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3-B. Second Order Differential Equations:

The second order linear differential equations with constant coefficient has the genral

form is:
ay"+by'+cy = F(x) (1),
where a, b and ¢ are constants.

If F(x)=0 then (1) is called homogenous.

If F(x)#0 then (1) is called non homogenous.

Linear Differential Operator

It is convenient to introduce the symbol D to represent the operation of
differentiation with respect to x. That is, we write Df(x) to mean df/dx.

Furthermore, we define powers of D to mean taking successive derivatives:

D*f(x) = D{Df (x)} = f;{ . D) =DDf(v)= ‘fo |
(D*+D-2)f(x)=D*f(@)+ DF () -2f () =L+ Y 27 (m)
dx dx

a) The Second order linear homogenous D.Eq. with constant coefficient:
The general form is
a"+by'+cy=0 ...(2)

where a, b and ¢ are constants.

The general solution

Put y'=Dy and y"=Dy in eq. (2) (D is an operator)
= a D*y+bDy+cy=0
= (aD* +bD+¢c)y =0 (using D-operator)
now substitute D by r and leave y then
ar’ +br+c=0
is called characteristic equation of the differential equation and the solution of this equation

(the roots r) give the solution of the differential equation where
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V=

—bFb* —4dac

2a
There are two values of 7 :
1- real (equal and not equal).
2- complex.
d’y ., dy
Solution of +2a—+by=0
dx’ dx y
Roots 1, & 1, Solution
Real and unequal y=Ce " +Ce’™

Real and equal

Complex conjugate, @ £ jf3

y=(Cx+C,))e ™
yv=e"(C,cos fx + C,sin fx)

Ex.1: Solve y" —2)"' =3y =0

Solution:

Y'=2)y'=3y=0
P =2r-3=0 ,
(r+)(r-3)=0
r+1=0 = r=-1
r-3=0 = r=3

the general solution is

_ -X 3x
y —cle +cze

Example

Solve the following differential equations:

y=1,y=r , y=r
d’y  dy
b +4—+4y=0
Oy gzt
2
@ %2 vay=0
dx”



Applied Mathematics
Computer Engineering Department

Lec. Five
Solution:
(@) dy & 5. 0
dx*  dx d

The characteristic equation is
D*+D-2=0
D-D(D+2)=0 = r=1

and r,=-2
The solution is

y=Ce +C,e™

2
(b) df+4d—y+4y=0

dx dx

The characteristic equation is
D*+4D+4=0
(D+2)*=0 —

The solution is

n=n=-2

y=(Cx+C,)e™

d’y
© dx’

The characteristic equation is

+4@~|—6y=0
dx

D’ +4D+6=0

_—B++B*-44C
24

_ 4% -4(1)6) _-4++16-24

2(1) 5

R

1,2

—4+-8 —4+j22
2 2

ru:—Zijer = 1’1:—2+jx/5

= a=-2 and f=2

The solution is

and r,=-2— jv

y=e>(C, cos+/2x + C, sin \Ex)
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2
(@ d Y +4y=0
dx

The characteristic equation is
D*+4=0
(D-j2)(D+j2)=0 = rn=j2 and r,=—j2
= a=0 and f=2

The solution is

y=Ccos2x + C,sin2x

Homework (1)

1. 4y"12y+5y=0 ans:y=cie""™+ c,e®*"

2. 3y"-14y'-5y=0 ans:y=ce”+ c,e""*"

3. 4y"+y=0 ans:y=c;cos(x/2)+ c,sin(x/2)
4. y"-8y+16y=0 ans:y=c;e™+ c,xe™

5. y'+9y=0 ans:y=c;cos3x+ c;sin3x
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b) The Second order linear non homogenous D.Eq. with constant coefficient:
The general form is: ay”"+by' +cy =F(x) ...(3)

where a, b and ¢ are constants.

The general solution

If yy, is the solution of the homo. D.Eq. ay”+5by"+c¢y =0, then the general solution of
eq. (3) is:

Yy=y,ty, v, (complementary function)
v, (porticular integral)

i) 'y, 1is y homo.
i) Y, ' .

Variation of Parameters to Find(*» ) :

This method assumes we already know the homogeneous solution
Vi = Gy (x) + Gy (x)
The method consists of replacing the constants C; and C, by functions v,(x) and
v,(x) and then requiring that the new expression

Yy =il v,

and by solving the following two equations
! ' .
viu, +v,u, =0
viu, +viu, = F(x)

for the unknown functions v| and v, using the following matrix notation

(&1


sara
Textbox
Variation of Parameters to Find(     ) :

sara
Textbox
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uluzvl'_ 0
wouh ] vy| | F(x)

Finally v, and v, can be found by integration.

In applying the method of variation of parameters to find the particular solution,

the following steps are taken:

i. Find v, and Vv, using the following equations

‘ 0 u, u, 0
R N T 16 Y AE
: u, u, D ’ u, u, D
ul uz
where D=6
U, U,

ii. Integrate v, and Vv, to find v, and v,.
1. Write the particular solution as

Y, =V, + VU,

Example

2
Solve the equation d’y +2 d_ 3y=6
d. dx

2
Solution

The homogeneous solution y, can be found using the reduced equation

d’y . dy
+29 3y=0
dx? dx Y
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The characteristic equation is D> + 2D —3 =0 and the roots of this equation are
rp=-3and r, =1, s0

_ —3x X
v, =Ce " +C,e

Then u=e* u =e"
e—3x ex
D= e 43¢ =4
_ 3e—3x ex
0 €' e 0
, 6 ex _ 6ex 3 N , . 36—3)6 6 6e—3x 3 .
V== =—_€, v, = P P
4e 4e 2 4e 4e 2
3 1 3 3
v, =|-=edx=——¢", v, =|—e'dx=—=e¢
1 2 2

Example
Solve the equation y" —2y'+ y =e” In(x)

Solution
The homogeneous solution y, can be found using the reduced equation
y'=2y"+y=0
The characteristic equation is

D*-2D+1=0
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(D - 1)2 =0
The roots are rn=r,=1
The solution is =(Cix+C,)e"

_ X X
v, =Cxe” +C,e

From that we have u,(x) = xe", and u,(x)=e".

xe" e’
D — — erx _ (xe2x + er) — _er
xe' +e' e
0 e’
e"In(x) €| —In(x)e™
vl’ = 2x = 2x = ln(x)
—e —e
xe" 0
xe*+e* e'In(x) xIn(x)e*
v, = o ) = ( 2)x = —xIn(x)
—e —e
v, = . In(x)dx = xIn(x) — x

v, =— _[ x In(x)dx
dx X
=1n(x) = dl/lz—, dv=xdx = VZ?
X

v, = —(x—;ln(x) —I%zx idxj = —(—111(?6) j dx]

X2 X2 X2 X2
:‘(71“(’”7}771“(’”
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The particular solution is

2 2
Y, =V, +vu, = (xIn(x) — x)xe* + % — %ln(x) e’

2 2
=x’e" In(x) —x’e" + % e’ — % e” In(x)

2 2
X 3x
=—e In(x)——e"
2 4
The complete solution is

2 2
3x

y=y,+y,=Cxe" +C,e’ +%e" ln(x)—Te"

Homework (2)

Solve:
Dy -y —2y=e¥
ans:y = c;e™™ + c?e** +%e3x
2) y'+y=-secx
ans:y = ¢;€0sx + c,sinx + In | cosx| coSx + xsinx





