting model.

The model of a vibrating elastic string (a violin string, for instance) consists of the one-
dimensional wave equation

azl/t_ 2
1) 5 =C

‘Q’
N
<
[
N
Il
DN

3
S
M)

for the unknown deflection u (x, ) of the string, a PDE that we have just obtained, and
some additional conditions, which we shall now derive.

Since the string is fastened at the ends x = 0 and x = L (see Sec. 12.2), we have the
two boundary conditions

2) (@ u,n =0, (b) u(L,r =0, forallz = 0.

Furthermore, the form of the motion of the string will depend on its initial deflection
(deflection at time ¢t = 0), call it f(x), and on its initial velocity (velocity at t = 0), call it
g (x). We thus have the two initial conditions

3 @ ulx0)=fx, b wx0)=gx O=x=1L)

where u; = du/dt. We now have to find a solution of the PDE (1) satisfying the conditions
(2) and (3). This will be the solution of our problem. We shall do this in three steps, as
follows.

Step 1. By the “method of separating variables” or product method, setting
u(x,t) = F(x)G(t), we obtain from (1) two ODEs, one for F(x) and the other one
for G ().

Step 2. We determine solutions of these ODEs that satisty the boundary conditions (2).

Step 3. Finally, using Fourier series, we compose the solutions found in Step 2 to obtain
a solution of (1) satisfying both (2) and (3), that is, the solution of our model of the
vibrating string.

Step 1. Two ODEs from the Wave Equation (1)

In the method of separating variables, or product method, we determine solutions of the
wave equation (1) of the form

(C)) u(x, 1) = F)G (1)
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which are a product of two functions, each depending on only one of the variables x and 7.
This is a powerful general method that has various applications in engineering mathematics,
as we shall see in this chapter. Differentiating (4), we obtain
52 . 52
S =FG ad S =FG
ot 0x

where dots denote derivatives with respect to ¢ and primes derivatives with respect to x.
By inserting this into the wave equation (1) we have

FG = AF'G.
Dividing by ¢?FG and simplifying gives

G F
G F
The variables are now separated, the left side depending only on 7 and the right side only
on x. Hence both sides must be constant because, if they were variable, then changing ¢
or x would affect only one side, leaving the other unaltered. Thus, say,
é F/I
- =—"T=k
3G F

Multiplying by the denominators gives immediately two ordinary DEs

5) F" —kF=0
and
(6) G — &G = 0.

Here, the separation constant « is still arbitrary.

Step 2. Satisfying the Boundary Conditions (2)

We now determine solutions F' and G of (5) and (6) so that u = FG satisfies the boundary
conditions (2), that is,

@) u(0,1 = FO)G(@) =0, ull,t) = FWL)G@) =0 for all 7.

We first solve (5). If G = 0, then u = FG = 0, which is of no interest. Hence G # 0
and then by (7),

®) (@ F@O) =0, (b) FL) =0.

We show that £ must be negative. For k = 0 the general solution of (5) is F = ax + b,
and from (8) we obtaina = b = 0,sothat F = 0and u = FG = 0, which is of no interest.
For positive k = ,uz a general solution of (5) is

F = Ae™® + Be ™"



SEC. 123  Solution by Separating Variables. Use of Fourier Series 547

and from (8) we obtain F = 0 as before (verify!). Hence we are left with the possibility
of choosing k negative, say, k = —pZ. Then (5) becomes F” + p?F = 0 and has as a
general solution

F(x) = A cos px + B sin px.

From this and (8) we have
FO=A=0 and then F(L) = BsinpL = 0.

We must take B # 0 since otherwise /' = (. Hence sin pL. = 0. Thus

9 pL = nir, so that p = % (n integer).

Setting B = 1, we thus obtain infinitely many solutions F(x) = F,, (x), where

(10) F,(x) = sin%x n=1,2"-"")
These solutions satisfy (8). [For negative integer n we obtain essentially the same solutions,
except for a minus sign, because sin (—a) = —sin a.]

We now solve (6) with k = —p? = —(n7r/L)? resulting from (9), that is,
(11%) G+A2G =0 where A,=cp= %

A general solution is
G, (t) = By, cos At + B sin A, t.

Hence solutions of (1) satisfying (2) are u,(x, 1) = F,,(x)G,(t) = G (t)F,(x), written out
. . nar
(11D Uy (x, 1) = (By, cos At + B sin A, t) sin Tx n=1,2,---).

These functions are called the eigenfunctions, or characteristic functions, and the values
A, = cnar/L are called the eigenvalues, or characteristic values, of the vibrating string.
The set {A1, Ag, -+ } is called the spectrum.

Discussion of Eigenfunctions. We see that each u,, represents a harmonic motion having
the frequency A,,/27 = cn/2L cycles per unit time. This motion is called the nth normal
mode of the string. The first normal mode is known as the fundamental mode (n = 1),
and the others are known as overtones; musically they give the octave, octave plus fifth,
etc. Since in (11)

nirx

. -0 _L2L n-—1
sin —— = at x =

n’ ’ n

)

Sl

the nth normal mode has n — 1 nodes, that is, points of the string that do not move (in
addition to the fixed endpoints); see Fig. 287.
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L
n=1 n=2 n=3 n=4

Fig. 287. Normal modes of the vibrating string

Figure 288 shows the second normal mode for various values of 7. At any instant the
string has the form of a sine wave. When the left part of the string is moving down, the
other half is moving up, and conversely. For the other modes the situation is similar.

Tuning is done by changing the tension 7. Our formula for the frequency A,,/27 = cn/2L
of uy, with ¢ = VT/p [see (3), Sec. 12.2] confirms that effect because it shows that the
frequency is proportional to the tension. 7 cannot be increased indefinitely, but can you
see what to do to get a string with a high fundamental mode? (Think of both L and p.)
Why is a violin smaller than a double-bass?

Fig. 288. Second normal mode for various values of t

Step 3. Solution of the Entire Problem. Fourier Series

The eigenfunctions (11) satisfy the wave equation (1) and the boundary conditions (2)
(string fixed at the ends). A single u,, will generally not satisfy the initial conditions (3).
But since the wave equation (1) is linear and homogeneous, it follows from Fundamental
Theorem 1 in Sec. 12.1 that the sum of finitely many solutions u,, is a solution of (1). To
obtain a solution that also satisfies the initial conditions (3), we consider the infinite series
(with A, = cnr/L as before)

(12) u(, ) = Dy, 1) = > (By, cos Ayt + Bjf sin Ayt) sin %x.
n=1

n=1

Satisfying Initial Condition (3a) (Given Initial Displacement). From (12) and (3a)
we obtain

(13) u(x,0) = > B, sin %x = f(). O=x=0).

n=1

Hence we must choose the B,,’s so that u(x, 0) becomes the Fourier sine series of f(x).
Thus, by (4) in Sec. 11.3,

L
14) B, = gj £ sin 22X gy, n=1,2,
L) L
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Satisfying Initial Condition (3b) (Given Initial Velocity). Similarly, by differentiating
(12) with respect to ¢ and using (3b), we obtain

u
ot

- : N
= [ D' (=BpAy sin Ayt + BjiAy, cos Ayt) sin n_Lx

n=1 t=0

t=0

= S Bih, sinnTm = g(x).

n=1

Hence we must choose the B;i’s so that for 7 = 0 the derivative du/dr becomes the Fourier
sine series of g(x). Thus, again by (4) in Sec. 11.3,

L
BiA, = J 2(x) sin"—zxdx.

0

~ o

Since A,, = cnr/L, we obtain by division

L
2 . nwx
(15) B;’§=%J g(x)sdex, n=12---
0

Result. Our discussion shows that u (x, t) given by (12) with coefficients (14) and (15)
is a solution of (1) that satisfies all the conditions in (2) and (3), provided the series (12)
converges and so do the series obtained by differentiating (12) twice termwise with respect
to x and ¢ and have the sums qu/ ax2 and 62u/ 8t2, respectively, which are continuous.

Solution (12) Established. According to our derivation, the solution (12) is at first a
purely formal expression, but we shall now establish it. For the sake of simplicity we
consider only the case when the initial velocity g (x) is identically zero. Then the Bj; are
zero, and (12) reduces to

(16) u(x, 1) = DB, cos At sin%, A, = ST

n=1

It is possible to sum this series, that is, to write the result in a closed or finite form. For
this purpose we use the formula [see (11), App. A3.1]

cos mt sin Hx _1 sin ﬂ(x — ct) ¢ + sin ﬂ(x + ct)
L L 2 L L '

Consequently, we may write (16) in the form
1< 1< )
u(x,n = Ean sin {%(x — ct)} + E EBn sin {%(x + ct)}.
n=1 n=1

These two series are those obtained by substituting x — ¢t and x + ct, respectively, for
the variable x in the Fourier sine series (13) for f(x). Thus

17) u(x, f) = 3[f*(x — cf) + f*(x + cp)]
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where f* is the odd periodic extension of f with the period 2L (Fig. 289). Since the initial
deflection f(x) is continuous on the interval 0 = x = L and zero at the endpoints, it follows
from (17) that u(x, ) is a continuous function of both variables x and ¢ for all values of
the variables. By differentiating (17) we see that u (x, ) is a solution of (1), provided f(x)
is twice differentiable on the interval 0 < x < L, and has one-sided second derivatives at
x = 0and x = L, which are zero. Under these conditions u (x, 7) is established as a solution
of (1), satisfying (2) and (3) with g(x) = 0. [ |

EEN \/\ L

N~ __— O N ___ — x

Fig. 289. Odd periodic extension of f(x)

Generalized Solution. If f'(x) and f”(x) are merely piecewise continuous (see Sec. 6.1),
or if those one-sided derivatives are not zero, then for each ¢ there will be finitely many
values of x at which the second derivatives of u appearing in (1) do not exist. Except at
these points the wave equation will still be satisfied. We may then regard u(x, 7) as a
“generalized solution,” as it is called, that is, as a solution in a broader sense. For instance,
a triangular initial deflection as in Example 1 (below) leads to a generalized solution.

Physical Interpretation of the Solution (17). The graph of f* (x — ct) is obtained from
the graph of f*(x) by shifting the latter ¢t units to the right (Fig. 290). This means that
[*(x — c)(c > 0) represents a wave that is traveling to the right as ¢ increases. Similarly,
f*(x + ct) represents a wave that is traveling to the left, and u(x, f) is the superposition
of these two waves.

) f*x—ct)

gy x

<—ct

Fig. 290. Interpretation of (17)

Vibrating String if the Initial Deflection Is Triangular
Find the solution of the wave equation (1) satisfying (2) and corresponding to the triangular initial deflection

2k
—X

. L
if 0<x<-—
L 2

f&x) =
2k . L
—(L —x) if —<x<L
L 2
and initial velocity zero. (Figure 291 shows f(x) = u(x, 0) at the top.)

Solution. Since g(x) = 0, we have B¥ = 0 in (12), and from Example 4 in Sec. 11.3 we see that the B,, are
given by (5), Sec. 11.3. Thus (12) takes the form

o) 8k 1 . m 7TCZ 1 . 3w 31 -
ux, = 5 |7 SsSm—xcosS—f— (5 SIn—xCoOS——— I
e L 32 L L



